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Abstract

Background: Streptococcus agalactiae (Group B Streptococcus, GBS) is a leading cause of life-threatening neonatal
meningitis and survivors often suffer permanent neurological damage. How this organism interacts with the meninges and
subsequently with astrocytes that constitute the underlying cortical glia limitans superficialis is not known.

Methodology/Principal Findings: In this paper, we demonstrate dose-dependent adherence of GBS over time to human
meningioma cells and fetal astrocytes in vitro, which was not influenced by expression of either b-haemolysin/cytolysin (b-h/
c) toxin, different capsule serotypes or by absence of capsule (p.0.05). Internalization of GBS by both cell types was,
however, a slow and an infrequent event (only 0.02–0.4% of associated bacteria were internalised by 9 h). Expression of b-h/
c toxin did not play a role in invasion (p.0.05), whereas capsule expression lead to a reduction (p,0.05) in the numbers of
intracellular bacteria recovered. GBS strains induced cytotoxicity as demonstrated by the measurement of lactate
dehydrogenase (LDH) enzyme release by 9 h and by viable staining. Increasing levels of meningioma cell death correlated
with bacterial growth and the phenotype of b-h/c toxin production, i.e. from weakly, to normo- to hyper-haemolytic.
However, cytotoxicity was significantly greater (p,0.05) towards astrocytes, and infection with initial MOI$0.003 induced
70–100% LDH release. By comparing wild-type (b-h/c+) and mutant (DcylE b-h/c2) strains and b-h/c toxin extracts and by
using the surfactant dipalmitoylphosphatidylcholine in cytotoxicity inhibition experiments, b-h/c toxin was demonstrated as
principally responsible for cell death.

Conclusions/Significance: This study has described key events in the interactions of GBS with meningeal cells and
astrocytes in vitro and a major virulence role for b-h/c toxin. Understanding the mechanisms involved will help to identify
potential therapies for improving patient survival and for reducing the incidence and severity of neurological sequelae.
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Introduction

Streptococcus agalactiae (Group B Streptococcus, GBS) is a leading

cause of life-threatening neonatal infections that include pneumo-

nia, sepsis and meningitis. Recent estimates of the rates of GBS

meningitis in neonates in the US and in the UK is 0.65 and 0.72

per 1,000 live births respectively [1,2] and can occur as early-onset

disease (EOD) or late-onset disease (LOD). EOD occurs princi-

pally in infants aged 0–7 days and in 80% of cases the initial

manifestation is respiratory distress [3], with progression to

pneumonia, septicaemia and meningitis in 9%, 83% and 7% of

cases, respectively [4]. LOD principally occurs in neonates 7 days

to 3 months of age and initial presentation includes fever, lethargy

and tachypnoea, and sepsis and meningitis in 65% and 27% of

cases, respectively [3,4]. GBS are grouped into 9 serotypes (Ia, Ib,

II-VIII) based on antigenic differences in the structure of the

capsular polysaccharide and serotypes Ia, III and V have been

reported to account for about 80% and 92% of EOD and LOD

cases, respectively [3]. Disease mortality has decreased over the

last four decades, from 55% in the 1970s and 10% in the 1980s to

4–6% from 1990–2005 [4,5] and this has been attributed to

intrapartum antibiotic prophylaxis. However, between 36–50% of

survivors of GBS meningitis will suffer permanent neurological

sequelae, hearing loss, seizures and mental retardation [6].

Although significant advances have been made in understand-

ing the pathophysiology of GBS infection and the roles of specific

bacterial virulence factors [7,8], the nature of GBS interactions

with the human meninges is unknown at the cellular and

molecular levels. In man, the meninges comprise the pachymenix

or dura mater, and the leptomeninges, which provide the largest

surface area of cells within the subarachnoid space (SAS) and

consist of the arachnoid mater and pia mater together with the

trabeculae that traverse the cerebrospinal fluid (CSF)-filled SAS

[9–11]. The pia mater closely follows the contours of the human

brain and enters sulci and is separated by a sub-pial space from the

glia limitans superficialis, which surrounds the entire surface of the
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brain and spinal cord and is composed of compacted astrocytes

[12]. A likely portal of entry of GBS into the SAS is penetration of

the blood-cerebrospinal fluid (B-CSF) barrier of blood vessels in

the SAS and an in vitro model of brain microvascular endothelial

cells (BMEC) is being extensively used to examine how GBS

ligand-host cell receptor interactions enable endothelial penetra-

tion [13–21]. However, the subsequent interactions of GBS with

cells of the meninges have not been examined.

Animal models such as the rat and mouse have provided much

valuable information on the pathogenesis of bacterial meningitis,

but they do have their limitations [22]. Moreover, there are

anatomical differences in the membranes and SAS of experimental

animals compared to humans; for example, arachnoid trabeculae

are absent in the mouse leptomeninx [23], the SAS is restricted in

rodents [24] and zonula adhaerens are present between rat

arachnoid cells whereas desmosomal junctions are found in

humans [25]. In addition, for surrogate cell culture models,

primary human leptomeningeal cells cannot be cultured reliably in

vitro [26]. Thus, we established an in vitro model of the

leptomeninges to study bacterial infection, using cells cultured

from meningiomas, which are benign tumours that arise from the

leptomeninges. Meningioma cells have the same cytological and

morphological structure as cells throughout the leptomeninges

[9,26,27] and importantly, meningeal bacterial pathogens show

similar patterns of interaction with fresh leptomeninges and

meningioma cells [28]. An important role for the pia mater

meninges is to provide a physical and physiological barrier that

prevents solutes reaching the underlying brain [29]. Meningioma

cells are suitable for studying the barrier functions of the meninges

in vitro and of the pia mater in particular [26]. The model has been

used to demonstrate that important meningeal pathogens (Neisseria

meningitidis, Haemophilus influenzae, Streptococcus pneumoniae and

Escherichia coli K1) interact differently with meningeal cells in vitro,

with respect to their ability to adhere to and invade host cells and

to induce inflammation and cell death [30,31]. In the current

study, we tested in vitro the hypothesis that GBS infection

compromises the barrier properties of cells derived from the

human meninges to allow bacterial infection to involve underlying

astrocyte cells, which constitute the glia limitans superficialis.

Results

GBS adhere to human meningioma cells
Human meningioma cells were challenged with various

concentrations of each GBS serotype (Table 1) and bacterial

adherence quantified. GBS bacteria demonstrated a dose-depen-

dent association with cell monolayers (Figure 1) and in general, no

significant differences were observed between the 7 wild type

capsulate strains for association at any of the doses tested over time

(P.0.05). However, association following infection with the

highest MOI (3000) of wild-type bacteria tested could not be

quantified at 3 h, as visual inspection showed destruction and

Figure 1. Association of GBS strains with human meningioma cell lines. Human meningioma cell lines were infected with various MOI
(0.0003–3000) of GBS strains of different serotypes and also with strains deficient in expression of b-h/c toxin (DcylE) or capsule. Bacterial association
was quantified over time with the symbols representing the mean and the error bars the standard error of the mean from three independent
experiments. Similar data were obtained using both cell lines.
doi:10.1371/journal.pone.0042660.g001
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sloughing off of the meningioma cell monolayers from their

collagen basements. Infection with an initial MOI of 30 led to a

rapid saturation of the monolayers (Figure 1) followed by

monolayer destruction after 9 h. By contrast, all monolayers were

visually intact at 9 h after infection with initial MOI of between

0.0003–0.3 of all wild type bacteria tested, but with damage of cell

monolayers occurring by 24 h post infection. The hyper-haemo-

lytic NCTC 10/84 strain (serotype V) was significantly cytotoxic,

since unlike the other wild type strains, infection with an initial

MOI of 30 resulted in destruction of cell monolayers between 6–

9 h. By contrast, the weakly haemolytic COH-1 strain (serotype

III) was the least cytotoxic, and regardless of the initial MOI used

to infect cells, similar levels of adherent bacteria were recovered

from intact monolayers at 24 h post infection (p.0.05)(Figure 1).

