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Abstract

Neuroimaging studies typically adopt a common feature space for all data, which may obscure 

aspects of neuroanatomy only observable in subsets of a population, e.g. cortical folding patterns 

unique to individuals or shared by close relatives. Here, we propose to model individual variability 

using a distinctive keypoint signature: a set of unique, localized patterns, detected automatically in 

each image by a generic saliency operator. The similarity of an image pair is then quantified by the 

proportion of keypoints they share using a novel Jaccard-like measure of set overlap. Experiments 

demonstrate the keypoint method to be highly efficient and accurate, using a set of 7536 T1-

weighted MRIs pooled from four public neuroimaging repositories, including twins, non-twin 

siblings, and 3334 unique subjects. All same-subject image pairs are identified by a similarity 

threshold despite confounds including aging and neurodegenerative disease progression. Outliers 

reveal previously unknown data labeling inconsistencies, demonstrating the usefulness of the 

keypoint signature as a computational tool for curating large neuroimage datasets.
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1. Introduction

The human brain is a highly complex organ in terms of both structure and function, that is 

widely studied in vivo through magnetic resonance imaging (MRI) (Lerch et al., 2017). To 

what degree is neuroanatomy, as observed in MRI, unique to individuals? Can individuals be 

reliably distinguished from close relatives, i.e. siblings or monozygotic twins sharing 50–

100% of their polymorphic genes, despite natural aging, neurodegenerative disease, or noise 

due to the data measurement process? To what degree are unique aspects of neuroanatomy 

shared by close relatives? These questions are motivated by increasingly personalized 

modern medical practices and the need to accurately curate growing sets of clinical and 

research neuroimaging data. We address them in this paper using a unique computer vision 

method.

A number of studies have investigated the variability of individuals rather than populations 

(Valizadeh et al., 2018; Finn et al., 2015; Miranda-Dominguez et al., 2014), where a 

common theme has been to encode data in terms of a unique neuroimage “fingerprint” or 

brainprint. Although the specific encodings used are data-dependent, the accuracy with 

which individuals can be identified based on their brainprint may indicate the degree to 

which inferences may be drawn from unique, subject-specific observations (Finn et al., 

2015). Brainprint investigations have been performed from a variety of MRI modalities, 

including structural (Wachinger et al., 2015; Takao et al., 2015), diffusion (Valizadeh et al., 

2018; Kumar et al., 2017; Yeh et al., 2016) and functional (Colclough et al., 2017; Finn et 

al., 2015; Miranda-Dominguez et al., 2014; Chen and Hu, 2018; Amico and Goñi, 2018) 

MRI, and in non-MRI data such as EEG (Armstrong et al., 2015). Our work here is the first 

to investigate individual identification from multiple, large-scale public MRI datasets used 

by the neuroimaging community, including the Human Connectome Project (HCP) (Van 

Essen et al., 2013), the Alzheimer’s Disease Neuroimaging Initiative (ADNI) (Jack et al., 

2008) and the Open Access Series of Imaging Studies (OASIS) (Marcus et al., 2007), and 

first to report perfect accuracy in individual identification experiments.

The challenge in establishing a distinctive brainprint can perhaps be best illustrated by the 

convoluted neocortex, arguably the most distinguishing aspect of human neuroanatomy. 

Cortical folding patterns are highly unique to individuals and generally exhibit higher 

correlation between twins than unrelated individuals (Van Essen et al., 2016; Thompson et 

al., 2001), suggesting a link between subtle neuroanatomic structure and shared genetics. A 

pair-wise image correlation analysis could potentially distinguish individuals and relatives, 

however such an approach is generally impractical for large datasets as the number of pair-

wise operations including image registration is quadratic N(N −1)/ = 2 in the number of 

images N. Most studies of individual variability have interpreted all data in terms of a 

standard feature set, e.g. spatially registered voxel-wise measurements (Takao et al., 2015), 

neuroanatomic segmentations (Wachinger et al., 2015), cortical parcellations (Colclough et 

al., 2017; Finn et al., 2015; Miranda-Dominguez et al., 2014; Fischl, 2012) and related 

volume or thickness measurements (Sabuncu et al., 2016). While standard measurements are 

invaluable in interpreting data and reducing computational complexity, a number of authors 

have noted that a one-size-fits-all representation may obscure or average out aspects of 

anatomy unique to individuals (Finn et al., 2015; Gordon et al., 2017; Chen and Hu, 2018) 
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or close relatives, for example in the case where a one-to-one mapping between images may 

be ill-defined or nonexistent due to individual variability.

