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Triode for Magnetic Flux Quanta
V. K. Vlasko-Vlasov1, F. Colauto1,2, T. Benseman1,3, D. Rosenmann4 & W.-K. Kwok1

In an electronic triode, the electron current emanating from the cathode is regulated by the electric 
potential on a grid between the cathode and the anode. Here we demonstrate a triode for single 
quantum magnetic field carriers, where the flow of individual magnetic vortices in a superconducting 
film is regulated by the magnetic potential of striae of soft magnetic strips deposited on the film 
surface. By rotating an applied in-plane field, the magnetic strip potential can be varied due to changes 
in the magnetic charges at the strip edges, allowing accelerated or retarded motion of magnetic 
vortices inside the superconductor. Scaling down our design and reducing the gap width between the 
magnetic stripes will enable controlled manipulation of individual vortices and creation of single flux 
quantum circuitry for novel high-speed low-power superconducting electronics.

Magnetic field in type II superconductors propagates in the form of Abrikosov vortices carrying single magnetic 
flux quanta1. One could draw an analogy with single electrons, which carry electric current in microcircuits that 
are the basic building blocks of contemporary semiconductor electronics. The principle enabler of today’s micro-
chips is the transistor (solid state version of the triode), where the flow of electrons is regulated by voltage or cur-
rent in the base or gate electrode. Depending on the sign and value of the electrode voltage, the flow of electrons 
is accelerated or blocked, thus allowing signal amplification or ON/OFF switching that provides the 0 and 1 states 
in digital operations for memory devices and computer logic circuits.

In this work we propose a device consisting of a superconducting (SC) film with striae of soft ferromagnetic 
(FM) strips, which can be used to regulate the flow of magnetic flux quanta by varying the magnetic potential at 
the strip edges with the application of an in-plane magnetic field. The idea of exploiting the controlled motion 
of Abrikosov vortices for fast, low-dissipation memory devices has been considered for some time2–7 and was 
revived recently by the work of the Stockholm group8. The flux quantization of vortices in superconductors makes 
them a natural nanoscale information carrier for digital electronics, and in particular, for vortex based memories 
and microprocessors. However, this approach to novel electronics did not receive much traction due to the lack of 
reliable implements for controlling and manipulating vortices at the individual flux quantum level.

Here, we propose a technique to precisely manipulate vortices using a tailored FM/SC hybrid architecture, 
thereby providing a crucial step towards the development of an Abrikosov vortex circuit. There is a vast literature 
on the properties of the FM/SC hybrids describing interaction of vortices with different patterns of magnetic 
elements on top of superconducting films, as thoroughly reviewed in refs 9–11. However, in the present work 
we consider an original design allowing new functionality that was not studied before. In this work, we used a 
few micron hybrid structures to allow optical imaging of the vortex dynamics. Nevertheless, the observed strong 
interactions of vortices with the magnetic strip edges will allow nano-scaling our designed features toward single 
vortex operation.

Results and Discussion
We studied the magnetic vortex motion in superconducting niobium (Nb) films overlayed with parallel thin 
strips of soft ferromagnetic permalloy (Py). The Nb film thickness was 100 nm (slightly above the London pene-
tration depth of Nb, λ  ~ 40 nm). The Py strips were 40 nm thick, 1.6 mm long, 30 μ m wide and separated by 2 μ m  
gaps. The strips possess in-plane magnetization with small anisotropy, which allows easy polarization along dif-
ferent in-plane directions. The striae of Py strips were lithographically patterned at the center of a 2 ×  2 mm Nb 
square film, 200 μ m from the square edges (Fig. 1).

A magneto-optical indicator film placed on top of the sample was used to image the normal magnetic flux 
component12. The sample was cooled below the SC transition temperature (Tc =  8.7 K) in the presence of an 
in-plane magnetic field (HX,Y) applied along a chosen direction with respect to the stripes. At temperature T <  Tc, 
a field normal to the film surface (HZ) was applied and gradually ramped up. Images of the penetrating normal 
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flux, visualized as a bright contrast that is proportional to the vortex density generated by HZ, were obtained 
using a cooled CCD camera and treated with image processing software. We subtracted the “zero-field” (HZ =  0) 
images taken below Tc from the Hz ≠  0 images to ensure that we visualized only the new vortices entering the Nb 
film with increasing HZ and omit the alternating contrasts due to the stray fields of the magnetic Py strip edges.