There were no significant differences (p.0.05) in the dynamics

of association between the DcylE b-haemolysin/cytolysin (b-h/c)

toxin mutants and their parent strains by 9 h, but adherent mutant

bacteria could be recovered at 24 h from intact monolayers. Also,

there were no significant differences in the levels of association of

the acapsulate HY106 strain, compared to the parent COH-1

strain (P.0.05) (Figure 1).

Control experiments were also done to demonstrate that

adherence of GBS to plastic surfaces was irrelevant. GBS strains

were grown in cell culture wells without cell monolayers and as

expected, adherence to plastic surfaces was negligible and was

,0.5% of the bacterial growth in a well at any of the time points

sampled during growth (Figure S1A). The relative growth rates of

the wild-type GBS strains in culture medium over time were also

examined. All of the wild-type strains exhibited similar growth

curves (P.0.05). In addition, there were no differences statistically

(P.0.05) in the growth rates between the wild-type strains and

their isogenic mutants, deficient in either capsule or b-h/c toxin

(Figure S1B).

Scanning electron microscopy analyses of infected cell mono-

layers (Figure S2A) confirmed the viable count data by demon-

strating increases in the numbers of adherent bacteria over time.

Few bacteria were visible on meningioma cell surfaces by 3–6 h,

but by 9 h, large clusters and chains of adherent GBS dominated

the host cell surfaces. By 24 h, total cell monolayer damage was

induced by wild-type bacteria and only clusters of bacteria and cell

debris were observed scattered on the surface of the Transwell

insert membranes. By contrast, monolayers were intact at 24 h

after infection with the weakly-haemolytic COH-1 strain and the

b-h/c2 mutant strains (images not shown).

Human meningioma cells provide an effective barrier to
GBS invasion

Meningioma cell monolayers were infected with an initial MOI

of 0.3 (104 cfu) of the different GBS serotypes and cellular invasion

was quantified using the gentamicin-cytochalasin D (CD) assay.

Cellular invasion was not detectable at 3 h or 6 h for any of the

wild type GBS serotypes (P.0.05). Although the levels of invasion

by GBS strains increased to significance by 9 h, the numbers of

recovered bacteria after gentamicin treatment as a percentage of

associated bacteria were very low (#0.4%) (Table 2). Nevertheless,

the acapsulate strain HY106 did show a significantly higher rate of

invasion (,0.2%) than its capsulated parent strain COH-

1(,0.02%; P,0.05) (Table 2). There was no significant difference

in invasion between the normo-haemolytic A909 (b-h/c+) wild-

type strain and the A909DcylE (b-h/c2) mutant (p.0.05).

However, for the hyper-haemolytic strain NCTC 10/84, the

percentage invasion rate (,0.02%) was significantly lower

(P,0.05) than that calculated for its corresponding DcylE variant

(,0.15%). It was possible that excessive pore-formation by this

strain allowed the gentamicin to leak inside the cells and kill

internalised bacteria, leading to reduced recovery of viable

bacteria [13]. In order to test this hypothesis, meningioma cell

monolayers (n = 3 experiments) were infected with an initial MOI

of 0.3 of the hyper-haemolytic NCTC 10/84 strain and treated

with the surfactant dipalmitoylphosphatidylcholine (DPPC; 3 mg/

ml), which has been shown to inhibit b-h/c pore-formation. There

was a significant (P,0.01) increase in the number of bacteria

recovered after gentamicin treatment in the presence of DPPC,

with the number of internalised bacteria increasing from 500

(690) cfu/monolayer without DPPC to 3,700 (6540) cfu/

monolayer with DPPC. This number of recovered bacteria was

similar (P.0.05) to the levels observed for the NCTC10/84 DcylE

b-h/c2 strain (24006500 cfu/monolayer; mean invasion rate of

0.149%, Table 2). In separate control experiments, we confirmed

that the invasion rate of the NCTC10/84 DcylE b-h/c2 strain was

Table 1. Bacterial strains used in the study.

Organism ATCC Reference No. Capsular type b-haemolysis Comments Reference

S. agalactiae

A909 BAA 1138 Ia ++ WT [68]

A909 DcylE –– Ia 2 b-h/c deficient [69]

H36B BAA 1174 Ib ++ WT [70]

18RS21 BAA 1175 II ++ WT [70]

NEM 316 ATCC 12403 III ++ WT [71]

2603V/R BAA 611 V ++ WT [70]

COH-1 BAA 1176 III + WT, Hyper-capsulated [72]

COH-1 HY106 –– –– + Uncapsulated [73]

NCTC 10/84 ATCC 49447 V +++ WT, Hyper-haemolytic [74]

NCTC 10/84 DcylE –– V 2 b-h/c deficient [69]

N. meningitidis MC58 –– B 2 –– [60]

E. coli IH3080 –– O18:K1 2 –– [61]

WT, wild type; 2 Non-haemolytic; + Weakly haemolytic; ++ Normo-haemolytic; +++ Hyper-haemolytic.
doi:10.1371/journal.pone.0042660.t001
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unaffected by DPPC (3 mg/ml): the invasion rate in the absence

and presence of DPPC was 0.31% and 0.4% respectively (n = 2

independent experiments, P.0.05).

Although there was a significant reduction of recovered bacteria

(P,0.05) in all the monolayers treated with gentamicin and CD,

compared to treatment with gentamicin alone for all the strains

tested (Figure S3), GBS internalisation by meningioma cells was a

rare event. Indeed, examination of a large number of grids by

transmission electron microscopy only demonstrated the occa-

sional intracellular bacterium (Figure S2B).

GBS infection causes meningioma cell death
The release of LDH from meningioma cells was used to

quantify cell death induced by infection with wild-type GBS

strains, since measurement of LDH release has previously been

shown to be a reliable biochemical indicator of cell injury in other

in vitro cell culture models [32]. Preliminary experiments showed

that GBS infection (with initial MOI from 0.03–3000) did not

induce LDH release at 3 h and 6 h (data not shown) and therefore

measurements were taken at 9 h as association experiments

suggested that cell death was beginning to occur by this time

(Figure 1).

LDH release was detectable at 9 h after infection with initial

MOIs$3 of wild type GBS serotypes and significant differences

were observed in the patterns of LDH release (Figure 2A). The

most pronounced LDH release was induced by the hyper-

haemolytic NCTC 10/84 (V) strain, where LDH release reached

,50% after infection with initial MOI as low as 3, and about 60–

70% after infection with initial MOIs of 30 and 300. Strains

18RS21 (II), 2603V/R (V), NEM316 (III) and H36B (1b) induced

between ,20–50% LDH release after infection with initial MOIs

of 30 and 300 (Figure 2A). However, infection with an initial MOI

of 3000 was needed for strain A909 (Ia) to induce LDH release by

9 h (70%). The lowest LDH release was observed with the weakly

haemolytic COH-1 strain, where no LDH release above the

baseline (average = 7.8%60.64) was detected except after infection

with an initial MOI of 3000, which induced ,20% enzyme

release. Regardless, complete damage and sloughing off from the

collagen basement of the infected monolayers was observed at

24 h for all infecting doses for all wild-type strains, except for

COH-1, and LDH release could not be detected.

A fluorescent dye-based LIVE/DEAD assay was also used to

assess host cell viability and cytotoxicity. Meningioma cell

monolayers were infected with initial MOI of 0.3, 30 and 3000

of each wild-type bacterial strain for up to 9 h, and for 24 h in the

case of the weakly-haemolytic strain COH-1. The choice of these

MOI was based on the observations made from LDH results so

that varying degrees of cell death would be induced (Figure 2A).

