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1  | INTRODUC TION

Human food security is ensured by increasing global crop produc-
tion, which is highly dependent on animal pollination (Garibaldi 
et al., 2009; Potts et al., 2016). The production of more than 70% of 
globally important commercial crop types is enhanced by animal pol-
linators (Klein et al., 2007). More fundamentally, the reproduction 

of approximately 87.5% of global flowering plant species relies 
on insect pollination (Ollerton et  al.,  2011). In addition to this im-
portant plant-pollinator relationship, countless ecosystem services 
derive from pollination (Christmann,  2019; Kremen et  al.,  2007; 
Lundin et  al.,  2012). For example, pollinator-dependent plant spe-
cies such as Rosa canica and Cornus mas, are often used for erosion 
control (Comino & Marengo,  2010). Rapidly growing tulip poplar 
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Abstract
Increased concentration of airborne particulate matter (PM) in the atmosphere alters 
the degree of polarization of skylight which is used by honeybees for navigation dur-
ing their foraging trips. However, little has empirically shown whether poor air qual-
ity indeed affects foraging performance (foraging trip duration) of honeybee. Here, 
we show apparent increases in the average duration of honeybee foraging during 
and after a heavy air pollution event compared with that of the pre-event period. 
The average foraging duration of honeybees during the event increased by 32 min 
compared with the pre-event conditions, indicating that 71% more time was spent on 
foraging. Moreover, the average foraging duration measured after the event did not 
recover to its pre-event level. We further investigated whether an optical property 
(Depolarization Ratio, DR) of dominant PM in the atmosphere and level of air pollu-
tion (fine PM mass concentration) affect foraging trip duration. The result demon-
strates the DR and fine PM mass concentration have significant effects on honeybee 
foraging trip duration. Foraging trip duration increases with decreasing DR while it 
increases with increasing fine PM mass concentration. In addition, the effects of fine 
PM mass concentration are synergistic with overcast skies. Our study implies that 
poor air quality could pose a new threat to bee foraging.
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(Liriodendron tulipifera L.) is widely used for timber production and 
has a high capacity of carbon storage (Han et al., 2016).

Among many insect pollinators, bees are considered the key 
agents and contributors to pollination service (Powney et al., 2019). 
The population of bees, however, is declining globally due to various 
biotic and abiotic factors (Cappa et al., 2019; Klein et al., 2017; Ricketts 
et al., 2008). Anthropogenic stressors, especially that bees are vulner-
able to have been identified and investigated (Klein et al., 2017; Potts 
et al., 2010). Some of the stressors include a lack of food resources 
(Goulson et al., 2015), pathogens, parasites (Goulson & Hughes, 2015), 
and pesticide use (Lundin et al., 2015; Woodcock et al., 2017).

While a substantial amount of research on bee population de-
cline is focused on pesticide use, very few studies have assessed the 
impacts of air quality on pollinator activity. It is only recently that 
studies on relations between the olfactory learning of honeybees 
and air pollution have made progress. However, the potential effects 
of poor air quality on “honeybee vision” important for stable forag-
ing (Srinivasan, 2011) are yet to be investigated.

Though invisible to the human eye, the polarization pattern of the 
e-vector of skylight is utilized as a reliable compass for several pollinat-
ing insects (Foster et al., 2014), including the honeybee (Apis mellifera). 
Honeybees orient themselves and navigate between food sources and 
their hive by detecting polarized light patterns (Evangelista et al., 2014; 
Kraft et al., 2011; Rossel & Wehner, 1982). When the sun is occluded 
by cloud, they are still able to navigate by making use of polarization 
pattern around the sun. This celestial compass is considered to be the 
primary mechanism for orientation information (Dovey et al., 2013).

Polarized skylight information, therefore, should be provided suffi-
ciently for honeybee to use (Rossel & Wehner, 1984). In natural scenes, 
the degree (or intensity) of polarization (DoP) values range from 0% to 
50% in general (Foster et al., 2017). The threshold value for the degree 
of (linear) polarization that the honeybee needs for navigation can be 
as low as 10% (Brines & Gould, 1982). In an earlier observational study 
(Von Frisch, 1967), light polarization more than 15% assured well-ori-
ented waggle dances of bees. While the DoP under an aerosol-free 
clean sky is generally strong, it decreases when nongaseous particles 
in the atmosphere additionally scatter the skylight (Labhart, 1996). The 
DoP can be extremely low, falling to zero when the atmosphere is heav-
ily polluted by, for example, a massive dust storm (Zhao et al., 2018).

Thus, poor air quality could potentially be a major constraint 
for bee foraging and ultimately their contribution to pollination. 
Especially, climate change-induced air pollution over South Asia 
and Southeast Asia is projected to deteriorate air quality in future 
(Kumar et al., 2018; Nguyen et al., 2019). Moreover, agricultural pro-
duction in those continents and their countries is highly dependent 
on pollination service (Potts et al., 2016).