At small enough HZ, the Meissner screening current prevents the vortices from entering the Nb film and hence 
enhances the imaged normal field at the perimeter of the square sample. At larger fields, vortices enter the Nb film 
and form the so-called Bean state with the vortex density decreasing from the edges towards the interior of the 
film. With increasing HZ, the vortex front advances closer to the boundaries of the magnetic Py strips.

Upon reaching the Py strips, the vortex motion pattern is qualitatively changed. At this stage, the vortex 
behavior becomes strongly dependent on the magnetic polarization of the Py strips. When the strips are magnet-
ized along their width (by the in-plane field HX), effective positive and negative magnetic charges ( ρ M =  divM, 
where M is Py magnetization) appear at the long edges of the Py strips, and the sign of ρ M alternates across the 
striae of Py strips as shown in Fig. 2a,b. For thin Py strips of thickness, d, with the in-plane magnetization polar-
ized along their width, the long strip edges can be considered as lines of magnetic charge with charge density Md 
per unit length (Fig. 2b). In the gap space Δ  =  2 μ m between the Py strips, oppositely charged magnetic lines form 
linear dipoles (see Fig. 2a). However, for gaps much larger than the Py film thickness, Δ  ≫  d, the charged lines at 
the long edges of the Py strips can be considered as solitary and the magnetic fields (HS) emanating from these 
edges decay radially as the inverse distance from the edges.

Below the superconducting transition temperature, the stray fields, Hs, at and between the Py strip edges, may 
be only partially screened due to the Meissner effect induced in the Nb film, resulting in the creation of vortices in 
the film. For SC films thicker than the penetration depth λ , where total screening is achieved, the field acting on 
the superconductor from a linear magnetic charge along the y-axis (at r =  x +  iz) can be estimated as13:

+ = = + − +iH H 4Md/r 4Md[x/(x z ) iz/(x z )]S
X

S
Z

2 2 2 2

This formula predicts the stray fields that exist only in the half space above the Nb film in the case of the 
superconducting screening and have twice larger amplitude than the fields Hs in the absence of the screening at 
T >  Tc which are symmetric in the space above and below the Nb layer. Accounting for the large magnetization 
of Py (M ~ 800 G) there will be strong local stray fields near each Py strip edges. Upon cooling the sample below 
TC, these stray fields will create positive vortices at the negative magnetically charged Py strip edges and negative 
vortices at the positive magnetically charged strip edges as indicated in Fig. 2a by the yellow arrows.

With the subsequent application of a normal field HZ, new (positive) vortices will be generated (green arrows 
in Fig. 2a). These vortices will interact with the Py strip edges as magnetic monopoles carrying charge 2Φ 0/μ 014. 
In turn, the Py strip edges will form lines of a local potential for vortices, U =  ± ∫ 2Φ 0Hsdx, decreasing logarithmi-
cally with distance x from the edge and with a lower cut-off range x0 ~ λ . Furthermore, depending on the magnetic 
charge polarity, the potential can be either a barrier or an attractive potential well (Fig. 2a). In addition to this 
direct vortex/edge coupling, the entering vortices induced by Hz (Hz-vortices) will interact with the pre-existing 
vortices created during cooling in the stray field of the Py stripe edges (Hs-vortices). Near the positive magneti-
cally charged Py strip edge, with the repulsive barrier towards positive Hz-vortices (U+ in Fig. 2a), the stray-field 
induced vortices are negative (down yellow arrow in Fig. 2a). These negative Hs-vortices will attract the entering 
positive Hz-vortices (green arrow in Fig. 2a) and annihilate them. In contrast, the positive Hs-vortices at the neg-
ative magnetically charged Py strip edge, will repel the entering Hz-vortices, while the local potential at this Py 
edge is attractive for the Hz-vortices (U- in Fig. 2a). Thus, the interaction between the entering Hz-vortices and 
stray field induced Hs-vortices is always opposite to the magnetic coupling of the Hz-vortices and the magnetically 
charged Py strip edges. However, as our experiments show (see below) the interactions of the Hz-vortices with 

Figure 1. Scheme of the sample. 2 ×  2 mm 100 nm thick Nb film (blue) is covered in the center with an array of 
30 μ m wide and 40 nm thick parallel Py strips starting at 200 μ m from the film edges. The gap between the strips 
is 2 μ m as shown in the optical picture on the right.
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the Hs-vortices turn out to be small and the coupling of the Hz-vortices with the charged stripe edges becomes the 
dominating factor in the vortex dynamics.