Examination by confocal microscopy demonstrated significant

differences in dye interactions with meningioma cells following

GBS infection (Figure 2B) and in general these observations

correlated with the LDH assay data. With the lowest initial MOI

of 0.3 tested, the strains did not induce cell death as the

monolayers were intact and viable (stained green), except for

NCTC 10/84, which induced red dye uptake indicative of cell

death. With the higher initial MOI of 30, two patterns of

cytotoxicity were observed: monolayers challenged with NCTC

10/84 and H36B were completely damaged with only a few dead

(stained red) cells or cell fragments remaining. Monolayers

challenged with other strains (18RS21, NEM316 and 2603V/R)

were still intact but showed a mixture of green and red cell

staining, suggesting that cell death was starting to occur, whereas

monolayers challenged with the A909 strain remained viable.

With the highest initial MOI of 3000, complete destruction of the

monolayers was induced by all the strains, with only cellular debris

remaining. By contrast, with the weakly haemolytic COH-1 strain,

the challenged monolayers were completely intact at 9 and 24 h

regardless of the initial MOI tested, but a gradual change in the

staining reaction was apparent at 24 h, with red dye uptake

increasing with bacterial dose. With the highest initial MOI of

3000, although all the cells within the monolayer were dead, there

was no significant loss of monolayer integrity.

The b-haemolysin/cytolysin (b-h/c) toxin plays a critical
role in meningioma cell death

Next, we tested the hypothesis that meningioma cell death was

due to the effects of b-h/c toxin produced by GBS, by infecting

cell monolayers with the normo- and hyper-haemolytic parent

strains A909 and NCTC 10/84 and their corresponding DcylE (b-

h/c2) variants. Initially, measurements of LDH release were taken

at 9 h post infection. The A909 strain induced approximately 75%

LDH release after infection with an initial MOI of 3000, whereas

the NCTC84/10 strain induced $60% cell death with initial MOI

of $3 (Figure 3A). By contrast, the DcylE mutants did not induce

any significant (P.0.05) LDH release above the base line with any

MOI tested by 9 h (average of 6.460.8%) or 24 h (average

6.361.6%) (Figure 3A).

The LIVE/DEAD assay with confocal imaging confirmed that

after 9 h of challenge, both of the b-h/c2 mutant strains did not

induce cell death after infection with initial MOI of 0.3 and 30.

There was some induction of cell death after initial infection with a

MOI of 3000, where the monolayers showed some uptake of the

red dye, but the majority of the cells were stained green and the

monolayers were completely intact (Figure 3B). By contrast,

infection with both of the parent strains at an initial MOI of 3000

caused the complete destruction of monolayers (Figure 2B).

Confocal imaging at 24 h showed completely intact monolayers,

but different staining reactions were observed (Figure 3B). Cells

within monolayers challenged with the A909 DcylE strain were

completely viable (green stain) following infection with initial MOI

of 0.3 and 30. However, after infection with an initial MOI of

3000, the monolayers were intact but the majority of cells were

Table 2. Invasion of meningioma cells by GBS.

GBS strain % Mean Invasion (± SEM)*

A909 (Ia) 0.328 (0.094)

A909 DcylE 0.413 (0.131)

H36B (Ib) 0.059 (0.033)

18RS21 (II) 0.051 (0.025)

NEM316 (III) 0.148 (0.066)

COH-1 (III) 0.015 (0.006)

HY106 (Cap̄) 0.175 (0.089)

2603 V/R (V) 0.073 (0.025)

NCTC 10/84 (V) 0.019 (0.006)

NCTC 10/84 DcylE 0.149 (0.092)

Monolayers were infected for 9 h with an initial MOI of 0.3 (104 cfu bacteria),
washed and then treated with gentamicin.
*The percentage of invading bacteria (invasion rate) was calculated using the
formula: Invasion rate (%) = (internalised bacteria/associated bacteria)6100. The
mean and SEM for GBS were calculated from n = 3–6 experiments. E. coli IH3080
was included as a positive control and showed an invasion rate of 1.167% (SEM
6 0.283 from n = 10 experiments). Similar data were obtained using both
meningioma cell lines.
doi:10.1371/journal.pone.0042660.t002
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non-viable (red stain) (Figure 3B). Monolayers infected with the

NCTC10/84 DcylE strain also remained intact but demonstrated a

gradual increase in cell death after infection with different MOI

and the effect was more pronounced than with the A909 DcylE

strain (Figure 3B).

The protective effect of DPPC against cell injury induced by

GBS strains was investigated next. Pilot dose-finding experiments

demonstrated that a concentration of 3 mg/ml of DPPC was

optimal for inhibiting LDH release induced by GBS infection

(Figure S4A). For the LDH release experiments, MOI were chosen

that had been shown to induce the highest levels of LDH release

from meningioma cells (Figure 2A), ranging from 30–3000

depending on the strain. In the presence of DPPC, LDH release

induced by the GBS strains was significantly reduced (p,0.05) by

,67–84% (Figure 4A). The inhibitory effects of DPPC against cell

injury were confirmed using the fluorescent dye-based assay

(Figure 4A inset). Monolayers challenged with NCTC 10/84 strain

showed significant levels of cell death by 9 h, as demonstrated by

the presence of the red dye within cells, cell fragments and cell

nuclei. By contrast, in the presence of DPPC, cell monolayers were

Figure 2. Meningioma cell injury induced by wild type GBS strains. A) Release of LDH: cells were infected for 9 h with different initial MOI of
GBS strains and LDH release was measured. Results shown are the mean values of LDH release compared with maximum release by lysed cells and
the error bars are the SEM from at least two independent experiments, each performed in triplicate. B) Confocal microscopy: cell cultures were
infected with a range of initial MOI of different serotypes of wild type GBS for 9 h. Cell death was examined using the LIVE/DEAD fluorescent dye
assay, where uptake of the red dye (ethidium homodimer) identifies dead cells and uptake of the green dye (calcein AM) identifies live cells. The scale
bar shows 75 mm (640 lens magnification). Images are of monolayers infected for 9 h, except for the COH-1 strain infected for 24 h, and they are
representative of experiments carried out in triplicate. Similar data were obtained using both cell lines.
doi:10.1371/journal.pone.0042660.g002
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still intact and the majority of cells were viable (green stain)

(Figure 4A inset).

Next, the protective effect of DPPC, when added at later time

points, was investigated. Cell monolayers were infected with an

initial MOI of 30 of strain NCTC10/84 for 9 h, which induced

,75% LDH release (Figure 4B). Addition of DPPC (3 mg/ml) at

both 0 h and 3 h reduced LDH release by ,80% (p,0.01), but

this inhibitory effect was lost if the surfactant was added at 6 h

post-infection (p.0.05) (Figure 4B).

In order to substantiate the role of the b-h/c toxin in

meningioma cell death, monolayers were treated with crude

haemolysin extracts prepared from the wild type strains A909 and

NCTC 10/84 and their isogenic DcylE mutants and the release of

cellular LDH was quantified at 9 h post infection. The extract

(100 ml) prepared from the hyper-haemolytic NCTC strain

contained 100HU and induced LDH release by approximately

60%, whereas an equal volume of extract prepared from the

normo-haemolytic A909 strain, which contained 50HU induced

approximately 30% LDH release (Figure 4C). By contrast, extracts

prepared from both of the DcylE mutants did not induce any

significant release of LDH above base-line (mean 4.160.9%).

Furthermore, in the presence of DPPC (3 mg/ml), LDH release

that was induced by extracts from both wild type strains was

reduced by 85–95% (p,0.05), to levels that were similar to base-

line and mutant levels (Figure 4C).

