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Abstract
Esophageal squamous cell carcinoma (ESCC) is more prevalent than esophageal
adenocarcinoma in Asia, especially in China, where more than half of ESCC
cases occur worldwide. Many studies have reported that the automatic detection
of lymphnodemetastasis using semantic segmentation shows good performance
in breast cancer and other adenocarcinomas. However, the detection of squa-
mous cell carcinoma metastasis in hematoxylin-eosin (H&E)-stained slides has
never been reported. We collected a training set of 110 esophageal lymph node
slides with metastasis and 132 lymph node slides without metastasis. An iPad-
based annotation system was used to draw the contours of the cancer metas-
tasis region. A DeepLab v3 model was trained to achieve the best fit with the
training data. The learnedmodel could estimate the probability of metastasis. To
evaluate the effectiveness of the detection model of learned metastasis, we used
another large cohort of clinical H&E-stained esophageal lymph node slides con-
taining 795 esophageal lymph nodes from 154 esophageal cancer patients. The
basic authenticity label for each slidewas confirmed by experienced pathologists.
After filtering isolated noise in the prediction, we obtained an accuracy of 94%.
Furthermore, we applied the learnedmodel to throat and lung lymph node squa-
mous cell carcinoma metastases and achieved the following promising results:
an accuracy of 96.7% in throat cancer and an accuracy of 90% in lung cancer. In
this work, we organized an annotated dataset of H&E-stained esophageal lymph
node and trained a deep neural network to detect lymphnodemetastasis inH&E-
stained slides of squamous cell carcinoma automatically. Moreover, it is possible
to use this model to detect lymph nodes metastasis in squamous cell carcinoma
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from other organs. This study directly demonstrates the potential for determin-
ing the localization of squamous cell carcinoma metastases in lymph node and
assisting in pathological diagnosis.
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1 INTRODUCTION

There is a significant difference between Asian and West-
ern nations with respect to the following two esophageal
cancer histology types: esophageal squamous cell carci-
noma (ESCC) and esophageal adenocarcinoma (EAC).
Although EAC predominates in the United States, in Asia,
especially in China, most esophageal cancer cases (95%)
are ESCCs.1,2 More than half of patients present with
metastases or unresectable disease,3 which leads to a dis-
mal 5-year survival rate that, although has increased over
time, remains a mere 18%.4 The incidence of lymph node
metastasis (LNM) in ESCC is reported to be approximately
38.2-43%.5 LNM is one of the most important prognostic
factor for ESCC patients. Therefore, accurate assessment
of lymph node status is very important for both early and
advanced lesions. Although there are various clinical diag-
nosismethods, the clinical evaluation of lymphnode status
is still not ideal.6 Therefore, a more reliable tool is urgently
needed for both early and advanced ESCC.
Recently, many artificial intelligence approaches have

been proposed to automatically detect metastasis in
esophageal lymph nodes. Several methods based on
clinical or radiomic features have been proposed for
esophageal LNM detection7-12; however, these methods
fail to reflect morphological changes or metabolic changes
due to metastasis. In pathology practice, several stud-
ies have reported that the automatic detection of LNM
showed good performance in breast cancer and other
adenocarcinomas.13-17 However, obtaining more detailed
pathological information from slides for LNM detection
applications in squamous cell carcinoma has never been
explored.
Since the introduction of the open access The Cancer

Genome Atlas (TCGA)18,19 and CAMELYON20 datasets,
computational pathology has dramatically expanded its
capabilities with the help of deep learning,21 and vari-
ous types of state-of-the-art convolutional neural networks
(CNNs) have been applied to high-resolution hematoxylin-
eosin (H&E)-stained pathologywhole slide images (WSIs).
Due to the high incidence of breast cancer, most studies
focused on breast tumors13-15 or LNM.16,17 In both cases,
deep learning-based methods reported promising results

and showed potential clinical usage. However, thesemeth-
ods focus on adenocarcinoma, which is the dominant sub-
type of breast cancer and gastric-intestinal cancer. As far
as we know, the detection of squamous cell carcinoma via
H&E-stained WSIs has not been a research focus, even
though it is the predominating subtype of esophageal can-
cer in Asia.
In this study, we focused on squamous cell carcinoma

metastasis, especially in esophageal cancer patients. Due
to the lack of a WSI dataset of squamous cell carcinoma
metastasis, we performed a study to collect and annotate
a large number of lymph nodes with squamous cell car-
cinoma metastasis in esophageal cancer patients under-
going surgery. Using these annotated WSIs, we trained a
state-of-the-art CNN that can automatically segment the
metastatic region in esophageal lymph node WSIs. We
tested the obtained model using a much larger test set of
esophageal lymph nodeWSIs. Furthermore, we attempted
to apply our model to squamous cell carcinoma in other
organs to identify its potential in determining the localiza-
tion of lymph nodemetastases in squamous cell carcinoma
and assisting in pathological diagnosis.