An alternative is to encode the image as a unique set of informative localized features or 

keypoints, that can be detected efficiently from generic image content and identified robustly 

when present in different images. For example, the highly successful scale-invariant feature 

transform (SIFT) (Lowe, 2004) from the field of computer vision uses highly efficient K-

nearest neighbor (KNN) keypoint indexing to identify correspondences between generic 

intensity patterns in large image sets. Inspired by this work, we developed the 3D SIFT-Rank 

keypoint method (Toews and Wells, 2013) for analyzing volumetric image data as illustrated 

in Fig. 1. Toews et al. (Toews and Wells, 2016) showed that the proportion of detected 

keypoints common to a pair of brain MRIs, as quantified by the Jaccard measure of set 

overlap (Levandowsky and Winter 1971), could be used to identify MRI pairs of siblings 

with high reliability. The Jaccard measure defines a similarity matrix J(A, B) between all 

keypoints and image pairs (A, B) of a dataset, that can be used in learning-based MRI 

analysis. Toews et al. (Toews et al., 2010) identified class-informative keypoint clusters in 

the similarity matrix J(A, B) for MRI-based disease classification. Kumar et al. (2018) 

combined similarity matrices derived from multiple MRI modalities in a low-rank manifold 

embedding in order to study correlations between MRIs of siblings, and found that keypoints 

outperformed a number of baseline representations including MRI intensities and FreeSurfer 

derived measures (Volume + Area + Cortical Thickness). While learning procedures may be 

useful in analyzing a fixed dataset or group analysis, they are difficult to adapt to previously 

unseen data or classes, i.e. to account for images of previously unobserved individuals. This 

paper is the first to investigate the task of individual identification using the keypoint 

representation.

These results lead us to hypothesize that SIFT-Rank keypoint sets serve as a highly specific 

encoding of unique neuroanatomic structure. Here, we propose a novel generalisation of the 

Jaccard score J(A, B) to account for probabilistic rather than hard set equivalence between 

keypoints. This leads to a highly efficient instance-based inference model, allowing new 

MRI data to be compared to a large dataset on-the-fly in order to identify all previous scans 

of the same individual despite myriad potential confounds including noise, atrophy due to 

neurodegeneration. This paper reports the first comprehensive investigation of keypoint 

signatures for individual identification from MRI data. Our results based on several large-

scale, public neuroimaging datasets demonstrated that all same-subject image pairs can be 

identified by a simple threshold on Jaccard overlap. A visual analysis of outlier cases 

revealed all were due to data labeling inconsistencies previously unknown to the 

neuroimaging community, demonstrating the practical importance of the approach in 

curating increasingly large data collections.

2. Material & methods

2.1. Data

Experiments are based on a large, multi-site dataset pooled from 4 public neuroimaging 

repositories HCP Q4, ADNI 1, OASIS 1 and OASIS 3. The FreeSurfer v6.0 pre-processing 

pipeline was used to remove non-brain content such as skull from MRIs while preserving 
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cortical and subcortical structures. Out of 8152 images, 616 failed the pre-processing 

pipeline (FreeSurfer error code, no output image generated) resulting in a final dataset of N 

= 7536 MRIs of 3334 unique subjects. Pre-processing failures typically occurred in 

Talairach alignment or in skull stripping steps, and visual inspection revealed that all cases 

were due to noticeable image artifacts or noise. Table 1 lists demographic and statistical 

information for this dataset.

Our analysis is based on a pair-wise comparison of N(N −1)/ 2 = 28; 391; 880 possible 

image pairs. Each pair is assigned a relationship label based on database metadata, for five 

possible sibling relationships: same subject (SM), monozygotic twins (MZ), dizygotic twins 

(DZ), full-sibling (FS) or unrelated subjects (UR). Subjects from different data sets are 

naïvely assumed to be unrelated, due to a lack of information across databases. It is 

important to note that these datasets were acquired under different protocols and over 

different periods of time, resulting in potential bias due to within-dataset similarity. For 

example, the time interval between scans is under a year for HCP, in comparison to 11 years 

for OASIS 3, 3 years for ADNI and 2 years for OASIS 1, and pairs of HCP scans may thus 

exhibit higher similarity than others. Our method is nevertheless robust the ranges of inter- 

and intra-dataset variability of these data, as we mention later in the discussion.

2.2. Processing

Assessing the pairwise similarity of images in a large data set generally requires comparing 

measurements at spatially homologous locations throughout the images. Since image data 

are noisy and the precise spatial mapping between images may be unknown or nonexistent, 

an effective comparison requires a combination of image registration and/or feature 

extraction methods. Naïve similarity assessment for all image pairs is generally intractable 

for large datasets as the number of pairwise operations including image registration is 

quadratic N(N −1)/ 2 in the number of images N, incurring a computational complexity of 

O(N2). Assessment based on a standard feature set such as spatially aligned cortical 

parcellations can reduce computational complexity, but may be insufficiently specific to 

capture subtle neuroanatomic patterns only observable in small subsets of a population, e.g. 

family members.

