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Abstract

Background: Objectives were to build a machine learning algorithm to identify bloodstream infection (BSI) among
pediatric patients with cancer and hematopoietic stem cell transplantation (HSCT) recipients, and to compare this
approach with presence of neutropenia to identify BSI.

Methods: We included patients 0–18 years of age at cancer diagnosis or HSCT between January 2009 and
November 2018. Eligible blood cultures were those with no previous blood culture (regardless of result) within 7
days. The primary outcome was BSI. Four machine learning algorithms were used: elastic net, support vector
machine and two implementations of gradient boosting machine (GBM and XGBoost). Model training and
evaluation were performed using temporally disjoint training (60%), validation (20%) and test (20%) sets. The best
model was compared to neutropenia alone in the test set.

Results: Of 11,183 eligible blood cultures, 624 (5.6%) were positive. The best model in the validation set was GBM,
which achieved an area-under-the-receiver-operator-curve (AUROC) of 0.74 in the test set. Among the 2236 in the
test set, the number of false positives and specificity of GBM vs. neutropenia were 508 vs. 592 and 0.76 vs. 0.72
respectively. Among 139 test set BSIs, six (4.3%) non-neutropenic patients were identified by GBM. All received
antibiotics prior to culture result availability.

Conclusions: We developed a machine learning algorithm to classify BSI. GBM achieved an AUROC of 0.74 and
identified 4.3% additional true cases in the test set. The machine learning algorithm did not perform substantially
better than using presence of neutropenia alone to predict BSI.
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Background
Over the last few decades, continued improvement in
survival for children with cancer has been observed [1].
Favorable survival outcomes have arisen from better risk
stratification, improved understanding of the biology of
pediatric cancer and intensification of therapy for some
cancer types. Supportive care is also an integral compo-
nent of cancer management. One of the most important
toxicities of cancer treatment is bloodstream infection
(BSI), defined as a microbial pathogen isolated from a
blood culture. BSIs are important because they are respon-
sible for considerable morbidity, healthcare utilization and
treatment-related mortality [2, 3]. More specifically, BSIs
may result in infection-related mortality in children who
might otherwise be cured [4, 5]. Patients without cancer
undergoing hematopoietic stem cell transplantation
(HSCT) are also at risk for life-threatening BSI [6]. Identi-
fying the risk of BSI is important as those at lower risk may
benefit from less intensive interventions such as outpatient
management of fever, while those at higher risk may bene-
fit from more intensive interventions such as broader
empiric antibiotics or antibacterial prophylaxis [7, 8].
Even among children receiving identical chemotherapy,

the risk of BSI is highly variable [2, 9]. Fever occurring
during severe neutropenia (typically defined as an absolute
neutrophil count (ANC) less than 0.5 × 109/L) was one of
the earliest identified risk factors that predicted life-
threatening BSI in patients receiving cancer treatments
[10]. While neutropenia is an important risk factor, other
factors including other laboratory parameters, bone
marrow disease, underlying cancer type, treatments, in-
patient status and comorbidities are also thought to be im-
portant [11]. While multiple risk stratification schemas
have been developed, primarily in the setting of fever and
neutropenia (FN), none are universally applicable. More
specifically, rules developed in one context may not be
valid in a different context [11]. Further, most rules are
applied to patients with FN and thus, will miss episodes
of BSI occurring in non-neutropenic patients.
The advent of at least two developments may offer

both improved and individualized risk prediction for BSI
in pediatric patients receiving cancer treatments. First,
the transition to electronic health records (EHR) in
many pediatric cancer centers in high income countries
allows an opportunity to capitalize on these data at little
incremental cost [12–14]. Second, machine learning ap-
proaches have gained popularity with the introduction of
more powerful computing ability combined with devel-
opment of newer learning algorithms [15]. Together,
these developments may permit the creation of new clas-
sifiers or machine learning algorithms to detect BSI. If
successful, such a classifier could be useful in multiple
ways. First, it could supplant using neutropenia as the
primary indication to start empiric antibiotics in patients

with fever. Second, it could be used in conjunction with
neutropenia to identify additional patients who may
benefit from empiric antibiotics.
The objectives were to build a machine learning algo-

rithm to identify BSI among children and adolescents with
cancer and pediatric HSCT recipients, and to compare
this approach with presence of neutropenia to identify
BSI.