2 MATERIALS ANDMETHODS

2.1 Pathologists

In total, 10 pathologists participated in this study as read-
ers. These pathologists did not involve in the reference
standard classification. Their experience in pathology
range from 1 to 20 years. None of the pathologists spe-
cialize in esophageal pathology, and all pathologists have
extensive clinical practice of anatomic pathology, includ-
ing a review of lymph node specimens of esophageal
cancer cases.

2.2 Training data

In this study, we collected 242 esophageal lymph node
WSIs (110 WSIs with squamous cell carcinoma metas-
tasis and 132 WSIs without metastasis) from the Cancer
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Hospital, Chinese Academy of Medical Sciences and
Peking Union Medical College. Originally, based on the
largest diameter of the largest focus of metastases in
the lymph nodes, metastasis >2.0 mm in diameter was
defined as macro-metastasis, and metastasis >0.2 mm but
2.0 mm or less was defined as micro-metastasis.22 The
current study was approved by the ethics committees of
Clinical Research Ethics of the Cancer Hospital, Chinese
Academy of Medical Sciences and Peking Union Medical
College.

2.3 Test data

To better evaluate the performance of the proposed
method, we included 795 esophageal lymph node WSIs
(222 with metastasis and 573 without metastasis) from 154
esophageal cancer patients who underwent surgery at the
Cancer Hospital, Chinese Academy of Medical Sciences
and PekingUnionMedical College betweenApril 2017 and
May 2018 as our main test set.
In addition to the esophageal lymph node WSIs, we

collected 30 lung lymph node WSIs (nine positive and 21
negative) and 30 throat lymph node WSIs (20 positive and
10 negative). All positive WSIs contained squamous cell
carcinoma metastasis.

2.4 Annotation

The WSIs with metastasis were manually annotated by
the pathologists involved in this study using an in-house-
developed, iPad-based application as shown in Figures 1A
and 1B. During the annotation step, each positive WSI was
first annotated by one pathologist, followed by a second
pathologist to correct any annotationmistakes and identify
potentially missing metastatic regions. These two rounds
of annotation are similar to those applied in clinical prac-
tice for traditional pathological diagnosis. For the negative
WSIs, because there is nometastasis, we did not use aman-
ual annotation and simply treated all regions in the WSIs
as nonmetastatic.

2.5 Image preprocessing

For each WSI, we converted the color image into a gray
value image and used the Otsu threshold23 to generate a
tissue mask. Using this tissue mask, we can largely reduce
the application of the impractical training patch and
the computation cost during the inference phase in real
applications. For the training, the WSI and corresponding
annotation mask under the tissue mask were cut into

many equal-sized patch pairs as shown in Figures 1C
and 1D. Overall, we generated 324 264 patch pairs from
the training set; the detailed statistics on both patch and
pixel level is shown in Table S1.

2.6 Training the model

In this study, we used a state-of-the-art CNN model to
segment the metastatic region. More specifically, we used
the DeepLab model24,25 with ResNet-5026 as the backbone
network due to its high performance in the natural image
segmentation task. Due to the large imbalanced distribu-
tion of the training set in which the nonmetastatic region
was much larger than the metastatic region, we used the
focal loss27 instead of the commonly used cross entropy
as the correction to overcome the imbalance problem.
During the training phase, we set the size of the train patch
to 320 × 320 to increase the number of patches in each
batch.

2.7 Inference and testing

After training the model, the learned model parameters
were fixed during the inference phase, and we directly
applied the model to any newWSI during the testing. Sim-
ilar to the training phase, each WSI was first preprocessed
to reduce the computation cost of the nontissue region.
Then, the tissue portion of the test image was divided into
an image patch and passed through the model to obtain
the segmentation result. In practice, the size of the image
patch during the inference phase can differ from and be
much larger than that during the training phase to more
efficiently use the computation and I/O.