To address these challenges, we developed a method based on keypoint indexing (Lowe, 

2004; Toews and Wells, 2013), where the image is represented as a set of generic features 

detected throughout the image via a saliency operator. Keypoints arise from generic 

neuroanatomical structure, and can be detected repeatably in a manner invariant to locally 

linear intensity shifts and global similarity transforms (i.e. 3D rigid transform + isotropic 

scaling) of image geometry (Toews and Wells, 2013). In practice, keypoint extraction is 

highly robust to variations in MRI intensity and geometry, e.g. in the case of images 

acquired from different devices or sites, exhibiting artifacts such as low frequency MRI 

inhomogeneity effects or changes in patient position. It is also robust to partial occlusions, 

where locally missing or deformed image content will not significantly impact keypoints 

identified in other unaffected image regions. Once detected, image content associated with 

keypoints is encoded into informative descriptors that can be used to identify similar 

keypoints via highly efficient indexing methods. Specifically, divide-and-conquer algorithms 
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can achieve O(N log N) complexity using search trees to identify sets of similar keypoints, 

thus sidestepping the need for pairwise image comparisons and scaling gracefully to large 

datasets. Our method consists of image keypoint detection (Fig. 1, Step I), keypoint 

matching (Step II) and finally computation of the Jaccard overlap similarity score (Step III). 

These three steps are described in greater detail below.

Keypoint Detection seeks to transform each image into a set of salient image keypoints, 

where keypoints are encoded as informative descriptors for efficient image content indexing. 

A keypoint is as a spherical image region defined by a centroid x = [x, y, z] and a scale (or 

size) σ within the image, and associated with a descriptor f  encoding local image 

appearance. A deterministic two-step detection procedure is used, including 1) salient 

keypoint localization and 2) keypoint encoding with the so-called SIFT-Rank approach 

(Toews and Wells, 2009, 2013). Keypoints are first localized by searching the image for 

regions that maximize an image saliency operator, signifying informative, local image 

patterns. A variety of such operators exist, here we use the 3D Laplacian-of-Gaussian (LoG) 

operator (Marr and Hildreth, 1980) that responds to generic blob-like image patterns, 

reminiscent of center-surround simple cell retinal processing units in the mammalian visual 

system (Hubel and Wiesel, 1962). The LoG operator can be approximated efficiently by the 

difference-of-Gaussian (DoG) operator popularized by the SIFT algorithm in 2004 (Lowe, 

2004) (see Equation (1)). For each image I, a set of keypoints xi, σi  is identified as:

xi, σi = argmax
x, σ

|I*G(x, σ) − I*G(x, κσ)| (1)

where in Equation (1) I is the 3D image, G(x, σ) is the Gaussian function with isotropic 

variance σ2, and κ is a constant representing the multiplicative difference in scale. Note that 

the keypoint scale σ is defined by the size of the Gaussian filters for which the DoG saliency 

operator in Equation (1) is maximized.

Once keypoint regions are localized, the image content within each region is rescaled and 

rotated to a characteristic coordinate system, then encoded as a descriptor f  representing the 

local image content as a fixed-length vector. The rescaling factor is defined by the keypoint 

scale σ and the rotation by the 3D orientation of local image gradients, thus the descriptor is 

invariant to global scaled rigid transforms (i.e. similarity transforms) of image geometry, e.g. 

in the cases of variable patient scanning position or unregistered images. Local image 

gradient analysis is also used to reject keypoints arising from image patterns that cannot be 

reliably localized in 3D, e.g. smooth surfaces.

Distinctive image patterns generally arise from boundaries between regions of differing 

intensity contrast, e.g. white and grey matter. Descriptors here encode image content as 

histograms of local image gradient information, estimated via finite difference operators and 

quantized into discrete bins over local 3D location and orientation, an approach know as the 

histogram-of-oriented gradient (HoG) descriptor (Lowe, 2004; Dalal and Triggs, 2005). 

Robustness to minor shifts or deformation of image geometry is achieved by the use of 

relatively coarse spatial bins, where small variations in gradient location or direction do not 

significantly impact descriptor values. The HoG descriptor is currently among the most 
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effective and widely used descriptors for image keypoint matching, and is analogous of so-

called orientation hyper-columns of complex cells that encode image structure in the 

mammalian visual cortex (Hubel and Wiesel, 1962). In our method, local image patches are 

cropped and rescaled to 113 voxels, after which image gradient histograms are computed to 

encode the image content. For encoding, local 3D space and orientation are quantized 

uniformly into 2 × 2 × 2 = 8 spatial regions and 8 orientation histogram bins, thereby 

producing an 8 × 8 = 64 element HoG image descriptor for each keypoint. Finally, this 

descriptor is rank-ordered to provide invariance to monotonic variations in image gradients 

(Toews and Wells, 2009), e.g. due to variations in image contrast.