Methods
We conducted a retrospective study using data in the
EHR (Allscripts) and a separate pediatric cancer database
at The Hospital for Sick Children (SickKids), Toronto,
Canada. The study was approved by the Research Ethics
Board at SickKids (SickKids REB); the need for informed
consent was waived given the retrospective nature of the
study.

Eligibility
Eligible patients were 0 to 18 years of age at cancer diag-
nosis or HSCT (for those without cancer) in whom the
diagnosis (or HSCT) occurred between January 1, 2009
and November 6, 2018.
Eligible blood cultures were those in patients without a

previous blood culture (regardless of result) within 7 days
prior to attempt to capture “new” potentially infectious
episodes. This approach also addressed the scenario where
multiple cultures were taken and only one was positive,
and excluded negative cultures taken after initiation of
empiric antibiotics for FN (presuming a culture was ob-
tained prior to initiating antibiotics). We excluded blood
cultures obtained prior to 28 days before either cancer
diagnosis or HSCT (in those without cancer).

Procedures
Cancer-specific variables including cancer diagnosis
details, relapse date and allogeneic or autologous HSCT
dates were obtained from a divisional pediatric cancer
database maintained by trained dedicated data managers.
Down syndrome status was identified through chart
review. Microbiology results and all other features were
obtained from the EHR.

Outcomes
The primary outcome (label) was BSI. BSI was defined
as a positive blood culture that was not a contaminant
with a common commensal. Common commensals were
those delineated by the National Healthcare Safety Net-
work - Centers for Disease Control list of common com-
mensals [16]. The common commensal list was modified
to exclude viridans group streptococci given their known
association with sepsis syndrome in children and adoles-
cents with cancer [17]. Multiple positive cultures for
common commensals were classified as BSI (rather than
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a contaminant) if two or more positive cultures occurred
on the same day or 1 day apart [16].

Potential predictors (features)
Feature engineering was conducted based upon variables
expected to be potentially associated with BSI based on
previous research [2, 9, 18–21] and clinical impression.
Demographic variables included sex, age, Down syn-
drome, cancer diagnosis (categorized using the Inter-
national Classification of Childhood Cancer main
category [22]), ordinal cancer diagnosis (for example,
primary or secondary cancer), relapse status and previ-
ous allogeneic or autologous HSCT at the time the cul-
ture was obtained.
The culture location (clinic, emergency department,

intensive care unit or hospital ward) was identified. Hos-
pital encounters, pathology tests and radiology tests
within 28 days were counted. Hospital encounter fea-
tures were the number of emergency department visits,
number of admissions and total number of encounters
including clinic visits. In terms of blood bank utilization,
the number of platelet and red blood cell transfusions
within the previous 7 days were included. Another
feature was the number of prior positive blood cultures
in the previous 365 days including common commensals.
Antimicrobial exposure within the previous 7 days was
also considered. More specifically, administration of
systemic antibacterial agents used for the empiric man-
agement of FN and systemic antifungal agents were
included. Administration one and 2 days prior to the
blood culture and the number of days received over the
previous 7 days were calculated. These same metrics
were calculated for levofloxacin and caspofungin because
of their utilization as infection prophylaxis in pediatric
patients with cancer [23, 24].
In terms of laboratory values, we evaluated results in

the 10,080 min prior to the culture (seven days) and
specifically focused on the following: hematology: white
blood cell count, ANC (neutrophils plus bands) and
neutropenia (ANC less than 0.5 × 109/L); and chemistry:
blood urea nitrogen, creatinine, renal failure (creatinine
at least 1.5 times upper limit of normal), albumen,
alanine aminotransferase, glucose, lactate, pH (arterial,
capillary and venous) and sodium. For actual values, four
quantities were evaluated: 0 to < 24 h prior, 24 to < 48 h
prior, average over the 7 days and either the minimum
or the maximum over the 7 days. If the ANC within 24
h of the blood culture was missing, we imputed the
ANC from one, two, or 3 days prior in that order. For
most laboratory values, the minimum or maximum was
chosen based upon the extreme associated with sicker
patients. However, since both high and low glucose and
sodium can be deleterious, both the maximum and
minimum were calculated in these cases. If the same test

was performed multiple times within a 24-h period, the
value closest to the culture (the later result) was used
and thus, only one value per day contributed to 0 to <
24 h prior, 24 to < 48 h prior and average values.