2.8 Model extension

Because the lung lymph node set and throat lymph node
set also contain squamous cell carcinoma metastasis, we
detected metastasis in these two anatomies using the
model trained by the esophageal lymph nodes without
modifying the model.

2.9 Statistical analysis

In this study, we used the arear under the curve (AUC)
to compare the performances of different models that dis-
tinguish esophageal lymph node WSIs with and without
metastasis. The receiver operating characteristic (ROC)
curve represents the relationship between the sensitivity
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F IGURE 1 Illustration of the annotation and image preprocessing. A, The pathologist made manual annotations using an in-house iPad
pathology annotation application. B, Examples of the annotated WSIs. Red contours cover the region of metastasis, and green contours cover
the normal region embedded inside the metastasis. C, Original WSI, gray level image, tissue mask, and masked tissue region. D, WSI and
annotation mask cut into patches and training patch pairs

and the false positive rate, namely 1-specificity.28 The AUC
ranges from 0 to 1 to indicate the performance of the classi-
fier. Using a perfect classifier, the AUC is 1, and by chance,
the AUC is 0.5. Furthermore, we used the percentile boot-
strap method29 to compute the 95% confidence interval
(CI) of the ROC curves. To statistically compare the per-
formances of the different models at the slide level using
themain esophageal lymph node test set, we used the two-
tailed bootstrap-basedmethod described by Hanley et al,30
which considers the correlation of the paired nature of the
data. A P-value < .05 was considered significant.

3 RESULTS

3.1 Network structure of the training
model

Compared to DeepLab v2,24 DeepLab v324 has an atrous
spatial pyramid pooling structure capable of gathering use-
ful information from different image scales as shown in
Figure 2A. During the training, in each iteration, a batch
of randomly sampled training patch pairs were used. The
image patches were fed to the network, and the difference
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F IGURE 2 Model training and testing phases. Illustration of (A) training the DeepLab v3 network and (B) the inference procedure used
to the test the WSIs

between the network outcome and annotation patcheswas
corrected to optimize the parameters in the network.

3.2 Slide-level scoring of the testing set

Using the training data, we trained the following three
models: (a) DeepLab v2 with cross entropy loss, (b)
DeepLab v3 with cross entropy loss, and (c) DeepLab v3
with focal loss. In each model, only the network (DeepLab
v2 or v3) and loss differed. After the training, each testWSI

was subjected to each model to generate a pointwise prob-
ability map as shown in Figure 2B.We computed themean
of the largest 1000 probabilities in the resulting probability
map as the prediction score of the WSI.

3.3 Patients’ clinical features of the
testing set

At the patient level, 55 patients had nometastasis (negative
group) and 99 patients hadmetastasis in their surrounding
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F IGURE 3 Patients level clinical feature statistics of the test set. The top bar plot shows the number of normal lymph node (in blue) and
metastasis lymph node (in orange) of each patient and it is divided into nonmetastasis patients’ group (left) and metastasis

lymph node samples (positive group). The clinical features
of each patient in these two groups are shown in Figure 3.
The surgical and neoadjuvant details of the patients were
shown inTables S2 and S3. In both groups, thereweremore
male patients than female patients (88 vs 11 in the posi-
tive group and 49 vs 6 in the negative group). These two
groups were age matched (60.1 ± 7.3; [95% CI, 47.0-79.0]
in the positive group and 60.7 ± 7.9 [95% CI, 46.0-75.0] in
the negative group), and neoadjuvant treatment seemed
to helped prevent metastasis (11/55 in the negative group
received neoadjuvant therapy, and only 1/99 in the pos-
itive group received neoadjuvant therapy). Among these
795 slides, therewas a total of 2445 esophageal lymphnodes

as follows: 390 with metastasis and 2055 without metasta-
sis based on a manual assessment.

3.4 Node-level assessment of the testing
set

In addition to the slide-level scoring, the author used
lymph node-level scoring between the pathological diag-
nosis and predicted metastatic region using the third
model (DeepLab v3 with focal loss). As shown in Fig-
ure 4, the clinical diagnosis and number of metastatic
lymph nodes are provided on the tag of the glass slide. The
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F IGURE 4 Example of a manual assessment at the node level. A, An image of a glass slide and the tag on the slide clearly show the
diagnosis and how many lymph nodes in this slide contain metastasis. B, The WSI (left) and its model prediction result (right). The hot points
show that two nodes contain metastasis, which is consistent with the clinical diagnosis on the glass slide

pathologist could manually assess the correctness of the
predicted region and number of predicted metastatic
lymph nodes.