Keypoint Matching seeks to identify pairs of keypoints arising from similar anatomical 

structure in different images, based on the similarity (or dissimilarity) of their descriptors. 

Descriptors from the same structure in different images are rarely identical, but differ by 

varying amounts due to imaging variations, noise, etc. The dissimilarity of a pair of 

descriptors f i, f j  is quantified by the Euclidean distance or L2-norm between their 

elements d f i, f j = f i − f j 2. Assuming an additive Gaussian noise model and independent 

and identically distributed (IID) descriptor elements, the smaller the distance d f i, f j , the 

higher the likelihood that the descriptors arise from the same underlying anatomical 

structure.

A K-nearest neighbor (K-NN) search is used to identify sets of similar descriptors as 

follows. For each descriptor f i, a set of the Kth closest or most similar descriptors NNk( f i) is 

identified as

NNk f i = f j : d f i, f j ≤ di, K (2)

where di, K = d f i, f K  is the distance between f i and the Kth closest descriptor f K. 

Enumerating NNk( f i) for each f i in a set of N descriptors via naïve pairwise comparisons 

incurs a computational cost of O(N2). However rapid approximate K-NN algorithms using 

efficient tree-based search structures can perform this enumeration in O(N log N) 

computational complexity. We use a set 8 randomized search trees as proposed in (Muja and 

Lowe, 2014), where the descriptor search space is divided according to the descriptor 

elements exhibiting the highest variance. Parameter K can be set generously to at least the 

number of expected matches in the dataset, here we used K = 30. Note that a relatively large 

percentage of matches may be spurious or incorrect due to noise, however these tend to be 

distributed randomly between unrelated subjects and have negligible impact. With these 

parameters, matching features of one image to all other 7535 images (represented by 

approximately 16, 000,000 features) requires approximately 0.35 s on an Intel Xeon Silver 

4110@2.10Ghz, demonstrating the high computational efficiency of the method. Note that 

O(N2) operations are required to explicitly enumerate matches between all pairs in a set of N 
images for a complete analysis (i.e. 28,381,485 unrelated subjects in Fig. 2), however small 

numbers of closely related subjects may identified in O(N log N) complexity.
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Set Similarity Measurement seeks to quantify the likelihood that two independent keypoint 

sets arise from the same underlying object. As our data consist of sets of discrete keypoints, 

potentially arising from equivalent neuroanatomic regions in different subject scans, we use 

the Jaccard overlap measure from set theory. The Jaccard overlap score J(A, B) between a 

pair of feature sets A and B is defined as

J(A, B) = A ∩ B
A ∪ B = A ∩ B

A + B − A ∩ B (3)

where, in Equation (3), |A| and |B| represent the cardinalities (sizes) of sets A and B, and |A 
∩ B| represents the cardinality of their intersection, i.e. the of elements shared by A and B. 

The Jaccard measure has several desirable properties, for example it ranges from [0,1] for 

disjoint to identical sets respectively, and can be transformed into a distance metric 

(Levandowsky and Winter 1971) 1 – J(A, B) in the abstract space of variable-sized keypoints 

sets.

The intersection in Equation (3) is defined as the subset of elements shared by both sets:

A ∩ B = f i : f i ∈ A ∧ f i ∈ B (4)

Evaluating the intersection requires identifying pairs of equivalent set elements, i.e. f i ∈ A

and f j ∈ B such that f i = f j. These are defined by the union of all unique NN keypoint 

matches identified between A and B. As set equivalence is binary, each unique keypoint 

match thus f i, f j  contributes 1 element to the intersection A ∩ B, and the cardinality |A ∩ 

B| may be computed as the sum of matching elements (Kumar et al., 2018; Toews and Wells, 

2016). Binary equivalence of keypoint descriptors is difficult to justify however, as statistical 

variations in image content generally introduce uncertainty into keypoint descriptors. We 

thus consider f i, f j  as contributing a soft value ranging from [0, 1] to [A ∩ B], which is 

proportional to the likelihood of f i, f j  arising from a Gaussian density of variance αi
2 and 

mean f i. The cardinality of the set intersection is then evaluated as:

A ∩ B = ∑
f i ∈ A

max
f j ∈ NNk f i ∩ B

exp −d2 f i, f j /2αi
2

(5)

In Equation (5), variance parameter αi
2 is set automatically for each keypoint descriptor f i as 

the squared distance to the closest NN keypoint within the entire training set. This allows the 

method to adjust to variable sampling density in the keypoint descriptor space about sample 

f i in a manner similar to adaptive or variable kernel density estimation (Terrell Scottet al., 

1992), thereby downweighting the contribution of unlikely matches to the cardinality |A ∩ 
B|. A related benefit is the reduced sensitivity to the parameter K in the evaluation of |A∩ B|. 