Meningioma cell monolayers were also treated for 9 h with

equal volumes of crude extracts prepared from the wild type

NCTC10/84 strain and its DcylE variant, in the presence (3 mg/

ml) or absence of DPPC and subjected to the LIVE/DEAD assay

with confocal imaging. A dose of extract prepared from the wild

type GBS strain (containing 250HU, which was equivalent to

50HU in the LDH assay) induced cell injury as judged by the

uptake of the red dye by the monolayer. By contrast, the extracts

from the DcylE strain did not induce cell injury. Moreover, the

addition of DPPC was protective, since the monolayers took up

the green dye with little or no evidence of cell death (Figure 4C).

GBS interactions with fetal astrocytes
We extended our study to test the hypothesis that following GBS

penetration of the pia mater meningeal barrier, bacteria interact

with astrocyte cells that form the compacted glia limitans superficialis.

In these experiments, we used a human fetal astrocyte cell line

SVGmm [33] and an adult astrocytoma cell line (CCF-STGG1) as

in vitro models to mimic the glia limitans. These cell lines were

infected with the normo-haemolytic A909 and hyper-haemolytic

NCTC 10/84 strains and bacterial adherence and invasion, cell

death and the role of the b-h/c toxin were investigated.

Both wild-type strains and their DcylE variants associated with

fetal astrocyte cells; in general the dynamics of association for

A909 and the b-h/c2 mutant were similar for all initial MOI

tested up to 9 h, but no monolayers were intact by 24 h with the

toxin-expressing strain, whereas they were intact after infection

with the mutant (Figure 5a). By contrast, infection with the highest

initial MOI of the hyper-haemolytic NCTC 10/84 strain showed

higher cytotoxicity than A909 by 3–6 h; the mutant strain, as

expected, was not cytotoxic and adherent bacteria were recovered

at 24 h (Figure 5b). GBS invasion of SVGmm cells was also an

infrequent event. After infection with an initial MOI of 30 for 9 h,

the mean invasion rate for A909 (0.3% 6SEM 0.1, n = 3

experiments) was statistically similar (p.0.05) to that observed

for the b-h/c2 mutant strain (0.496SEM 0.2, n = 3 experiments).

Moreover, these low levels of invasion were similar to those

observed with meningioma cells (Table 2). By contrast, invasion

could not be estimated at 9 h after infection with an initial MOI of

Figure 3. Comparison of b-hemolysin/cytolysin (b-h/c) toxin-
expressing and toxin-deficient strains on meningioma cell
death. Cell cultures were infected with various doses of wild-type A909
and NCTC10/84 (b-h/c+) strains and their isogenic DcylE (b-h/c2)
mutants and meningioma cell death quantified after 9 h. (A) Bacterial
dose-dependent LDH release from meningioma cells. The symbols
represent the mean values of LDH release compared with maximum
release by lysed cells and the error bars are the SEM from at least two
independent experiments. (B) Confocal microscopy images of menin-
gioma cells challenged with different concentrations of GBS A909 and
NCTC10/84 DcylE mutant strains for 9 h and 24 h. The red colour
identifies dead cells, whereas the green colour corresponds to viable
cells. The scale bar at bottom right of each image measures 75 mm (640
magnification). Similar data were obtained using both cell lines.
doi:10.1371/journal.pone.0042660.g003
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Figure 4. The surfactant DPPC protects meningioma cells from GBS-induced death. (A) Effect of DPPC on cell death induced by live
bacterial infection. Meningioma cells were infected with doses of GBS strains that induced the highest levels of LDH release (Figure 2A) and cell death
quantified at 9 h. The columns represent the mean levels of LDH released from monolayers and the arrows indicate the percentage of reduction of
LDH release in the presence of DPPC in comparison with LDH in the absence of DPPC. The error bars show the SEM of at least two independent
experiments. The two confocal microscopy images show monolayers infected with a cytotoxic dose (initial MOI, 30) of the hyper-haemolytic NCTC10/
84 strain for 9 h in the absence and presence of DPPC. (B) The protective effect of DPPC is dependent on time of addition. Meningioma cell
monolayers were infected with GBS strain NCTC10/84 and DPPC (3 mg/ml) added at 0, 3 and 6 h. LDH release was measured at 9 h. The columns
represent the mean levels of LDH release and the error bars the SEM of 3 independent infection experiments. (C) Cell death induced by b-h/c toxin
extracts and inhibition by DPPC. The graph shows LDH release from monolayers treated with b-h/c toxin extracts prepared from wild type NCTC and
A909 strains (containing 100HU and 50HU, respectively). Equal volumes of extracts prepared from their b-h/c deficient mutant strains were also used.
Results shown are mean values of LDH release and error bars are the SEM from four independent experiments using two independent batches of b-h/
c toxin extracts. Arrows indicate the percentage inhibition of LDH release in the presence and absence of DPPC. The confocal microscopy images
show monolayers treated with b-h/c extracts (250HU) prepared from wild type GBS strains for 9 h in the absence and presence of DPPC. An
equivalent volume of extract prepared from the DcylE (b-h/c deficient) mutant strain was also used. Using the LIVE/DEAD assay, the red colour
identifies dead cells, whereas the green colour corresponds to viable cells. The scale bar at bottom right of each image measures 75 mm (640
magnification). Similar data were obtained using both cell lines.
doi:10.1371/journal.pone.0042660.g004
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30 of strain NCTC 10/84, due to cytotoxicity at this time point

(Figure 5b), so measurements were made at 6 h. The mean

invasion rate for NCTC 10/84 of 0.38% (6SEM 0.05, n = 7

experiments) was significantly lower (p,0.05) than that calculated

for the corresponding b-h/c2 mutant strain (1.23% 6SEM 0.3,

n = 7 experiments). However, as observed with meningioma cells,

addition of DPPC (3 mg/ml) during infection of astrocytes led to

an increase in the recovery of internalised hyper-haemolytic

NCTC 10/84 bacteria, to ,0.8% (6SEM 0.1, n = 4 experiments).

GBS infection induced high levels of LDH enzyme release by

SVGmm astrocyte cells. Infection with an initial MOI of ,300 of

strain A909 was required to induce $50% LDH release, which

increased to ,80% with the higher initial MOI of 3000 tested

(Figure 5c). The hyper-haemolytic strain was significantly more

cytotoxic, as infection with an initial MOI of 0.0003 induced

,40% LDH release by 9 h and MOI $0.003 induced 70–100%

LDH release (Figure 5c). As expected, no LDH release was

induced by infection with any MOI of the corresponding b-h/c2

mutants. We next investigated whether DPPC could inhibit the

cytotoxic effect following infection with the parent strains. DPPC

(3 mg/ml) significantly inhibited by ,70% (p,0.05) the release of

LDH from SVGmm monolayers infected with strain A909 (initial

Figure 5. GBS interactions with human fetal astrocytes. a&b) Association of wild-type A909 and NCTC10/84 (b-h/c+) strains and their isogenic
DcylE (b-h/c2) mutants. SVGmm fetal astrocyte cell monolayers were infected with various initial MOI of GBS strains and association measured over
time. Data are from representative experiments (n = 3 for each bacterium) and the symbols show the mean cfu values and the error bars the standard
deviations of triplicate wells. c) Astrocyte cell death measured by LDH release. Astrocytes were infected with various initial MOI of wild-type A909 and
NCTC10/84 (b-h/c+) strains and their isogenic DcylE (b-h/c2) mutants. LDH release was measured after 9 h and the symbols represent the mean levels
of LDH release and the error bars the SEM from 3 independent experiments. Open circles denote NCTC10/84 (b-h/c+) and open triangles NCTC10/84
DcylE (b-h/c2); closed circles denote A909 (b-h/c+) and closed triangles A909 DcylE (b-h/c2); closed diamonds denote background release of LDH. d)
Effect of DPPC on astrocyte cell death induced by normo-haemolytic GBS infection. Astrocyte cell monolayers were infected with wild-type strains
A909 (initial MOI 3000) in the presence (3 mg/ml) or absence of DPPC, and LDH release measured after 9 h. Control (Con) is spontaneous LDH release
from cells. The columns represent mean levels of LDH release and the error bars the SEM from 3 independent experiments. e) Effect of DPPC on
astrocyte cell death induced by hyper-haemolytic GBS infection. Cell monolayers were infected with different initial MOI of NCTC10/84 (0.0003–3000)
for 9 h in the presence (3 mg/ml) or absence of DPPC. Data are from a representative experiment (n = 3) and the symbols show the mean levels of
LDH release and the error bars the standard deviation of triplicate wells. Open and closed circles denote GBS without and with DPPC respectively;
open triangles denote background release of LDH. f) Effect of DPPC on b-h/c toxin induced astrocyte cell death. Fetal astrocyte cell monolayers were
treated for 9 h with b-h/c+ and b-h/c2 extract (100 ml volume per well and prepared as described in Materials and Methods) in the presence or
absence of DPPC (3 mg/ml). LDH release was measured after 9 h. The columns represent mean levels of LDH release and the error bars the SEM from
experiments carried out with 3 independent preparations of toxin extracts.
doi:10.1371/journal.pone.0042660.g005