Analysis
Baseline characteristics were compared between the BSI
and non-BSI groups using the Student’s t-test for con-
tinuous variables and the chi square test for categorical
variables. The data set was divided into training (60%),
validation (20%) and test (20%) sets separated sequen-
tially in time to avoid look-ahead bias.
Four machine learning algorithms were used, namely

elastic net, support vector machine and two implementa-
tions of gradient boosting machine (GBM and XGBoost).
These were implemented using the Caret package in R
[25]. As a general strategy, the models were trained and
the parameters were tuned using the training set. The
models were then implemented in the validation set and a
single model was chosen to be applied to the test set.
Model selection was based upon the area-under-the-re-
ceiver-operator-curve (AUROC) and diagnostic test prop-
erties (sensitivity, specific, positive predictive value, and
negative predictive value). In order to compare models,
we a priori decided that a new algorithm would be un-
acceptable if it resulted in more false negatives (failed to
detect BSI) than using neutropenia alone. Thus, we set the
diagnostic testing threshold such that the number of false
negatives would match the number of false negatives
using neutropenia within the previous 24 h. Once a model
was selected, the model was re-trained and parameters
were re-tuned using the combined training and validation
sets (80%). The final model was then applied to the test
set.
For data preparation, laboratory features that were

missing in more than 80% of eligible blood cultures were
removed. Other missing values were imputed singly
using chained equations via the MICE package in R [26].
Imputation was performed separately in the training, val-
idation and test sets. Other model pre-processing steps
consisted of centering, scaling and removing near-zero
variance features. A grid search was used for parameter
tuning. Models were trained using five cross-validation
folds repeated five times in which the metric monitored
was the AUROC. Both in-sample (cross-validation) and
out-of-sample AUROCs were reported. All analyses were
performed using R studio version 3.6.1, The R Founda-
tion for Statistical Computing.

Results
There were 11,183 eligible blood cultures from 2306
patients included in the analysis. Overall, the number of
positive BSI was 624 (5.6%). Baseline characteristics and
features are shown in Tables 1, 2, 3 stratified by BSI.
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More detailed cancer diagnosis is shown in Additional
file 1: Appendix 1; the most common cancer was lymph-
oid leukemia (4140, 37.0%). Additional file 1: Appendix
2 shows the lab values that were removed because they
were missing in over 80% of blood culture episodes;
most related to lactate dehydrogenase and arterial, capil-
lary or venous pH values. Table 4 and Additional file 1:
Appendix 3 illustrate the isolates associated with BSI. The
most common pathogens were coagulase negative
staphylococci, viridans group streptococci, Escherichia
species, Staphylococcus aureus and Pseudomonas aerugi-
nosa in descending order. Additional file 1: Appendix 4 il-
lustrates the number of eligible blood cultures, number
of unique patients, number of positive cultures and
number of unique patients with positive cultures
within the training (n = 6710 cultures), validation (n =

2237 cultures) and test (n = 2236 cultures) sets
separately.
Additional file 1: Appendix 5 illustrates model per-

formance in the training and validation sets. The in-
sample cross-validation AUROC ranged from 0.71 to
0.79 across the four models with XGBoost having the
highest cross-validation AUROC of 0.79. In the valid-
ation set, the out-of-sample AUROC was 0.77 for elastic
net, GBM and XGBoost. Thus, model choice relied upon
diagnostic testing properties. The number of false nega-
tives in the validation set with the neutropenia model
was 47 of 2237 cultures. Setting the same number of
false negatives across all four models, accuracy (fraction
of predictions that were correct) was highest for GBM
(0.74) and lowest for support vector machine (0.48). In
evaluating kappa, sensitivity, specificity, positive predictive
value and negative predictive value, GBM was the same or

Table 1 Demographics of the Cohort Stratified by Bloodstream Infection (N = 11,183 cultures)