Note that the cardinality for standard binary set equivalence is computed via Equation (5) by 
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taking d f i, f j = 0 for all f j ∈ NNk f i . Given that the nearest neighbor relationship is not 

strictly symmetric, the cardinality as computed via Equation (5) depends generally on the 

feature set over which sum is computed. In practice, we notice little difference in Jaccard 

values, and symmetry may be imposed.

3. Results

We performed experiments to quantify the variability of T1-weighted MRI data acquired 

from individuals and close relatives using keypoint signatures. A large set (N = 7536) of 

T1w MRIs of 3334 unique subjects was pooled from four public neuroimaging datasets 

(HCP Q4, ADNI 1, OASIS 1 and OASIS 3), where each image pair bears a unique pair-wise 

relationship label: same subject (SM), monozygotic twin (MZ), dizygotic twin (DZ), non-

twin full sibling (FS) or unrelated (UR) subjects. Relationship information for pairs of MR 

images were provided by individual datasets, while relationships between image pairs from 

different datasets were naïvely assumed to be unrelated. We evaluated the Jaccard overlap 

derived from the image content for all N(N −1)/ 2 = 28, 391, 880 possible image pairs, and 

studied the distributions of Jaccard measurements conditioned on relationship labels. Since 

the Jaccard overlap was derived from the proportion of features shared between images, we 

expected it to decrease with the degree of genetic and environmental separation in the 

pairwise relationship, i.e. decreasing in the order of SM, MZ, DZ, FS, UR pairs.

Fig. 1 illustrates the workflow for evaluating the Jaccard similarity score J(A, B) between an 

image pair (A, B). First, a one-time pre-pro-cessing step was applied to each image, where 

non-brain structure was removed using the Freesurfer software (Fischl, 2012), after which 

keypoint features were detected using the authors’ publicly available software 

implementation. Detection required approximately 15 s and identified approximately 2000 

keypoints per MRI. After pre-processing, nearest-neighbor (NN) keypoint matches were 

enumerated across all images, establishing putative equivalence between keypoints in 

different images, and the Jaccard similarity score was computed for each image pair based 

on the proportions of keypoint matches they shared.

The Jaccard overlap J(A, B) can be viewed as a whole-brain similarity measure ranging from 

[0, 1] for lowest to highest similarity. Equivalently, a monotonic transform such as the 

negative logarithm can be used to map J(A, B) to a Jaccard distance measure dJ(A, B) = −log 

J(A, B) ranging from [0,∞]. Fig. 2 shows the empirical distributions of Jaccard distances, 

obtained for the five pair-wise relationships (indicated by color), where lower distance 

indicates a higher proportion of shared image content and neuroanatomic similarity. 

Distributions for each relationship label are unimodal and concentrated about a central 

tendency. The order of the mean distances for relationships (dashed vertical lines) is 

generally consistent with the degree of similarity in genetic and environmental 

developmental factors, i.e. increasing in order of SM, MZ, DZ/FS, UR. A number of outliers 

were identified (red and blue dots), and have been confirmed to arise from inconsistent 

image labels. These outliers will be discussed later.

The Jaccard distance distribution for same-subject (SM) pairs was highly unique, with no 

overlap with any other distribution including monozygotic twins (MZ). All SM pairs could 
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thus be identified via a simple score threshold, supporting our hypothesis that keypoints 

capture highly unique aspects of individual neuroanatomy. Distributions for other 

relationships exhibit a degree of overlap, and the two-sample Kolmogorov-Smirnov test was 

used to evaluate the null hypothesis that samples arise from the same underlying distribution 

(Table 2). Most p-values were extremely low, allowing us to reject the null hypothesis with 

high confidence. The one exception was the case of FS and DZ pairs, where the p-value of 

0.108 indicated no significant difference between Jaccard distance distributions for FS and 

DZ siblings.

The Jaccard overlap is derived from image-to-image keypoint matches between unique 

neuroanatomic patterns identified in different images. Fig. 3 illustrates the spatial 

distributions of matching keypoints as heatmaps within a common reference space for each 

relationship label. Keypoints were distributed similarly throughout the brain for all 

relationships, and generally concentrated in regions with significant intensity contrast 

variations, i.e. the interfaces between cortical sulci or sub-cortical structures and cerebral 

spinal fluid (CSF). The primary quantitative difference between relationship groups was the 

number of keypoint matches, which was much higher for same subject images, thus 

reflecting a higher degree of shared anatomic structure. Fig. 4 shows an example of 

keypoints matching between MRIs of the same individual acquired 11 years apart.