GBS Interact with Meningeal Cells and Astrocytes

PLOS ONE | www.plosone.org 8 August 2012 | Volume 7 | Issue 8 | e42660



MOI of 3000) (Figure 5d). However, DPPC was unable to inhibit

LDH release (p.0.05) from monolayers initially infected with

MOI of 0.3–3000 of the hyper-haemolytic strain, but did inhibit

enzyme release by 65–80% after infection with MOI of 0.003–

0.03 (Figure 5e). Moreover, DPPC reduced LDH release by

,50% from cells treated with b-h/c toxin extract (Figure 5f).

Similar results were obtained with the adult astrocytoma cell line

(data not shown).

Discussion

GBS are a major cause of neonatal meningitis with high

mortality and morbidity rates and in the current study, we used an

in vitro human meningioma cell culture model of meningitis to

investigate the consequences of GBS interactions. Wild type GBS

strains demonstrated similar adherence dynamics with meningio-

ma cell monolayers, which were not influenced by either the

capsular serotype expressed or by capsule expression. We also

demonstrated that GBS strains adhered to astrocytes. In partic-

ular, adherence to both cell types was not influenced by b-h/c

toxin expression. By contrast, previous studies have shown that

capsule expression and b-h/c toxin could influence GBS-host cell

interactions in vitro, but this depended on the cell type and

moreover, the methods to measure adherence were not compa-

rable [14,34–37]. The adhesins used by GBS for adherence to

meningioma cells and astrocytes remain to be identified, but any

one or more GBS components such as PilA [38,39], lipoteichoic

acid [40], C5a peptidase [41], FbsA [42], alpha-C protein and the

HvgA protein [19], which mediate adherence to epithelial and

endothelial cells, merit investigation.

A general property of GBS bacteria in vivo and in vitro is their

ability to penetrate human cellular barriers, particularly those

composed of chorion cells [43], lung epithelial cells [37,44] and

BMECs [13]. However, direct invasion of meningioma cells by

GBS was a slow and infrequent event, with very low levels of

intracellular bacteria detected by 9 h. Nevertheless, this very low

level of invasion was influenced by GBS capsule expression, which

has been similarly observed during invasion of cells of the

respiratory tract and endothelium [13,34,45]. Direct invasion of

astrocytes by GBS strains was also a rare event; moreover, for both

cell types invasion was not influenced by b-h/c toxin expression.

By contrast, toxin expression has been shown to play a role during

GBS invasion of lung epithelial cell cultures in vitro [37] and of

endothelial cells in a murine model of meningitis [14]. In

particular, GBS b-h/c+ bacteria penetrated endothelial cells and

established meningitis in a murine model more frequently than the

corresponding b-h/c2 mutant [14].

Our study also showed that GBS growth, b-h/c toxin expression

and interactions with human cells resulted in host cell death.

Notably, astrocytes were more sensitive to the cytotoxic effects of

infection than meningioma cells and the effect was more

pronounced with the hyper-haemolytic isolate NCTC 10/84.

Indeed, there appeared to be a spectrum of toxin production by

the different GBS clinical isolates and although the hyper-

haemolytic strain is likely atypical, it did confirm that excess b-

h/c toxin production was deleterious. This isolate and an initial

MOI of 3000 are likely to reflect the extremes of GBS infection.

Interestingly, with this high MOI (3000), meningioma cell LDH

levels were reduced by all GBS strains, except for A909. This

difference cannot be accounted for by variation in bacterial growth

rates, since these were similar for all wild-type and mutant GBS

strains. Given that GBS did not degrade LDH enzyme, the

absence of measurable LDH after infection with an initial MOI of

3000 could be due to degradation by rapidly released meningioma

cell autolytic enzymes. It is also generally believed that the b-h/c

toxin is attached to the surface of the bacterial cell [46]: however,

it is not known whether the levels of attached toxin vary between

strains, possibly as a consequence of differences in transport to the

cell membrane and/or toxin stability. Thus, host cells remain

viable after A909 infection, perhaps due to such intrinsic

variations. Molecular characterization of the b-h/c toxin, includ-

ing transport to the cell membrane, stability and relationship to

pigmentation, still proves elusive and requires further study.

The b-h/c toxin plays a role in meningioma and astrocyte cell

death, which has also been observed for GBS-infected epithelial

cells and BMECs [13,32,37]. Evidence for this role was provided

by the findings that wild-type bacteria and b-h/c+ extracts induced

cell death, whereas challenge with DcylE (b-h/c2) mutant strains

and b-h/c2 extracts did not. DPPC also significantly reduced

meningioma cell injury induced by wild-type bacteria and b-h/c+

extracts. Although protection was also observed for astrocytes

infected with normo-haemolytic GBS, DPPC was not wholly

effective at inhibiting cytotoxicity caused by the hyper-haemolytic

GBS strain or b-h/c+ extracts. These observations suggest that the

increased toxicity of GBS towards astrocytes could involve GBS

virulence factors in addition to b-h/c toxin. It is also possible that

astrocytes express receptors that specifically recognise these other

GBS virulence factors, but which are absent on meningioma cells.

Previous studies have shown protective effects of DPPC against

b-h/c mediated injury in epithelial cells [32], murine macrophages

[47] and cardiomyocytes [48]. It has been suggested that DPPC

might preserve the host cell membrane by providing phospholipid

replacement during pore formation and/or by direct neutralisa-

tion by binding to toxin itself [37]. Or, like pneumococci, GBS

possibly trigger cell death by blocking the biosynthesis of host

phosphatidylcholine [49] and this is reversed by the addition of

exogenous lipid. Whether any of these mechanisms are functional

during meningeal cell protection remains to be confirmed and to

our knowledge there are no data on the potential therapeutic

benefit of surfactant phospholipids in GBS meningitis. However,

surfactant treatment that maintains monolayer integrity might be

of benefit during GBS meningitis as a means to preserve an intact

pia mater barrier to bacterial penetration to sub-pial tissue.

A significant finding from our study was that GBS infection did

not induce a cytokine response from either meningioma cells or

astrocytes (Tables S1, S2, S3). It is possible that GBS-induced

rapid host cell death prevented de novo cytokine protein synthesis:

however, cytokines were also not induced following infection with

b-h/c2 mutant bacteria, weakly-haemolytic bacteria or heat-killed

bacteria, all of which allowed prolonged host cell viability (Tables

S1, S2, S3). Possible explanations include GBS inhibition of

cytokine production by these cells, which has been observed for

meningioma cells following S. pneumoniae infection in vitro [31] and/

or proteolytic degradation of cytokines, a property that has been

shown for the GBS serine protease CspA [50].