Negative Positive P*

n 10,559 624

Male Sex 5841 (55.3) 330 (52.9) 0.252

Mean Age (SD) 7.10 (4.82) 7.47 (5.11) 0.062

Down Syndrome 263 (2.5) 26 (4.2) 0.015

ICCC Category < 0.001

I. Leukemias, Myeloproliferative Diseases and
Myelodysplastic Diseases

5070 (48.0) 403 (64.6)

II. Lymphomas and Reticuloendothelial Neoplasms 1325 (12.5) 56 (9.0)

III. Central Nervous System Tumors 1223 (11.6) 52 (8.3)

IV. Neuroblastoma 899 (8.5) 48 (7.7)

V. Retinoblastoma 127 (1.2) 3 (0.5)

VI. Renal Tumors 248 (2.3) 2 (0.3)

VII. Hepatic Tumors 168 (1.6) 4 (0.6)

VIII. Malignant Bone Tumors 528 (5.0) 15 (2.4)

IX. Soft-tissue and Other Extraosseous Sarcomas 573 (5.4) 20 (3.2)

X. Germ Cell Tumors 146 (1.4) 3 (0.5)

XI. Other Malignant Epithelial Neoplasms 103 (1.0) 6 (1.0)

XII. Other and unspecified malignant neoplasms 19 (0.2) 1 (0.2)

Not cancer undergoing HSCT 130 (1.2) 11 (1.8)

Ordinal Cancer 0.904

1 10,446 (98.9) 617 (98.9)

2 105 (1.0) 7 (1.1)

3 or 4 8 (0.1) 0 (0.0)

Relapse 1132 (10.7) 134 (21.5) < 0.001

Prior Hematopoietic Stem Cell Transplant

Allogeneic 739 (7.0) 94 (15.1) < 0.001

Autologous 914 (8.7) 61 (9.8) 0.373

Abbreviations: SD Standard deviation, ICCC International Classification of Childhood Cancer, HSCT Hematopoietic stem cell transplantation
*P values calculated using Student’s t-test for continuous variables and chi square test for categorical variables
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better than the other approaches and thus, the GBM
model was chosen. When the model was re-trained and
parameters were re-tuned using GBM in the training and
validation sets combined, the in-sample AUROC from
cross-validation was 0.78. Additional file 1: Appendix 6 il-
lustrates the 20 most important features contributing to
the final model. Neutropenia within 24 h was not included
in this list.
Table 5 shows the performance of GBM in the test set

and compares it to the neutropenia model using the
threshold derived when setting the number of false neg-
atives to be the same as in the neutropenia model (52 of
2236 cultures). Specificity was 0.76 with GBM compared

to 0.72 with the neutropenia model, resulting in 508
false positives with GBM and 592 with the neutropenia
model (difference of 84 cases). Among the 139 with BSI
in the test set, 81 were positive by both GBM and neu-
tropenia, 46 were negative by both and six were missed
by each model. Among the 2097 with negative BSI, 1356
were negative by both GBM and neutropenia, 359 were
positive by both, 149 were false positives with GBM and
233 were false positives with neutropenia. The AUROC
of GBM in the test set was 0.74.
If GBM was applied in addition to neutropenia as the

criteria to initiate empiric antibacterial agents, six non-
neutropenic patients would be identified, representing 6/

Table 2 Preceding Healthcare Encounters, Tests, Blood Bank Utilization and Systemic Antibiotic Administration (N = 11,183 cultures)

Negative Positive P*

N 10,559 624

Location where Culture Obtained < 0.001

Clinic 1346 (12.7) 62 (9.9)

Emergency Department 4877 (46.2) 219 (35.1)

Intensive Care Unit 329 (3.1) 9 (1.4)

Hospital Ward 4007 (37.9) 334 (53.5)