The primary systematic confound was the age difference between image acquisitions, which 

was positively correlated with Jaccard distance as shown in Fig. 5. This likely reflected 

changes in brain morphology due to both natural aging and disease progression, primarily in 

SM pairs of older adults from the ADNI and OASIS datasets designed to study Alzheimer’s 

disease (mean age 73 years). Data was unavailable to investigate the impact of age 

difference for younger SM subjects, however age separation between FS pairs (mean age 28 

years) from the HCP dataset had no noticeable impact on the Jaccard distance, likely 

reflecting the relatively stable brain anatomy across the younger, healthy HCP cohort. By 

inspection, the highest Jaccard distances for SM pairs were typically associated with random 

confounds including image artifacts (e.g. due to MRI acquisition, pre-processing, etc.) or 

morphological changes in the brain (e.g. due to natural aging, neurodegenerative disease, 

etc.), see Fig. 5a) and b). Other confounds including sex, race and age had no significant 

impact on Jaccard distances, and invariant keypoint matching is independent of the image 

(mis)alignment, an important benefit of our method.

A surprising result was the discovery of 184 outlier image pairs with Jaccard distances that 

were noticeably outside of the distributions associated with their relationship labels. These 

included pairs labeled as UR or MZ with Jaccard distances similar to same subjects (Fig. 2, 

blue dots), and pairs labeled as SM with Jaccard distances similar to those for unrelated 

subjects (Fig. 2, red dots). Upon visual inspection of the cortical folding patterns (see 

examples in Fig. 2), and with the help of the respective database administrators, we 

established that all were most likely labeled incorrectly. All individual datasets contained at 

least one case where images of the same subject were labeled as different subjects. Instances 

of the same subject were identified across the OASIS and ADNI datasets. Table 3 lists the 

numbers of subjects with inconsistent labels within and between datasets. Additionally, 11 
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cases of perfectly identical images were identified by unusually low Jaccard distance, these 

were labeled as images of the same subject acquired at different time points.

An important algorithmic parameter is the number of NN descriptor matches K used in 

estimating the Jaccard score. In the case of hard set equivalence (Toews and Wells, 2016; 

Kumar et al., 2018), each keypoint match contributes 1 to the set union |A ∩ B|, and an 

optimal K depends on the number of relevant image samples, i.e. MRIs of the same subject 

or group, which is generally unknown and variable. In the case of our soft weighting 

approach however, each match contributes a weight proportional to a Gaussian density, and 

thus K may be set large enough to include all relevant image samples.

4. Discussion

In this paper, we proposed to model neuroanatomy as a collection of distinctive image 

keypoints, hypothesizing that this would more accurately preserve aspects of anatomy 

unique to individuals or close family members, distinctive neuroanatomic signatures that 

might otherwise be averaged out by traditional parcellation or voxel-wise representations. 

The whole-brain similarity of an image pair was assessed in terms of the proportion of 

keypoints they share using the Jaccard measure of set overlap, which can be computed from 

arbitrarily large datasets using a highly efficient keypoint matching procedure.

Experiments validated our hypothesis in the largest study of individual identification from 

MRI data to date, involving 7536 T1w MRIs of 3334 unique subjects pooled from four 

large, public neuroimaging datasets: ADNI, OASIS1, OASIS3 and HCP. Distributions of 

Jaccard distances for same vs. unrelated subject MRI pairs are separated by a wide margin, 

and a simple threshold on the Jaccard distance was sufficient to identify all same-subject 

pairs with 100% accuracy.1 In contrast, the largest previous study involved almost 700 

subjects from the ADNI dataset alone, required multiple scans per subject as training data, 

and achieved less than perfect accuracy using features derived from a standard 

neuroanatomic segmentation (Wachinger et al., 2015).

An important potential confound is within-dataset scan similarity; same-subject scans are 

typically found within the same dataset, whereas scans from the same dataset are known to 

generally exhibit similarity due to a number of commonalities including subject 

demographics, age, site, scan sequence, scanner artifacts, etc (Wachinger et al., 2019). As 

expected, Jaccard distance distributions were generally lower within-dataset vs. across-

datasets: for SM pairs (2.12±0.65 vs. 4.46±0.66) and for UR pairs (8.99±0.76 vs: 

10.01±0.80), indicating a within-dataset similarity effect. However there was no overlap 

between distance distributions for SM and UR pairs, and we thus expect these to remain 

separable by a Jaccard distance threshold in new T1-weighted MRI data acquired and pre-

processed (e.g. skull-stripped) with protocols similar to those used for the three datasets used 

here. Furthermore, the pattern of decreasing similarity in the order of SM, MZ, (DZ/FS) to 

UR pairs did not change when analysis was restricted to single datasets.