In this study, we aim to assess the impacts of air quality on hon-
eybee foraging performance in specific ways that could also influ-
ence pollination efficiency. With a lack of direct measurement of 
real-time DoP, changes in both optical property of dominant parti-
cles in the atmosphere and fine PM mass concentration are used as 
proxy for DoP alterations. Given that mean foraging trip durations 
were shown consistent in several studies, shorter than an hour at 

most (Colin et al., 2019; Higginson et al., 2011; Okubo et al., 2020; 
Perry et al., 2015), we hypothesize that honeybee foraging trip du-
ration increases as a value of optical property of the atmosphere 
(Depolarization Ratio, DR) increase. We also hypothesize that an in-
crease in foraging duration is strongly associated with ambient fine 
PM mass concentration.

2  | MATERIAL AND METHODS

2.1 | Experimental setting

To conduct this research with a field-realistic approach, a domesti-
cated honeybee colony in Beijing, China was monitored from April 
27 to May 7, 2017. We monitored this honeybee colony and its for-
aging activities during an Asian dust event and quantified colony 
activity deviation from pre- and postdust storm event periods. 400 
forager bees carried a Radio Frequency Identification (RFID) tag af-
fixed to their thorax during the study time span.

A massive Asian dust storm originated from Central and East 
Asian deserts in early May 2017, blanketed various East Asian coun-
tries. Hourly PM10 and fine PM (with diameters  <  2.5  µm) mass 
concentrations exceeded 1,000 µg/m3 and 250 µg/m3 in Beijing, re-
spectively, and the air quality was observed to be at its worst on May 
4 (Zhang et al., 2018). The aerosol optical depth (AOD) exceeded 2.1 
(measured at 500 nm), and the particle DR from soil dust particles 
exceeded 0.3 (as average of up to 0.72  km altitude). There was a 
strong correlation between PM10 and fine PM mass concentrations 
throughout the study period (r = 0.97, p < .0001) and on the day of 
the dust episode (Zhang et al., 2018).

2.2 | Study site

The experiment was conducted in an apiary on a hill bordering the 
Beijing Botanical Garden (BBG), Xiangshan park, Haidian District, 
Beijing, China (40°0′35″N, 116°12′2″E). The apiary is surrounded 
by mountains and the BBG within 1 km radius. It is located approxi-
mately 20 km north-west of the city center. The BBG is one of the 
largest ex situ botanical garden in Beijing. It has approximately 6,000 
plant species in a 56  ha area. Throughout the study period, polli-
nator-dependent flowering species such as Malus spectabilis, Rosa 
chinensis, and Iris sanguinea were in full-bloom. The apiary is man-
aged by the Institute of Apicultural Research, Chinese Academy of 
Agricultural Sciences. A colony of approximately 20,000 honeybees 
including a single queen in a standard Langstroth hive was acquired 
from the apiary.

2.3 | RFID monitoring

To monitor foraging trip durations of worker bees, bees were tagged 
with radio frequency identification (RFID) transponders (mic3® -TAG 



1494  |     CHO et al.

16k, microsensys GmbH, Erfurt, Germany). The square-shaped tran-
sponder has dimensions of 2 × 1.7 × 0.5 mm, and weigh under 5 mg. 
RFID tags were glued to the thorax of 400 worker bees of mixed ages. 
Individual worker bees were given a unique identification number 
(UID) that was stored in each RFID tag. When a tagged bee passed 
a reader (MAJA reader module 4.1) installed at the entrance of the 
hive, the UID of the bee was read and the corresponding timestamp 
was stored in a host computer. Using the two recorded time points 
for the outbound and inbound trip, the foraging trip duration as time 
difference between the two trips could be calculated. Trip durations 
between 10 min and 250 min were selected and analyzed, as trips out 
of this range are considered either orientation flights or incomplete 
(Biesmeijer & Seeley, 2005; Degen et al., 2015). During the study pe-
riod, 74,104 observation (outbound-inbound trip in total) data were 
recorded in total. However, due to overlapping timestamps incurred 
by traffics at the hive entrance, durations for only 181 “identifiable” 
foraging trips in pairs (i.e., 362 timestamps) were used for statistical 
analysis. The monitoring of foraging activities for a colony with the 
RFID system occurred from April 27 to May 7, 2017.