Healthcare Encounters within 28 Days

Mean Number Emergency Department Visits (SD) 0.35 (0.62) 0.28 (0.54) 0.006

Mean Number Admissions (SD) 0.53 (0.71) 0.57 (0.67) 0.178

Mean All Encounters (SD) 3.95 (3.32) 3.86 (3.06) 0.474

Tests Performed within 28 Days

Mean Pathology Specimens (SD) 0.24 (0.77) 0.39 (1.04) < 0.001

Mean Radiology Tests (SD) 1.12 (2.07) 1.37 (2.14) 0.003

Blood Bank Utilization within 7 Days

Mean Platelet Transfusions (SD) 0.40 (1.20) 1.15 (1.78) < 0.001

Mean Red Cell Transfusions (SD) 0.28 (0.80) 0.53 (0.91) < 0.001

Previous Positive Blood Cultures 7–365 Days

Mean Positive Cultures (SD) 0.65 (1.95) 1.18 (2.22) < 0.001

Systemic Antibiotics within 7 Days

FN Antibiotics One Day Prior (%) 273 (2.6) 11 (1.8) 0.255

FN Antibiotics Two Days Prior (%) 250 (2.4) 14 (2.2) 0.950

Mean Days FN Antibiotics (SD) 0.24 (0.86) 0.35 (0.94) 0.001

Antifungal One Day Prior (%) 1008 (9.5) 210 (33.7) < 0.001

Antifungal Two Days Prior (%) 936 (8.9) 208 (33.3) < 0.001

Mean Days Antifungal (SD) 0.56 (1.56) 1.94 (2.56) < 0.001

Levofloxacin One Day Prior (%) 36 (0.3) 8 (1.3) 0.001

Levofloxacin Two Days Prior (%) 45 (0.4) 5 (0.8) 0.291

Mean Days Levofloxacin (SD) 0.02 (0.25) 0.08 (0.50) < 0.001

Caspofungin One Day Prior (%) 380 (3.6) 55 (8.8) < 0.001

Caspofungin Two Days Prior (%) 349 (3.3) 56 (9.0) < 0.001

Mean Days Caspofungin (SD) 0.22 (1.01) 0.56 (1.58) < 0.001

Abbreviations: SD Standard deviation, FN Fever and neutropenia
*P values calculated using Student’s t-test for continuous variables and chi square test for categorical variables
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Table 3 Preceding Laboratory Values within Seven Days (N = 11,183 cultures)a