1For completeness, there is the possibility of coincidental errors in both metadata labeling and automatic identification, however the 
probability of this is very low, given these events are unrelated, independent and individually highly improbable.
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A surprising result was the discovery of previously unknown subject labeling 

inconsistencies, identified as clear outliers from their expected Jaccard distributions. These 

included MRIs of the same person labeled as unrelated, or MRIs of different people labeled 

as the same, and were identifed both within and across the datasets. Such inconsistencies 

may lead to bias in cross-validation studies, e.g. computer-assisted prediction (Desikan et al., 

2009; Samper-Gonzalez et al., 2018) where protocols assume independent training and 

testing data, and similar errors in a clinical context could potentially lead to errors in patient 

care. The ability to identify these in widely used, public datasets is noteworthy, and 

demonstrates the potential for the keypoint signature as a powerful tool in curating and 

validating large neuroimage datasets.

The Jaccard measure is driven by keypoint matches representing instances of unique 

neuroanatomic patterns shared between pairs of images of individual or siblings. The 

Jaccard overlap generally decreased with the degree of genetic and developmental separation 

in the pairwise relationship label, i.e. in the order of SM, MZ, DZ/FS, UR pairs, indicating 

decreasing proportions of unique anatomic structure shared by these groups as predicted. A 

notable exception was the case of dizygotic twin (DZ) and non-twin full sibling (FS) 

relationships, which showed no statistically significant difference in terms of their pairwise 

Jaccard distributions. Keypoint matches were generally distributed throughout the brain and 

across interfaces between adjacent tissues exhibiting high intensity contrast in MRI, e.g. 

cerebrospinal fluid, grey and white matter, in a manner unique to the specific image pair, 

rather than within regular loci defined by typical parcellation schemes. Combined with the 

high accuracy of identification experiments, this suggests that aspects of neuroanatomy most 

characteristic of individuals or close relatives may be highly idiosyncratic and not ultimately 

be tied to a fixed parcellation. Keypoint signatures provide a robust and efficient means of 

exploring these aspects across large datasets, and a combination of keypoint signatures and 

traditional segmentations or parcellations may ultimately prove most effective in 

understanding the variability of individuals and genetic families.

In terms of technology, the keypoint signature affords the capability of rapidly comparing a 

new image against a large dataset, e.g. identifying all keypoint sets with high Jaccard 

similarity in 0.35 s here. This is a memory-based learning approach, which requires no 

explicit training procedure. New data are easily incorporated, and it is limited only by the 

amount of memory available, a limit that is continually reduced by technological 

advancement. In contrast, representations based on traditional neuroanatomic parcellations 

generally require extensive pre-processing, including image registration and segmentation, 

and alternative machine learning approaches require training procedures with multiple MRIs 

per subject (Wachinger et al., 2015) which may be unavailable a priori. Keypoint detection 

here is based on a recursive Gaussian filtering process that is analogous to a highly efficient, 

unbiased convolutional neural network (CNN) used in deep learning (LeCun et al., 2015). 

Machine learning could potentially be used to optimize filters, however this would require 

training procedures and data that might not be readily available (i.e. multiple labeled images 

of an individual), and would introduce bias related to a particular training set.

Our experiments here derived keypoint signatures from the ubiquitous T1w structural MRI 

modality, however keypoint detection can be performed from arbitrary scalar image 
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modalities, e.g. fractional anisotropy derived from diffusion MRI (dMRI) (Kumar et al., 

2018) or statistical parameter maps derived from fMRI data, and descriptors can be used to 

encode vector-valued data, e.g. histograms of diffusion gradient orientations in dMRI 

(Chauvin et al., 2018). Keypoint matching across different modalities is generally non-trivial 

and an avenue for future investigation (Toews et al., 2013). Our analysis focused on 

neuroanatomy and automatic skull stripping was used to remove image content associated 

with non-brain tissues. Extensive pre-processing is not generally required, as keypoints can 

be reliably detected despite variations in intensity or pose, and can be used to analyze non-

brain image content. In fact, we found the Jaccard similarity between related subjects to be 

higher when non-brain structure is included. Nevertheless, processes for normalizing or 

correcting intensity values, e.g. correction of MRI inhomeneities using field maps, should 

generally improve the repeatability of keypoint detection, and the question of an optimal 

image pre-processing pipeline is left for future research. Experiments here were limited to 

sibling relationships and adult subjects ranging of 18–96 years of age, future investigations 

will consider younger age groups such as infants with the additional confound of rapid 

neurodevelopment and other relationships including parent-child or cousins with varying 

amounts of shared genetics. Finally, our work here does not investigate links between 

anatomical keypoints and subject abilities or behaviors. However, the keypoint 

representation has previously been used to interpret single anatomical scans according to 

group-wise clinical symptoms or labels, e.g. Alzheimer’s disease classification (Toews et al., 