3.5 Slide-level metastasis classification
of esophageal lymph nodeWSIs

Figure 5 shows the ROC curves of the slide-level model
predictions of the esophageal lymph node WSI test set
using the three different models (Table S4). Each model
was used to generate a ROC curve with CI using boot-
strapping. As shown in Figure 5, the DeepLab v3 model
with cross entropy (AUC= 0.91± 0.01 [95% CI, 0.90-0.94])
had a better performance than the DeepLab v2 model with
cross entropy (AUC= 0.87± 0.02 [95% CI, 0.84-0.90]), and
the DeepLab v3 model with focal loss had a higher AUC
(AUC = 0.96 ± 0.01 [95% CI, 0.94-0.97]) than the model
with cross entropy.

Compared to the first two models (DeepLab v2 and
DeepLab v3 with cross entropy), the thirdmodel (DeepLab
v3 with focal loss) exhibited a significant improvement (P-
value < .001) using the two-tailed bootstrap-based method
described byHanley andMcNeil in 1983. Therefore, we use
the third model (DeepLab v3 with focal loss) as our pro-
posed model.
Figure 6A shows the prediction results of the third

model of both macro- and micro-metastatic regions in the
esophageal lymph nodes.

3.6 Node-level agreement between the
model and manual assessment

The performance of the model using the esophageal test
set was further analyzed at the lymph node level, and
the pathologists examined the prediction accuracy of the
model in each lymph node. Among the 2445 esophageal
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F IGURE 5 ROC curves with 95% CIs of the three models:
DeepLab v2 with cross entropy, DeepLab v3 with cross entropy, and
DeepLab v3 with focal loss (P < .001)

lymph nodes (390 positive nodes and 2055 negative nodes),
we successfully detected 387 positive nodes with a sensitiv-
ity of 99.2%. In total, 1912/2055 negative nodes were cor-
rectly classified, with a specificity of 93.0%. Overall, the
node level accuracy was 94.0%.

3.7 Model extension

When we applied the proposed model to the lung and
throat sets, we found that all squamous cell tumors in these
two organs (ie, either squamous cell carcinomas metasta-
sis in the lymph node or the squamous cell carcinoma in
situ) had been successfully detected. In the lung set, we
obtained a sensitivity of 100% and a specificity of 85.7%.
In the throat set, the proposed model achieved a sensitiv-
ity of 100% and a specificity of 90.0%. Figure 7 shows the
results of the model prediction of negative WSIs and pos-
itive lymph node and tumor in situ WSIs in both the lung
and throat.

4 DISCUSSION

In this study, we developed a deep learning-based algo-
rithm to localize and differentiate lymph nodes metas-
tasis from ESCCs in China. Squamous cell carcinoma
metastasis in esophageal lymph nodes appears more fre-
quently in esophageal cancer patients in China than those

in other countries. To the best of our knowledge, this
study is the first to develop and validate a deep learn-
ing model specific for lymph node metastases of ESCC.
Using a large set of manually annotated esophageal lymph
node WSIs, we developed a state-of-the-art deep neural
network to detect squamous cell carcinoma metastasis. In
an independent large-scale esophageal lymph node test
set, ourmodel achieved high performance at both the slide
level (AUC = 0.96 ± 0.01 [95% CI, 0.94-0.97]) and node
level (99.2% sensitivity and 93.0% specificity), supporting
its potential usage in clinical practice. As shown in the
heatmap of tissue images (Figures 4 and 6A), patholo-
gists could use the proposed model to focus on dangerous
regions.
Although deep learning is an active research field,

its application on histopathology to automatically detect
metastasis in esophageal lymph nodes is relatively novel.
Most of the published studies focused on clinical features
for the detection of esophageal LNM. Dubecz et al7 used
population clinical data to predictmetastasis in esophageal
lymph nodes. Several methods for esophageal LNM detec-
tion based on radiomic features have been proposed. Ou
et al9 used radiomic features from contrast-enhanced CT
to predict the esophageal lymph node status. Si et al10 pro-
posed combining radiomics features from both CT and
fluorodeoxyglucose-positron emission tomography (FDG-
PET) to train a gradient boosted regression tree model
for esophageal LNM detection. However, such clinical
or radiomic features fail to reflect direct morphological
changes due to metastasis, which can be observed in imag-
ing data from pathology departments (WSIs). Several stud-
ies have reported that the automatic detection of LNM
showed good performance in breast cancer and other ade-
nocarcinomas. One paper most closely related to our work
focused on breast cancer. Ehteshami et al31 identified sen-
tinel lymph nodes metastases from breast cancer patients.
However, to the best of our knowledge, the use of more
detailed pathological information obtained from slides for
LNM detection of squamous cell carcinomas has never
been explored.
Our model achieves a statistically high performance;