Negative Positive P***

n 10,559 624

WBC, ANC and Neutropenia

Mean WBC 0- < 24 Hours (SD) 8.39 (27.04) 4.38 (13.54) < 0.001

Mean WBC 24- < 48 Hours (SD) 5.52 (12.33) 1.67 (6.80) < 0.001

Mean Average WBC Prior 7 Days (SD) 8.24 (26.29) 4.70 (13.31) 0.001

Mean Minimum WBC Prior 7 Days (SD) 6.90 (26.08) 3.73 (13.03) 0.003

Mean ANC 0- < 24 Hours (SD) 4.15 (6.50) 2.66 (4.73) < 0.001

Mean ANC 24- < 48 Hours (SD) 3.38 (6.32) 1.10 (3.21) < 0.001

Mean Average ANC Prior 7 Days (SD) 3.96 (5.91) 2.73 (4.15) < 0.001

Mean Minimum ANC Prior 7 Days (SD) 3.00 (5.37) 1.90 (3.61) < 0.001

Number Neutropenic 0- < 24 Hours (%)b 2745 (26.0) 397 (63.6) < 0.001

Number Neutropenic 24- < 48 Hours (%)b 1146 (10.9) 253 (40.5) < 0.001

Renal Function

Mean BUN 0- < 24 Hours (SD) 4.41 (2.79) 4.88 (2.85) 0.001

Mean BUN 24- < 48 Hours (SD) 4.65 (3.34) 5.22 (3.04) 0.011

Mean Average BUN Prior 7 Days (SD) 4.47 (2.60) 4.86 (2.41) 0.001

Mean Maximum BUN Prior 7 Days (SD) 5.07 (3.20) 5.66 (3.01) < 0.001

Mean Creatinine 0- < 24 Hours (SD) 37.35 (35.55) 34.16 (14.24) 0.039

Mean Creatinine 24- < 48 Hours (SD) 36.32 (39.38) 34.25 (14.47) 0.367

Mean Average Creatinine Prior 7 Days (SD) 36.93 (35.50) 34.18 (13.66) 0.062

Mean Maximum Creatinine Prior 7 Days (SD) 39.67 (40.39) 37.93 (16.18) 0.299

Renal Failure 0- < 24 Hours (%)b 122 (1.2) 2 (0.3) 0.082

Renal Failure 24- < 48 Hours (%)b 48 (0.5) 1 (0.2) 0.441

Renal Failure Prior 7 Days (%) 164 (1.6) 5 (0.8) 0.184

Other Laboratory Values

Mean Albumen 0- < 24 Hours (SD) 35.02 (6.33) 34.22 (5.99) 0.102

Mean Average Albumen Prior 7 Days (SD) 35.44 (6.13) 34.57 (5.36) 0.012

Mean Minimum Albumen Prior 7 Days (SD) 34.08 (6.64) 33.01 (5.82) 0.005

Mean ALT 0- < 24 Hours (SD) 81.28 (159.48) 78.32 (79.34) 0.785

Mean Average ALT Prior 7 Days (SD) 77.01 (123.52) 78.70 (89.95) 0.781

Mean Maximum Prior 7 Days ALT (SD) 87.07 (146.59) 92.97 (116.53) 0.415

Mean Glucose 0- < 24 Hours (SD) 5.59 (2.31) 5.60 (1.83) 0.928

Mean Glucose 24- < 48 Hours (SD) 5.51 (2.04) 5.64 (2.32) 0.310

Mean Average Glucose Prior 7 Days (SD) 5.54 (1.64) 5.61 (1.40) 0.341

Mean Minimum Glucose Prior 7 Days (SD) 5.09 (1.45) 4.93 (1.07) 0.013

Mean Maximum Glucose Prior 7 Days (SD) 6.17 (3.01) 6.55 (2.79) 0.004

Mean Sodium 0- < 24 Hours (SD) 138.22 (3.34) 137.54 (3.86) < 0.001

Mean Sodium 24- < 48 Hours (SD) 139.13 (3.38) 138.97 (3.27) 0.434

Mean Average Sodium Prior 7 Days (SD) 138.62 (2.96) 138.27 (3.28) 0.006

Mean Minimum Sodium Prior 7 Days (SD) 137.59 (3.20) 136.65 (3.68) < 0.001

Mean Maximum Sodium Prior 7 Days (SD) 139.65 (3.46) 139.82 (3.77) 0.255

Abbreviations: SD Standard deviation, ANC Absolute neutrophil count, WBC White blood cell count, BUN Blood urea nitrogen, ALT Alanine aminotransferase
a Units: WBC 109/L, ANC 109/L, BUN mmol/L, creatinine umol/L, albumen g/L, ALT U/L, glucose mmol/L, sodium mmol/L
b Neutropenia defined as ANC < 0.5 × 109/L; renal failure defined as serum creatinine ≥1.5 times upper limit of normal
*** P values calculated using Student’s t-test for continuous variables and chi square test for categorical variables
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139 (4.3%) of those with BSI. The microorganisms were
as follows: coagulase negative staphylococci (n = 1), Aci-
netobacter spp. (n = 1), Enterobacter spp. (n = 1), Proteus
spp. (n = 1), Moraxella spp. (n = 1) and non-albicans
Candida. Five patients had high-risk FN features (had they
been neutropenic) as follows: post allogeneic HSCT (n = 3),
post autologous HSCT (n = 1) and induction chemotherapy
for acute lymphoblastic leukemia (n = 1). All of these pa-
tients with high-risk features received parenteral antibiotics
prior to the culture results being known while the sixth pa-
tient received oral antibiotics prior to culture result avail-
ability. Two experienced bacteria-related sepsis although
none died during the episode.

Discussion
We were successful in using an institutional EHR to
develop a machine learning algorithm to predict BSI.
While the in-sample and the out-of-sample AUROC
were reasonable, the final model did not perform sub-
stantially better than the presence of neutropenia at
fever onset. Even though the model was able to identify
additional BSI in non-neutropenic patients, these predic-
tions would not have provided additional value because
all of these patients had received empiric antibiotics.
Provision of empiric antibiotics in non-neutropenic pa-
tients is standard in patients who appear ill or when cli-
nicians apply their own judgement and experience in
identifying higher risk patients.
The developed BSI classifier performance does not