When the magnetic strips are polarized across their length (Fig. 2a,b), the local potential U at the strip gap 
consists of a linear barrier and linear valley along the opposing longitudinal strip edges (Fig. 2a). It contributes 
a substantial anisotropy to the vortex motion with preferential mobility along the linear potential, independent 
of the repulsive or attractive character of U. Indeed, we observe highly anisotropic deep penetration of vortices 
along the strip edges as shown in the magneto-optic image of the vortex field in Fig. 3a. This image confirms that 
in-plane polarization across the Py strip length induces channels for easy vortex entry along the strips. Such chan-
nels have a different nature compared to the channels of field-suppressed superconductivity formed e.g. due to the 
stray fields of domains at temperatures close to TC

15. In our low-temperature case (T ~ TC/2), the main mechanism 
for channeling is the strong vortex motion anisotropy induced by the local linear potential landscape discussed 
above, rather than the suppression of superconductivity. The latter requires fields close to the upper critical field 
Hc2, while our values of Hs and Hz are well below Hc2 ~ 1.5 T at T ~ 5 K 16.

An intriguing situation emerges when the Py strips are polarized longitudinally. In this case magnetic charges 
appear at the short ends of the Py strips. They will be positive at one end and negative on the other (Fig. 2c). 
These charged strip ends create the same sharp attractive wells or repulsive barriers as noted above, but they are 
transverse to the motion of the HZ induced vortices entering from the nearest Nb film sides. In this case, the gaps 
between the strips serve as narrow gates for vortex entry, although, even in the gaps, the vortex motion will be in 
part, impeded by the overlapping stray fields from the neighboring strip ends. As a result, vortices will enter much 
slower from the narrow Py strip ends than from the longitudinal sides of the strip pattern.

The maximum force of vortex/strip-end interactions is expected to have the same value ~|dU(x0)/dx| for both 
+  and −  magnetic charge polarities at the strip ends. Surprisingly, it turns out that the effect on the motion of the 
Hz-vortices is quite different. The positively charged strip ends show a pronounced barrier action, preventing the 
motion of vortices (Fig. 3b). The enhanced bright color outside the positive magnetically charged Py stripe ends 
in Fig. 3b reveals a pileup of the Hz-vortices arriving from the Nb film edge. Dark triangles on the inner side of the 
Py strip ends correspond to the absence of vortices there. Some flux penetrates beyond the charged ends through 
the gaps between the strips and then expands symmetrically on both sides of the gap. Also, the amount of flux 
entering through the gaps is much smaller than in the case of cross-polarization of the strips (compare Fig. 3a,b 
taken with the same value of Hz).

Figure 2. (a) Cartoon of stray fields (HS) at the edges of Py stripes (brown) on top of the Nb film (blue). 
Vortices induced in the Nb film by HS during the field-cooling (from T >  TC to T <  TC) are shown by yellow 
arrows and vortices induced by the field HZ applied perpendicular to the Nb film at T <  Tc are shown as green 
arrows. Distribution of magnetic charges for the in-plane polarization of Py stripes across (b) and along (c) 
their length (top view). For Hz induced vortices, the positively charged edges of the Py stripes act as lines of 
logarithmically diverging repelling potential barriers U+ while along the negatively charged edges they become 
attractive potential valleys U−.
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Figure 3. Magneto-optic images of the flux distribution for different polarization of Py strips in the sample 
at the same value of the normal filed Hz = 12.4 Oe applied below Tc at T = 5 K. Pictures are taken near the 
bottom side of the sample. The edge of the Nb film is marked by short blue lines and the ends of the Py strips 
are marked by short red lines. The strips are polarized by field-cooling with an in-plane field of HXY =  150 Oe 
applied in the directions shown by blue arrows. We checked that this in-plane field does not affect the motion 
of vortices induced by Hz using a control Nb film without Py strips. Sketches of magnetic charges in polarized 
Py strips for each direction of HXY are shown next to the MO images and labeled by the same letters accented. 
Small MO pictures inserted in the sketches show distributions of the normal stray fields Hs at the stripe edges 
observed for corresponding directions of Hxy at T >  Tc. In the larger MO pictures the MO patterns due to Hs are 
subtracted and they show only normal fields due to the vortices entering upon the application of Hz.
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In contrast to the positively charged magnetic strip ends, the attractive negatively charged ends are easily 
traversed by the entering Hz induced vortices as illustrated in Fig. 3c. There is a hardly visible small perturbation 
of the vortex density along the line of the negative strip ends in Fig. 3c.