however, it is still important to conduct a detailed analysis
of failure cases. There were more false positive cases than
false negative cases in our large-scale test set. In general,
these false positive cases can be divided into two groups.
As shown in Figure 6B, the first group of false positive
cases are lymphoblast cells that appear in the germinal
center of lymph nodes. These lymphoblast cells are much
larger than normal lymph cells and morphologically sim-
ilar to metastases. Pathologists can distinguish germinal
centers from metastases at the macro level, whereas the
deep learning model could be used to obtain information
only regarding microregions due to the small patch size
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F IGURE 6 Prediction results for esophageal lymph nodeWSI test set. A, Model predictions of the third model of both macro- and micro-
metastatic regions in esophageal lymph nodes. B and C, False positive cases. D and F, False negative cases
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F IGURE 7 Model expansion. Tumor detection in situ and LNM detection in lung (A) and throat (B) squamous cell carcinoma. Top row:
a negative WSI; middle row: a positive lymph node with metastasis; bottom row: a positive tumor in situ

during the training phase. The second group of false
positives contain mainly fibrillar connective tissue (Fig-
ure 6C), which is highly curved and irregular. These two
characteristics of fibrillar connective tissue also appear
in metastatic regions, which may explain why the model
often makes mistakes in this type of tissue. There are
also nerve fibers (Figure 6C), which can occasionally be
seen next to the lymph nodes, and because they were not
included in the training set, themodel cannot be accurately
evaluated.
Compared to false positive cases, it is more important

to analyze false negative cases and identify possible solu-
tions to avoid these mistakes. Therefore, we analyzed each
of the three false negative cases. In case 1, as shown in
Figure 6D, our model missed the micro-metastasis sur-
rounded by small fibrous lines and empty regions. This sur-
rounding was very rare in the training set, and it is difficult
for deep learning models to identify rare cases. Similarly,
the second failure was a smaller metastasis located in a
lymphatic vessel outside the lymph node (Figure 6E),mak-
ing it even more difficult to detect correctly. In the third
false negative case (Figure 6F), the image was very blurred

because the scan was out of focus. This type of failure can
be avoided by using a better scanned image.
Although not trained using either the lung or throat, our

model still showed good performance in lung and throat
lymph nodes metastasis and carcinoma in situ. This result
can be explained by the morphological similarity among
squamous cell carcinomas in different organs and either
lymph nodes or carcinoma in situ. This finding indicates
that we can use transfer learning to train new models for
organs based on our esophageal metastasis model. This
finding also indicates the possibility of obtaining a general
metastasis detection model that can predict lymph nodes
in any organ with various types of metastasis (such as ade-
nocarcinoma, squamous cell carcinoma, and other tumor
types).
The study has some limitations. The model can be

further optimized. First, we annotate only metastasis.
Because our model makes mistakes on lymph node germi-
nal centers and some connective tissues, we will annotate
these types of tissue separately as training set. In addition
to this improvement, we will carefully examine the imag-
ing quality, and additional organ testing will be performed
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in the future to render our model clinically applicable to
serve pathologists.
Nevertheless, larger scale studies are needed to fur-

ther verify the observed impact of digital assistance on
efficiency and accuracy, especially in negative cases and
actual clinical workflows. Additionally, this study was
based on a single center; an external verification research
is needed to verify its diagnostic performance and gener-
alizability. Future research also requires forward-looking
and multi-institutional datasets. The next major challenge
is to successfully translate technology into meaningful
clinical impact. In the future, this technology needs to
be comprehensively evaluated and improved in clinical
practice.
In summary, we developed an annotated H&E-stained

esophageal lymph node dataset and trained a deep neu-
ral network to automatically detect LNM in squamous cell
carcinoma H&E-stained slides efficiently. Moreover, it is
possible to use this model to test lymph nodes metasta-
sis in squamous cell carcinoma from other organs. This
study directly demonstrated the potential for determining
the localization of squamous cell carcinoma metastases in
lymph node and assisting in pathological diagnosis.
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