support its use as a replacement for neutropenia as an

indication for empiric therapy. If used as an adjunct to
neutropenia, whether the identification of six additional
non-neutropenic BSI cases at the cost of 149 more false
positive results is worthwhile will depend on at least two
major considerations. First is the advantage of identify-
ing non-neutropenic patients with BSI and whether
deploying the model would improve clinically meaning-
ful outcomes [27]. To this point, one of the BSI was a
yeast and thus, empiric antibacterial agents would not
have led to better results. On the other hand, two of
these patients developed bacterial sepsis, emphasizing
the importance of early antibiotics in this small cohort.
In our setting, all non-neutropenic BSI patients received
empiric antibiotics prior to culture result availability and
thus, the algorithm would not be useful at our institution.
However, such an algorithm could be useful in settings in
which limited expertise and resources, or high volumes
impede clinicians from deciding which non-neutropenic
patients should receive empiric antibacterial agents.
The second consideration is the cost and effort to

implement a machine learning algorithm into the clinical
workflow of busy clinicians and commonly over-
burdened information technology hospital staff. Indeed,
for a machine learning model to be successful, it would
need to be integrated at any location in which pediatric
patients receiving cancer treatments are assessed for
fever including clinics, the emergency department and
the inpatient ward. This complexity increases the hidden
deployment cost [28]. Unless the benefit of a machine
learning algorithm is clearly evident, such implementa-
tion is likely to be challenging.
There are several potential reasons why the developed

algorithm did not perform substantially better than neu-
tropenia alone. First, it is possible that the sample size
was too small, particularly when considering the number
of unique patients in this data set. Second, it is possible
that features most important to predicting BSI were not
present in this data set. A notable absence is the lack of
flow chart data, which only was implemented into the
EHR during the latter part of the study period and thus,
could not be used in model building. Future work
should focus on identifying other data that could inform
a BSI classifier. In comparing classifiers and the best
classifier against the neutropenia model, we chose to fix
the sensitivity to ensure a new model could not miss

Table 4 Most Common Bloodstream Infection Microorganisms

Species Frequency

Coagulase Negative Staphylococci 148

Viridans Group Streptococci 140

Escherichia species 76

Staphylococcus aureus 65

Pseudomonas aeruginosa 44

Enterobacter species 40

Klebsiella species 40

Micrococcus species 23

Streptococcus pneumoniae 29

Bacillus species 21

Table 5 Performance in Test Set (N = 2236) a

Proportion
Positive

Sensitivity Specificity Positive
Predictive
Value

Negative
Predictive
Value

True
Positive

False
Positive

True
Negative

False
Negative

GBMb 595 (26.6%) 0.63 0.76 0.15 0.97 87 508 1589 52

Neutropenia 679 (30.4%) 0.63 0.72 0.13 0.97 87 592 1505 52

Abbreviation: GBM one implementation of gradient boosting machine
a Observed bloodstream infection rate 139/2236 (6.2%) in the test set
b Test threshold chosen (probability> 0. 0489) to keep the number of false negatives the same as in the absolute neutrophil count < 0.5 × 109/L model (52/2236)

Sung et al. BMC Cancer         (2020) 20:1103 Page 7 of 9



more cases of bacteremia. Alternatively, we could have
chosen to fix the specificity to see whether the model
might have enhanced sensitivity. However, this analysis
could also show worse sensitivity, a scenario that would
not be considered clinically acceptable.
A strength of this study was the use of a well-curated

cancer diagnosis and treatment data set combined with
EHR data to build a BSI classifier. A second strength is
that it complements the large literature of risk prediction
models in FN by expanding the target to all pediatric can-
cer patients at risk for BSI. However, this study has several
limitations. The analysis did not account for the correlated
structure of the data in that the same patient could
contribute multiple episodes although this may be less
problematic since our focus was on prediction rather than
inference. Second, different blood draws from the same
patient could have been in the training, validation and test
sets and this approach may have resulted in overly opti-
mistic results. However, this aspect is likely less problem-
atic as it mimics how the algorithm would be deployed in
clinical practice. Finally, our data set was relatively small,
and it is possible that the algorithms would have per-
formed better had more data been available.

Conclusion
In conclusion, we developed a machine learning algo-
rithm to classify BSI. GBM achieved an AUROC of 0.74
and identified 4.3% additional true cases in the test set.
The machine learning algorithm did not perform sub-
stantially better than using the presence of neutropenia
alone to predict BSI.
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