The combined effects of GBS on meningeal cells and astrocytes

in vitro contribute to our understanding of the pathophysiology of

GBS neonatal meningitis. Our study shows that GBS rapidly grow

and colonise meningeal cells and in vivo these events are most likely

unchecked by an immature intracranial immune system [51]. We

also show that by failing to secrete cytokines in response to

infection, the meninges are unlikely to be involved in innate

inflammatory responses to GBS. Thus, inflammatory mediators

observed in the CSF of neonates with GBS meningitis are

probably produced by damaged endothelial cells, by the small

population of perivascular and meningeal resident macrophages

and by infiltrating immune cells [52,53]. Our study also

demonstrates that meningeal cells provide a significant barrier to
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intracellular penetration by GBS bacteria, but this barrier is

circumvented by GBS b-haemolysin/cytolysin-induced cell death.

Penetration of the pia mater would allow GBS to gain access to the

sub-pial space and then interact with the compacted astrocytes of

the underlying glia limitans superficialis. Our study shows that GBS

adhere to fetal astrocytes and rapidly kill these cells without

significant intracellular invasion.

Thus, the events occurring in the meninges and glia limitans

could contribute to the significant damage to underlying brain

tissue that is observed in humans and in animal models of GBS

meningitis [54,55]. This damage correlates with mortality and the

high levels of permanent neurological sequelae observed in

survivors [6] GBS infection can cause encephalomalacia (softening

of brain tissue) and vasculopathy and post-mortem examination of

a neonate with GBS meningitis showed a loss of brain structural

integrity with a thin purulent exudate on the surface of the brain

and ventricles [56,57]. Deeper penetration through necrotic tissue

is also likely to induce Toll-like receptor 2-dependent microglial

cell activation and subsequent apoptosis [58] and a murine model

of GBS meningitis has shown brain tissue destruction and

neutrophil infiltration [54]. In a rat model, GBS infection was

reported to induce a caspase-3-independent form of cell death,

characterised by neuronal loss in the dentate gyrus of the

hippocampus [59]. In addition, a role has been shown for the b-

h/c toxin in inducing cell injury in the cortex and hippocampus of

rats [55].

In summary, we have used in vitro cell culture based models of

meningitis to investigate the interactions of GBS with meningeal

cells and astrocytes. Understanding the mechanisms involved will

help to identify potential therapies for improving patient survival

and for reducing the severity of neurological sequelae.

Materials and Methods

Bacterial strains and growth conditions
In this study, 10 strains of Group B Streptococcus (GBS) of

different capsular types were used (Table 1). Presence of the Group

B capsular polysaccharide was confirmed on all GBS strains by

serology using the Streptococcal grouping kit (Oxoid, Basingstoke,

UK). Strains A909, H36B, 18RS21, 2603V/R and COH-1 were

obtained from the American Type Culture Collection (ATCC)

(LGC Promochem, Teddington, UK). Additional wild type GBS

strains and their isogenic mutants that are deficient in b-

haemolysin/cytolysin (b-h/c) and capsule production have been

described elsewhere (Table 1). Neisseria meningitidis MC58 sero-

group B strain was isolated in Stroud, Gloucestershire in the mid-

1980s from an outbreak of meningococcal infections [60] and

Escherichia coli IH3080 serogroup O18:K1 is a clinical isolate from

a neonate presenting with meningitis [61] and was obtained from

the National Institute of Public Health, Helsinki, Finland. GBS

strains, N. meningitidis and E. coli were grown directly from liquid

nitrogen stocks onto Brain Heart Infusion (BHI) agar, GC agar,

and Luria-Bertani (LB) agar respectively. Organisms were grown

overnight in a humidified incubator with a 5% (v/v) CO2

atmosphere at 37uC.

Preparation of b-haemolysin/cytolysin (b-h/c) extract
from GBS

The b-h/c toxin was prepared following the method as

originally described by Marchlewicz and Duncan [62]. GBS

strains were grown overnight on BHI agar plates and a few

colonies were emulsified in 1.2 ml of Todd Hewitt Broth (THB)

(Oxoid, UK), which was grown overnight as a static culture in a

humidified incubator with a 5% (v/v) CO2 atmosphere at 37uC.

This starter culture was then inoculated into a total volume of

25 ml of fresh THB and this culture was incubated until an O.D of

0.8 at l600 nm was reached. The bacteria were centrifuged

(3000 g, 5 min), the pellet was washed twice in warm PBS and

then suspended in 3 ml of warm PBS solution containing 0.2%

(w/v) glucose and 1% (w/v) starch, followed by incubation for

90 min at 37uC in an orbital shaking incubator (Gallenkamp, UK,

100 rpm). The suspension was then centrifuged (3,000g, 5 min)

and the supernatant was sterilised using 0.22 mm PES (poly-

ethersulfone) filters (Millipore, USA) and was kept on ice

throughout the process. The filtered extract was divided into

several working aliquots, which were stored at 280uC and used

within 2 days.

The haemolytic activity of the b-h/c extracts was determined

using sheep red cells [62]. Using 50 ml of crude extract, a two-fold

serial dilution of the extract was prepared using PBS in a U-shaped

96-well measuring plate (Sterilin, UK). Then, 50 ml of 1% (v/v)

suspension of sheep red cells (Oxoid, UK) was added to all wells,

followed by 100 ml of PBS. Negative and positive controls were

included by adding 150 ml of PBS (negative control) and 150 ml of

distilled water (positive control) to 50 ml of red cell suspension. The

final volume in all wells was 200 ml. The plate was incubated at

37uC for 30 min, followed by storage at 4uC for 2 h. Haemoglobin

(Hb) release from the red cells was then measured by transferring

the supernatant from each well to a measuring plate, which was

read at l420 nm using an iMark plate absorbance reader (Bio-

Rad, USA). Hb release was expressed as a percentage of total

release of the positive control using the following formula: Hb

release of sample (%) = (A420 of sample/A420 of positive con-

trol)6100. The end point (titre) of the crude extract was defined as

the highest dilution of extract that induced 50% release of Hb

from the red cell suspension. The number of haemolytic units

(HU) per ml of extract was determined in order to use a known

concentration of HU in subsequent experiments. A haemolytic

unit of 1.0 was defined as the volume (highest dilution) of crude

extract that induced 50% Hb release from 1 ml of 1% (v/v) red

cell suspension [62].

Culture of human meningioma cells and astrocytes
Human meningioma cells were obtained from surgically

removed tumours as described previously [28]. For this study,

we used meningioma cell lines (n = 2) that were generated in a

previous study and shown to express the characteristic markers of

desmosomal desmoplakin, epithelial membrane antigen, vimentin

and cytokeratin [63]. The cells were grown in Dulbecco’s modified

Eagles medium (DMEM) with Glutamax-1 and sodium pyruvate

(Lonza, Slough, UK) supplemented with 10% (v/v) heat-inacti-

vated, decomplemented foetal calf serum (Lonza) (dFCS). Cells

were seeded into T75 cm2 flasks (greiner bio-one, Frickenhausen,

Germany) pre-coated with collagen (type I from rat tail, 5 mg/cm2;

Becton Dickinson, UK). Cells were maintained in a 5% (v/v) CO2

atmosphere at 37uC and were grown to confluence and culture

passages from 4–10 were used in the experiments. The human

fetal astrocyte cell line SVGmm was grown in Eagle’s Minimal

Essential Medium (EMEM, Lonza) supplemented with 10% (v/v)

dFCS [33]. The adult astrocytoma cell line CCF-STTG1 (CRL-

1718; LGC Promochem, UK) was grown in Rosewell Park

Memorial Institute medium containing 10% (v/v) dFCS.

Reagents
A10x solution of the phospholipid surfactant dipalmitoylpho-

sphatidylcholine (DPPC) was prepared fresh by dissolving 30 mg

of DPPC (Sigma-Aldrich, Dorset, UK) in 1 ml of DMEM or
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EMEM medium containing 1% (v/v) dFCS, with sonication at

30 micrometers for 2630 sec bursts (MSE Soniprep).