2010) and neonatal age prediction (Toews et al., 2012), and similar keypoint analysis 

techniques could potentially be applied to other modalities including functional MRI data in 

future investigations.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
The workflow for computing the Jaccard overlap J(A, B) similarity score between two 

images A and B. Step I. SIFT-Rank keypoints are extracted from skull-stripped MRI data. 

Step II. Similar keypoints are identified between images using a K-nearest neighbor search. 

Step III. The Jaccard overlap is computed as ratio of the intersection vs. the union of 

keypoint sets.
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Fig. 2. 
Distributions of the pairwise Jaccard distances conditional on relationship labels including: 

unrelated (UR, blue), same (SM, red), full siblings (FS, purple), dizygotic (DZ, green) and 

monozygotic (MZ, yellow) twin subject relationship labels, where black dashed lines 

indicate distribution means. Note the high degree of separation between SM and UR scores. 

Dots indicate data labeling inconsistencies automatically flagged by unexpected Jaccard 

distance. The correct relationship labels are evident upon visual inspection of cortical 

patterns (highlight), which are virtually identical in SM pairs mislabeled as (a) UR and (b) 

MZ, and highly different in a UR pair mislabeled as (c) SM.
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Fig. 3. 
The spatial layout of keypoint matches for five pairwise relationship labels: a) SM, b) MZ, 

c) DZ, d) FS, e) UR. Heatmaps represent distributions of matching keypoints within the 

standard MNI305 neuroanatomic reference space and accumulated over 71 image pairs per 

label from HCP dataset.
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Fig. 4. 
Keypoints matched between MRIs of the same individual acquired at 51 and 62 years of age. 

Matching keypoints (spheres, color indicating scale) represent patterns of local cortical 

structure that are highly unique to this individual, with notable concentrations in a) Broca’s 

area, b) the primary somatosensory cortex and c) Wernicke’s area. Note that keypoints have 

been slightly extruded from within the cortex for improved visualization. The visualization 

was generated using the 3D Slicer software (Fedorov et al., 2012).
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Fig. 5. 
Jaccard distance as a function of the age difference Δt between scans for SM (N = 9885) and 

FS (N = 607) pairs. Lines and boxes represent the means and standard deviations of the 

Jaccard distance. a) and b) show examples of image pairs successfully identified as SM, 

despite a relatively high Jaccard distance due to aging, noticeable image artifacts in a) and 

neurodegenerative atrophy in b).
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Table 1

Dataset demographic and statistical information.

Dataset Subjects Gender Age Images Voxel Size keypoints

(M/F) (Min/Avg/Max) (mm) (Avg/Image)

HCP Q4 1011 469/542 22/29/36 1053 0.7 3633

ADNI 1 844 488/356 55/75/91 3291 1.0 1879

OASIS 1 416 160/256 18/53/96 416 1.0 2143

OASIS 3 1063 470/593 42/70/97 2776 1.0 1856

Total 3334 1587/1747 18/56/97 7536 - 2130
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Table 2

p-values for two-sample Kolmogorov-Smirnov tests between Jaccard distance distributions for (SM) Same 

Subject, (MZ) Monozygotic, (DZ) Dizygotic, (FS) Full-Sibling and (UR) Unrelated pairwise relationships.

SM MZ DZ FS UR

SM – 1.38 × 10−233 1.55 × 10−125 0 0

MZ – – 1.40 × 10−41 6.09 × 10−97 1.18 × 10−228

DZ – – – 0.108 2.87 × 10−120

FS – – – – 0

UR – – – – –
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Table 3

Mislabeled subject relationships identified across and within databases. Most cases are subjects mislabeled as 

UR. * A pair labeled as MZ was established to be SM and one dataset was subsequently removed from the 

HCP dataset. A pair of scans labeled as UR were confirmed to be SM in the OASIS 1 dataset. ** OASIS3 and 

OASIS1 are known to share data from numerous subjects. *** OASIS3 contained 2 pairs of SM subjects 

mislabeled as UR, and 3 pairs of UR subjects labeled as SM.

HCP Q4 ADNI 1 OASIS 1 OASIS 3

HCP Q4 1* 0 0 0

ADNI 1 – 3 4 2

OASIS 1 – – 1 79**

OASIS 3 – – – 2 + 3***
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