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ABSTRACT Enteroviruses can cause human infectious disease. We report 16 near-complete
genome sequences of enteroviruses that were isolated through environmental surveillance
of wastewater in Guatemala.

The genus Enterovirus contains 15 species and belongs to the Picornaviridae family, a
large family of nonenveloped positive-sense, single-stranded RNA viruses. The Enterovirus

B (EV-B) species contains 63 serotypes and is the largest EV species (1). The EV-C species con-
tains 23 serotypes, which includes the three polioviruses (2). Ten EV-B (1 coxsackievirus [CV]
type B5, 2 echovirus type 1 [E-1], 1 E-3, 1 E-7, 2 E-11, 1 E-25, 1 E-29, and 1 E-33) and six EV-C
(3 CV A13, 1 CV A20, 1 CV A24, and 1 EV C99) were identified through isolation and genome
sequencing from environmental sewage collected in Villa Nueva (VNA; GPS coordinates
14.5269 to 90.5875) and San Juan Sacatepéquez, Guatemala (SJS; GPS 14.7236, 90.6520)
from 2019 to 2021 (Table 1).

Sewage samples were processed using the concentration and filter elution (CaF�E) method,
as described previously (3, 4). Resulting concentrates were inoculated into cells for enterovirus
isolation according to the World Health Organization protocol (5). Briefly, concentrates were
inoculated into rhabdomyosarcoma (RD) cells and incubated for 5 days at 37°C. On day 5, the
cells were observed for cytopathic effect (CPE).

Viral RNA was extracted from CPE-positive cell culture supernatants using the MagMAX
pathogen RNA/DNA kit on a KingFisher Flex system (Thermo Fisher Scientific). Viral RNA was
amplified using a sequence-independent, single-primer amplification (SISPA) protocol (6–8).
Viral RNA was reverse transcribed using SuperScript III reverse transcriptase (Thermo Fisher
Scientific) and a 28-base primer with eight random nucleotides on the 39 end (CCTTGAAGGC
GGACTGTGAGNNNNNNNN). A complementary strand was synthesized using the Klenow frag-
ment of DNA polymerase I (New England BioLabs). Illumina libraries were prepared using the
Nextera XT library preparation kit on 69 pooled samples. The samples were sequenced on an
Illumina MiSeq system using a 500-cycle paired-end run as previously described (9).

A custom in-house bioinformatics pipeline (10) was used to process raw FASTQ data and for
de novo assembly of each isolate’s read. Within the pipeline, multiple preprocessing steps were
conducted before the FASTQ reads were assembled. First, the host data were removed using
default parameters in Bowtie 2 v2.3.3.1 (11–13), followed by primer trimming, adapter trimming,
and Phred quality score filtering using Cutadapt v2.3 (parameters for filtering: reads with a
quality score of,20, read length of,50 nucleotides, and error rates of.0.15) (14), and finally
duplicate reads were removed using the Dedup.py script in Python (15). Deduplicated reads
were de novo assembled into contigs using default parameters in SPAdes v3.15.0 (16).
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Consensus genome sequences were verified through read mapping, BLAST alignments
using MAFFT, and annotations using Geneious vR11.

The 16 near-complete genome sequences ranged from 7,132 to 7,395 bp in length. Their
GC content was between 44.4% and 47.9%, and the median read coverage was 11,382 (inter-
quartile range [IQR], 7,399 to 18,536). These genome sequences share 80 to 90% pairwise
identity to previously submitted nucleotide sequences and, therefore, are distinct from other
enterovirus genomes in GenBank.

Data availability. The 16 EVs have been submitted to GenBank, and the raw sequencing
reads have been deposited in the Sequence Read Archive under BioProject PRJNA835862. All
accession numbers are reported in Table 1.
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TABLE 1 Sequencing summary and characteristics of 16 enteroviruses from Guatemala, 2019 to 2021

Isolate Virus Taxonomy
Collection date
(mm/dd/yyyy)

Collection
site

GenBank
accession no.

Total no.
of readsa

Length
(bp)

GC
content (%)

A549-010 Coxsackievirus B5 Enterovirus B 11/22/2019 VNA OL955504 9,553 7,302 47.7
HLF-000 Echovirus 3 Enterovirus B 11/20/2019 SJS OL955506 15,035 7,342 47.4
HLF-006 Coxsackievirus A13 Enterovirus C 11/22/2019 SJS OL955507 23,120 7,395 44.8
MA104-000 Echovirus 1 Enterovirus B 11/20/2019 SJS OL955509 6,015 7,132 47.0
MA104-002 Echovirus 7 Enterovirus B 11/20/2019 SJS OL955511 14,881 7,270 47.6
RD-000 Echovirus 29 Enterovirus B 11/20/2019 SJS OL955512 4,717 7,314 47.8
169-41CQU3372 Echovirus 25 Enterovirus B 09/16/2020 SJS ON383153 9,325 7,259 47.6
179-51CBM4841 Echovirus 11 Enterovirus B 07/13/2020 SJS ON383154 35,931 7,312 47.5
183-55CBM2468 Coxsackievirus A13 Enterovirus C 06/10/2020 SJS ON383155 17,008 7,355 44.4
183-55CBM2468-1 Coxsackievirus A24 Enterovirus C 06/10/2020 SJS ON383156 13,212 7,365 44.7
190-62ACB0312 Enterovirus C99 Enterovirus C 05/15/2020 SJS ON383157 8,644 7,302 44.9
129-1CBM1352 Echovirus 33 Enterovirus B 09/01/2021 SJS ON383146 33,169 7,240 47.9
145-17ACB0328 Coxsackievirus A20 Enterovirus C 05/18/2021 SJS ON383147 4,154 7,185 45.8
146-18PLA0330 Coxsackievirus A13 Enterovirus C 05/18/2021 VNA ON383149 57,563 7,318 45.1
148-20CQU0199 Echovirus 11 Enterovirus B 04/16/2021 SJS ON383150 7,861 7,182 47.7
157-29CVP8542 Echovirus 1 Enterovirus B 01/25/2021 VNA ON383152 3,399 7,211 47.3
a Number of reads after quality control and deduplication.
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