Challenge of human meningioma cells and astrocytes
i) Measurement of total bacterial association. Human

meningioma cells and astrocytes were grown to confluence in 24-

well cell culture plates. The average meningioma cell count in a

24-well plate was 3.36104/well (616104/well, n = 7) and for

SVGmm astrocytes, 1.16105/well (60.256105/well, n = 6). Be-

fore bacterial challenge, the cell monolayers were maintained

overnight in medium containing 1% (v/v) dFCS and then they

were washed gently twice with warm PBS (pH 7.4). GBS

suspensions were prepared in DMEM or EMEM containing 1%

(v/v) dFCS from fresh overnight cultures of bacteria grown on

BHI agar plates. Cell monolayers were challenged in triplicate

with bacteria, with 1 ml volume per well. The initial multiplicity of

infection (MOI, number of bacteria/average number of cells per

monolayer) for meningioma cells was 0.0003 (101 cfu/monolayer)

0.003 (102), 0.3 (104), 30 (106), 300 (107) to 3000 (108). For

astrocytes, the initial MOI was 0.00009 (101), 0.0009 (102), 0.09

(104), 9 (106) and 900 (108). Monolayers were incubated at time

intervals up to 24 h.

In order to measure total bacterial association with cells,

monolayers were washed gently 4 times with warm PBS, and then

visually checked for integrity under an inverted light microscope.

A sterile lysis solution of PBS containing 1% (w/v) saponin (Sigma-

Aldrich) was added to the wells (250 ml/well) and incubated for

15 min at 37uC. Bacteria were quantified as viable counts by

inoculating the lysate at appropriate dilutions onto BHI agar plates

in triplicate and incubating overnight at 37uC. Meningioma cell

monolayers were also challenged with N. meningitidis MC58 (MOI

of 0.3), and viable counts were done on GC agar plates. A two-

sample student t-Test was used to compare the mean levels of total

bacterial association between GBS strains, with a value of P,0.05

determining significance.

ii) Measurement of bacterial invasion. Human meningi-

oma cells and astrocyte monolayers, established in 24-well cell

culture plates, were challenged in triplicate with bacterial

suspensions of initial MOI 0.3 and 0.09 (104 cfu/monolayer)

respectively, and incubated for up to 9 h. The measurement of

bacterial invasion was carried out using the gentamicin-cytocha-

lasin D (CD) assay as previously described [28]. Gentamicin

effectively killed concentrations of GBS bacteria at growth levels

expected in the culture medium after 9 h (data not shown) and has

been reported to show limited penetration of human cells [64,65].

The involvement of host cell actin polymerisation was investigated

by adding CD to the monolayers (to a final concentration of 1 mg/

ml), 30 minutes before GBS infection. In addition, E. coli IH3080

was included in the invasion experiments as a positive control

strain, since it has been previously shown to invade human

meningioma cells [31]. The percentage of invading bacteria

(invasion rate) was calculated using the formula: Invasion rate

(%) = (internalised bacteria/associated bacteria)6100. A two-sam-

ple student t-Test was used to compare the mean levels of invasion

in the presence and absence of treatments, with a value of P,0.05

determining significance.

Electron microscopy
i) Scanning Electron Microscopy (SEM). Human menin-

gioma cells were grown to confluence on collagen pre-coated

transwells (ThinCertsTM, transparent, pore size 0.4 mm; greiner

bio-one, Germany) and were challenged for up to 24 h with an

initial MOI of 0.3 (104 cfu/ml) bacteria. Uninfected cells were

included as negative controls. At different time points, the cells

were washed 4 times with warm PBS to remove unbound bacteria

and were then processed for SEM. Transwells were fixed for a

minimum of 1 h in 3% (v/v) glutaraldehyde and 4% (v/v)

formaldehyde in 0.1 M PIPES (1,4-Piperazinediethanesulfonic

acid) buffer, pH 7.2. Then, a gradual concentration of ethanol was

used to dehydrate the samples and the transwell membrances were

cut during dehydration. The cut membranes were critical-point

dried and mounted onto metal stubs and the coated specimens

were then viewed using the Quanta 200 scanning electron

microscope (FEI, USA).

ii) Transmission Electron Microscopy (TEM). Human

meningioma cells were grown in T75 cm2 tissue culture flasks

(greiner bio-one, Germany) to confluence (16106 cells/flask

626105, n = 3).Monolayers were infected with 15 ml of bacterial

suspensions containing 26104 cfu/ml, which was equivalent to the

initial MOI (0.3) used in invasion experiments. At a given time

point, the monolayers were washed 4 times with warm PBS and

were gently scraped off from the flask in the presence of PBS using

a cell scraper. For TEM processing, the cell harvest was fixed using

a solution containing 3% (v/v) glutaraldehyde+4% (v/v) formal-

dehyde in 0.1 M PIPES buffer, pH 7.2 for a minimum of 1 hr.

The cells were mixed with 5% (w/v) sodium alginate and ejected

into a 0.1M calcium chloride solution to form specimen balls. The

specimen balls were treated for 1 h with a post fixative solution of

1% (w/v) osmium tetroxide in 0.1M PIPES buffer, pH 7.2.

Samples were briefly rinsed twice in water, and then a 2% (w/v)

uranyl acetate solution was used for staining for 30 min. A series of

gradual concentrations of ethanol was used to dehydrate the

samples. Samples were incubated overnight in spur resin at a

50:50 ratio with acetonitrile. The samples were finally placed in

fresh spur resin and polymerised in an electric oven at 60uC for

20–24 h. In preparation for microscopy, sample blocks were cut

into thin sections using a Leica Reichert Ultracut E microtome

(Leica, Germany) using glass knifes and several sections per sample

were fixed onto copper grids. Grids were stained using lead nitrate

for 5 min and then examined using the H7000 transmission

electron microscope (Hitachi, Japan) at 75 Kv and under different

magnifications ranging from 63000 to 620,000.

Host cell cytotoxicity assays
i) Release of lactate dehydrogenase (LDH). Human

meningioma cells and astrocytes were grown to confluence in

96-well tissue culture plates. The average meningioma cell count

was 6.86103cells/well (686102, n = 6) and for astrocytes,

3.76104cells/well (69.66103, n = 6). Bacterial inocula were

prepared in DMEM or EMEM containing 1% (v/v) dFCS at

concentrations that yielded initial MOIs from 0.0003 to 3000. The

monolayers were washed twice with warm PBS and then 200 ml/

well of each bacterial inoculum was added to triplicate wells. Plates

were incubated in an atmosphere of 5% (v/v) CO2 at 37uC and

LDH release was measured at intervals up to 9 h using the

CytoTox 96H Non-Radioactive Cytotoxicity assay kit (Promega,

UK) according to the manufacturer’s protocol. For controls,

uninfected monolayers were included for measurements of

Spontaneous LDH release and Maximum LDH release induced

by the addition of proprietary lysis reagent. The absorbance was

read at l492 nm (iMark Absorbance Reader, Bio-Rad, USA).

Cytotoxicity levels were calculated by dividing the average LDH

release value of test by the average Maximum LDH release value

(from lysed, uninfected cells) using the following formula: LDH

release of test (%) = (LDH release of test/Maximum LDH

release)6100.

In order to determine the effect of DPPC on the release of

LDH, bacterial suspensions that induced the highest LDH release
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were used to infect cell cultures in the presence of DPPC (3 mg/

ml) in a final volume of 200 ml/well. In order to determine the

effect of the b-h/c+ extract on the release of LDH, 100 ml of

extract containing 50–100HU and 100 ml of medium was added to

the monolayers. DPPC solution was also added to appropriate

wells at a final concentration of 3 mg/ml, instead of medium. For

additional controls, infected or extract-treated wells with no DPPC

were included. Extracts from mutant strains were also tested in the

experiments and were added to monolayers in equivalent volumes

to the b-h/c+ extracts.