2.4 | Optical property data

Though the DoP can be measured by remote sensing sensors or pola-
rimetric photography (Chen et al., 2020), it is difficult to obtain real-
time DoP data in compliance with our monitoring. The DR at 532 nm 
of Beijing (39.977°N, 116.381°E) measured by Mie-scattering lidar 
was adopted to examine the effects of ambient aerosols on light po-
larization patterns. Values measured from 0.06 km to 0.72 km alti-
tude, which were the lowest and highest altitudes in common with 
the DR measured throughout the observation days, were averaged 
and used. The DR is a reliable surrogate to suggest particulate mat-
ter irregularity (Pan et al., 2017). The irregular morphology of par-
ticles is important in terms of degree of light polarization. A larger 
DR (e.g., higher than 0.1) indicates that nonspherical particles are 
dominant in the atmosphere (Kim et al., 2010; Shimizu et al., 2016). 
Since honeybee estimates distances and directions between their 
nest and floral resources during their outbound trip (Evangelista 
et  al.,  2014), we used values of the optical property variable (DR) 
and fine PM concentration measured at the approximate times when 
bees started to forage. However, as DR and fine PM mass concentra-
tion are measured quarter-hourly and hourly, respectively, data that 
were recorded at the nearest time point to the foragers’ outbound 
trip timestamp were used.

2.5 | Meteorological variables

Daily meteorological data including temperature (°C), humidity (%), 
wind speed (km/hr), and cloud cover measured at the nearest time 
point to the foragers’ outbound trip in the Xiangshan park area, Beijing 
for the study period were retrieved online from CustomWeather, 
Inc. (timeanddate.com). Since bees can still navigate as long as there 

are clear patches of sky, cloud cover was categorized into 2 levels 
simply; “nonovercast,” and “overcast.”

2.6 | Statistical analysis

All statistical analyses were performed using R version 3. 2. 5 (R 
Core Team, 2016). The Tukey Honest Significant Differences test 
(ANOVA Tukey multiple comparisons) was conducted using the R 
function TukeyHSD to compare group differences of mean foraging 
trip durations during the predust storm, dust storm, and postdust 
storm periods. Due to a maintenance issue, we were unable to col-
lect data for May 2, so this date was omitted in the predust storm 
period. Average foraging trip duration for each period and p-values 
of the ANOVA Tukey multiple comparisons were calculated through 
10,000 parametric bootstrap replicates.

We determined the effect of the predictor variables (DR, fine 
PM mass concentration and meteorological variables) on foraging 
trip duration of honeybee using a generalized linear model (GLM). 
The GLM with Gamma family (link = log) was fitted using the R func-
tion glm() in package lme4. In order to eliminate possible impacts of 
the dust storm event on foragers’ fitness and to evaluate pure ef-
fects of air quality on foraging performance, data obtained during 
poststorm period were excluded in the model (N = 138). Predicted 
probabilities on foraging trip duration from the model against one of 
the independent variables (IVs) for a given value of other IVs were 
calculated using package TeachingDemos. Interaction effects of fine 
PM mass concentration and overcast sky on the foraging duration 
were plotted using package interactions. Different models were 
evaluated using Akaike's criteria (Table  S1) using package bbmle. 
Multicollinearity between the predictor variables was assessed by 
the variance inflation factor (VIF) using the R function vif() in pack-
age car (Table S2).

3  | RESULTS

The foragers spent approximately 71% additional time than their 
previous average foraging duration on the heavily polluted day. 
Interestingly, the bees still invested 71% more time (on average) in 
foraging after the dust storm had swept through than before the 
dust storm (Figure  1). When the hourly fine PM mass concentra-
tion reached its maximum on May 4th, the daily average forag-
ing duration was approximately 77  min. This was approximately 
32 min longer than the daily average prior to the dust storm. It was 
clearly shown that the average foraging durations between the dust 
storm day and postdust storm days were not significantly different 
(Table S3). However, the average foraging durations both during the 
dust storm and after the dust storm were significantly greater than 
predust storm levels (p < .05 and p < .001, respectively).

We determined the effects of the DR and fine PM mass con-
centration for each foraging trip recorded from April 27 (predust 
storm period) to May 4 (dust storm period) using a GLM (Table 1). 
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The real-time DR and fine PM mass concentration along with meteo-
rological variables including cloud cover were included in the model 
as predictor variables.

In our results, the DR and fine PM mass concentrations were 
strongly associated with foraging duration (p = .042 and p < .001, 
respectively). As DR decreased, foraging duration became longer. 
This demonstrates that when the atmosphere was dominated by 
more spherical urban pollutants (smaller DR) than mineral dust 
(larger DR), the bees spent more time in foraging. Delays were 
predicted with a high mass concentration of fine PM. For given 
values of the other predictors, foraging trip duration increased 
with increasing fine PM mass concentration, irrespective of DR 

(Figure 2). Although cloud cover as a single predictor did not cre-
ate a difference in honeybee foraging duration, a pronounced ef-
fect of fine PM mass concentration was found in the overcast sky 
(p =  .036, Figure 3). Meteorological factors were not associated 
with time spent for foraging by bees.