Considering that entering Hz-vortices interact with both the magnetically charged Py strip ends and the asso-
ciated magnetic stray-field induced vortices, and that these interactions compete with each other, the resulting 
effect should be defined by the dominant interaction. The strong vortex pileup at the positive Py strip ends in 
Fig. 3b confirms that here, the magnetic repulsion between the charged ends of the Py strip and the magnetic field 
of the HZ vortices is the main factor. This could also explain the observed weak effect of the negatively charged Py 
strip ends. Here, the positive Hz-vortices are not retarded by the positive Hs-vortices but are accelerated towards 
the negative stripe ends and kinetically cross over the narrow attractive valleys U-(x).

Finally, if the in-plane field is applied at π /4 from the long axis of the Py strips, we concurrently observe the 
combined effects of the cross and longitudinal polarized Py strips. i.e. the pile up of vortices at the ends of the 
strips and the channeling of vortices along the strip edges (Fig. 3d). In this case, magnetic charges are formed on 
all sides of the stripes (Fig. 3d’), such that one end and one long edge of the Py strip is charged positively and the 
other end and side have negative charge, resulting in the simultaneous pile-up and then channeling of vortices. 
Clearly the magnitude of both effects is different compared to the pure cross- or longitudinal polarization of the 
stripes.

The above experiments show that the cross polarization of the Py striae enhances vortex penetration, while 
longitudinal polarization can strongly suppress vortex entry. This array of thin magnetic strips with planar mag-
netization, which can easily be rotated with an in-plane field, acts as a grid for tuning the vortex motion. By turn-
ing the direction of the in-plane magnetic polarization of the Py strip with an in-plane magnetic field, it is possible 
to smoothly control the flow of vortex entry into the chosen area of the sample.

In summary, we have demonstrated that an array of parallel soft magnetic strips separated with narrow gaps 
is a unique structure allowing tunable manipulation of Abrikosov vortices in superconducting films. By rotat-
ing the magnetic moments of the Py strips, it is possible to switch from easy vortex channeling along the strip 
edges to strongly retarded flux entry between the strips. This is analogous to a magnetic triode operation, where 
a relatively small in-plane field can change the magnetic potential at the stripe edges allowing accurate control 
of the Abrikosov vortex motion. The action of the magnetic Py striae is similar to the work of a grid electrode 
regulating electron flow in electronic triodes. We envision that with appropriate miniaturization and choice of SC 
and soft FM components, our hybrid design can be used for developing superconducting single vortex circuits 
for digital and possibly quantum microprocessors, where high speed and low dissipating power are the leading 
requirements17,18.

Methods
The samples were prepared using 2-stage lithography technique. First, 2 ×  2 mm Nb squares on silicon substrates 
were deposited by high vacuum DC magnetron sputtering onto a photoresist pattern manufactured using laser 
lithography. To inhibit proximity effects, after the lift-off process, the Nb squares were covered with ~15 nm SiO2 
film using plasma enhanced chemical vapor deposition system. Then the e-beam lithography was used to generate 
the patterns for 30 μ m wide Py stripes with 2 μ m gaps in the center of the Nb squares at 200 μ m distance from 
the square edges. 40 nm thick Py film was deposited on top of the pattern followed by the lift-off. One of the Nb 
squares was left as a control sample.

The samples were placed on the cold finger of the optical closed-cycle cryostat ( Montana Instruments). They 
were covered with magneto-optical garnet indicator films and the normal component of the magnetic field in the 
samples producing the Faraday rotation of the light polarization in the film was imaged using a polarized light 
microscope9. Images of the flux patterns in the sample at different values of the normal field HZ were recorded 
with 16 bit CCD camera. The field HZ, was applied using a DC magnetic coil while the in-plane field HXY was 
produced by a couple of permanent magnets that could rotate around the HZ coil. The frame keeping the magnets 
allowed changing the distance between them and thus tuning the strength of HXY. The orientation and value of 
the fields was controlled with a Hall probe.

In the experiment, the in-plane field of a chosen strength between 20 and 150 Oe was applied along, across, or 
at π /4 with respect to the Py stripes at T >  TC and was kept constant while the sample was cooled below TC. This 
ensured a stable polarization of the Py stripes in the in-plane field direction. When the sample was cooled to a 
desired T (temperature stability ~10 mK) the normal field was applied and the flux distributions were recorded 
at increasing HZ. By applying an in-plane field of 1 kOe to the control Nb square without Py stripes and imaging 
the penetration of the normal field HZ at T <  TC we tested that HXY up to 1 kOe does not affect the dynamics of 
HZ vortices in our samples.
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