The effects of the DPPC on bacterial interactions were

investigated by adding DPPC solution (3 mg/ml) to the menin-

gioma and astrocyte cells at the time of infection. Total bacterial

association and internalised bacteria were determined up to 9 h as

described above and untreated monolayers were included at each

time point for comparison. DPPC did not affect the viability of

either cell cultures or the growth of GBS strains (p.0.05) or the

ability of bacteria to associate with the cells (p.0.05; Figure S4A,

S4B). In order to confirm that DPPC itself was not interfering with

the enzyme-substrate reaction, control monolayers were treated

with DPPC (3 mg/ml) alone and then lysed after 9 h and LDH

release measured. In these controls, LDH release was similar to the

Maximum LDH release values, demonstrating that incubation

with DPPC did not interfere with the assay (data not shown). In

addition, LDH enzyme was not degraded by GBS bacteria (data

not shown). A two-sample Student T-test was used to compare

mean LDH release induced by bacteria or b-h/c extract, with and

without DPPC or against mutants lacking b-h/c; a value of

P,0.05 was considered significant.

ii) Meningioma cell viability determined using the LIVE/

DEADH assay. Meningioma cells were grown to confluence in

collagen pre-coated transwells. Suspensions of GBS strains were

prepared in medium containing 1% (v/v) dFCS and then added to

the monolayers at initial MOIs ranging from 0.03–3000 bacteria/

cell. Uninfected cells were included in each experiment as negative

controls. In order to visually demonstrate the effect of DPPC on

the viability of meningeal cells infected with live GBS strains,

confluent cells were infected with bacteria in the presence and

absence of DPPC (3 mg/ml). In addition, the effect of b-h/c

extracts on cell death was visualised after treatment with 250HU

of toxin in the presence and absence of DPPC (3 mg/ml).

The plates were placed in a humidified incubator with a 5% (v/

v) CO2 atmosphere at 37uC and at intervals up to 9 h, the

monolayers were washed twice in warm PBS and then stained

using the LIVE/DEADH Viability/Cytotoxicity assay (Molecular

Probes, UK) according to the manufacturer’s instructions. The

fluorescent staining was viewed under a Leica SP-2 laser-scanning

confocal microscope system (Leica, Germany). Images were

obtained by simultaneous two-channel scanning at 488 and

568 nm to excite the FITC and PI signals, which are similar to

the calcein AM (green dye) and ethidium homodimer (red dye)

markers used in the assay. Maximum projection images were

subsequently prepared from 25 optical sections obtained at a

magnification of 640 under oil immersion.

Measurement of cytokine production
The measurement of pro-inflammatory cytokine IL-6, chemo-

kines IL-8, MCP-1 and RANTES was carried out by immuno-

sorbent assay (sandwich technique) as described previously [66].

The innate response of the monolayers, within the same

experiments, was demonstrated by induction of cytokine secretion

induced by infection with N. meningitidis strain MC58, as described

previously [67].

Supporting Information

Figure S1 Measuring the levels of GBS adherence to plastic and

relative growth rates. A) In order to demonstrate that GBS did not

adhere significantly to plastic surfaces, control experiments were

done in which GBS strains A909 (Ia), 18RS21 (II), NEM316 (III)

and 2603V/R (V) (101,102, 104, 106 cfu/well) were grown in

DMEM medium containing 1% (v/v) dFCS in 24 well plates

without human cells. At intervals up to 24 h, samples were taken

for bacterial growth and adherence to plastic was quantified after

washing with PBS and saponin lysis as per the standard adhesion

assay. The symbols describe the mean cfu levels and the error bars

the standard deviation of triplicate wells. For the other strains,

measurements are only shown at 9 h. The level of adherence of

GBS is shown on each figure and is consistently ,0.5% of GBS

bacterial growth in the wells, at any time point sampled during

growth. B) Growth curves of GBS wild-type and mutant strains.

GBS strains were inoculated (102 cfu/ml) into DMEM medium

containing 1% (v/v) dFCS and bacterial growth determined over

time by viable counting. All growth rates were statistically similar

between wild-type strains and between wild-type strains and

mutant strains (p.0.05).

(TIF)

Figure S2 Electron microscopy of human meningioma cells

infected with GBS bacteria. (A) Scanning electron microscopy of

cells infected with an initial MOI of 0.3 (104 cfu/monolayer) of

wild type GBS (serotype III strain NEM316) over time (3–24 h).

Low and high magnification images are shown for 9 h. Similar

images were obtained for other GBS serotypes (not shown). (B)

Transmission electron microscopy of cells infected with GBS

bacteria. Cell monolayers were infected with an intial MOI of 0.3

(104 cfu/ml) of wild-type strain A909 and processed for TEM after

9 h. (1) Control uninfected meningioma cell. (2) GBS bacterium

contained within a cell process. (3) Intracellular GBS bacterium

within a vacuole. Images obtained after examining $25 grids per

sample (66000 magnification).

(TIF)

Figure S3 Treatment of monolayers with cytochalasin D (CD)

reduces the recovery of internalised GBS after gentamicin

treatment. Meningioma cell monolayers were initially treated

with cytochalasin D (CD) and then infected with GBS strains

(initial MOI 0.3) for 9 h. Monolayers with and without CD pre-

treatment were washed and gentamicin added to remove

extracellular and surface-bound bacteria. Viable counts of

internalised bacteria were made following saponin lysis. The

columns represent the mean values of recovered bacteria with or

without CD treatment and the error bars the SEM from 3–6

independent experiments.

(TIF)

Figure S4 DPPC dose-dependent reduction of LDH release

from GBS-infected meningioma cells. A) Various doses of DPPC

were added to meningioma cells on challenge (t = 0 h) with GBS

strain A909 (initial MOI 3000). LDH release was measured after

9 h. As controls, cells were infected without DPPC and were also

maintained without infection in the presence of increasing

amounts of DPPC. The columns show the mean level of LDH

release and the error bars the SEM from n = 2 experiments. B)

DPPC does not affect the growth of GBS or bacterial association

with meningioma cells. Monolayers of meningioma cells were

infected with strain NCTC10/84 in the presence or absence of

DPPC (3 mg/ml) and bacterial growth in the medium and

association with human cells was quantified after 9 h. The
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columns represent mean viable counts of bacteria and the error

bars the SEM from at least 3 independent experiments.

(TIF)

Table S1 Infection of meningioma cells with GBS does not

induce cytokine secretion. Meningioma cell lines (n = 2) were

infected with various MOI of the GBS strains and cytokine

secretion measured by ELISA after 24 h. As a control, cells were

also infected with Neisseria meningitidis strain MC58 and wells were

also left with medium alone (uninfected). The data are the mean

levels of cytokine secretion (ng/ml) with the standard error of the

mean (SEM in parenthesis) from n = 3 independent experiments.

(DOCX)

Table S2 Infection of meningioma cells by heat-killed GBS does

not induce cytokine secretion. Meningioma cells were infected

with heat-killed GBS strain NEM316 and cytokine production

measured after 24 and 48 h. Data are the mean levels of cytokine

secretion (ng/ml) with standard deviation (SD) of n = 3 wells and

they are similar to data presented for viable bacteria in Table S1

for NEM316. Heat-killed MC58 bacteria show a reduced capacity

to induce cytokines compared to viable bacteria (Table S1).

(DOCX)

Table S3 Infection of SVGmm astrocytes with GBS does not

induce cytokine secretion. Astrocyte cell lines (n = 3 experiments)

were infected with various MOI of the GBS strains A909 and

A909DcylE and cytokine secretion measured by ELISA after 24 h.

As a control, cells were also infected with Neisseria meningitidis strain

MC58 and wells were also left with medium alone (uninfected).

The data are the mean levels of cytokine secretion (ng/ml) with the

standard deviation (in parenthesis) of triplicate wells from a

representative experiment.

(DOCX)
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