4  | DISCUSSION

Foraging trip duration was strongly associated with fine PM mass 
concentration, meaning that days with high fine PM mass concen-
trations can have a profound impact on honeybee foraging per-
formance regardless of a big dust storm event. High fine PM mass 
concentrations typify a severe urban pollution day.

In a limited number of studies, the relation between the fine 
PM and DoP has been discussed. For example, a wildfires outbreak 
can reduce the DoP due to multiple scatterings of smoke aerosols 
(Hegedüs et al., 2007a; Shaw et al., 2014). According to a study by 
Hegedüs et al. (2007a), the average DoP was lower than 8% during 
a forest fire outbreak which is below the threshold necessary for 
navigation for bees.

Although the fine PM mass concentration alone can have a sig-
nificant effect on foraging duration, this effect is synergistic with an 
overcast sky. Polarization pattern (the angle of polarization) is rather 
uniform under different cloud conditions (Hegedüs et  al.,  2007b; 
Pomozi et al., 2001). However, the DoP is reduced when the sky is 

overcast, which means that the extent of celestial polarization in-
formation to be useful for bees becomes very limited. Under com-
pletely overcast skies with thick clouds, the DoP can drop to zero 
(Brines & Gould, 1982; Pomozi et al., 2001) . Therefore, it is logical 
the effect of fine PM mass concentration is synergistic with overcast 
skies, which supports our results. This implies that honeybees will 
experience considerably more difficulties in navigating under very 
cloudy sky when air quality is poor.

Further, the result demonstrates that the smaller the DR is, 
the longer the expected foraging duration is, which is opposed to 
our hypothesis. In this study, foraging duration increased in an an-
thropogenic pollutant-dominant case (smaller DR) rather than a 

F I G U R E  1   Foraging duration (min) of Apis mellifera foraging 
trips (N = 181) during predust storm (Pre-DS, April 27–May 3), dust 
storm (DS, May 4), and postdust storm (Post-DS, May 5–7) period. 
Daily foraging trip durations were resampled 10,000 times. Note 
that only a few observations (n = 12) were available during DS. 

 indicates the mean fine PM mass concentration of Pre-DS  
(48 µg/m3), DS (573 µg/m3), and Post-DS (49 µg/m3) period. 
Hourly fine PM mass concentrations between the earliest and 
latest foraging activity recorded of each day were averaged. 
* and ** denote significance as p < .05 and p < .001, respectively, 
by ANOVA Tukey multiple comparisons of means 95% family-wise 
confidence level. ns: not significant (Table S3)
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(Intercept) 3.111 0.973 3.196 .002*

DR −4.457 2.165 −2.059 .042*

Fine PM mass concentration 0.004 0.001 4.112 <.001**

Cloud cover (nonovercast) 0.574 0.393 1.458 .147

Temperature 0.040 0.027 1.516 .132

Wind speed 0.007 0.034 0.213 .832

Humidity −0.003 0.010 −0.281 .779

Fine PM mass concentration : Cloud 
cover

−0.027 0.013 −2.115 .036*

* and ** denote significance as p <.05 and p < .001, respectively.

TA B L E  1   Effects of predictor variables 
(optical property (DR) and fine PM 
mass concentration, and meteorological 
variables) on foraging trip duration of 
individual foragers
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dust-dominant one (larger DR). The DR provides useful information 
to characterize the dominant particle type in the atmosphere in 
terms of their physical shape (Bi et al., 2017; Ge et al., 2011). During 
an Asian dust event, nonspherical particles are predominantly dis-
tributed in the atmosphere. These irregularly shaped mineral parti-
cles have a large DR.

Although each of the DR and size describes a different opti-
cal property of PM, larger particles tend to have a larger DR. For 
instance, in an empirical study conducted in Beijing, the average 
hourly and monthly DR measured for coarse particles with optical 
size (Dp) of 5 µm was higher than fine particles with Dp of 1 µm (Tian 
et al., 2018). The DoP depends greatly on the size of scattering parti-
cles (Schechner et al., 2003), and larger particles can be less effective 
in terms of depolarization. Light scattering for a given mass concen-
tration of PM increases with decreasing particle size (Hinds, 1999). 
Thus, fine mode particles (and their microphysical properties) have 
strong effects on the DoP of the sky (Boesche et al., 2006). In this 
reason, our visibility is also governed by fine mode PM (ranges from 
0.1 to 2 µm). Therefore, effects on foraging trip duration by each DR 
and fine PM mass concentration can counter to each other.

This is in line with a study that explores how different combina-
tions of aerosol mode and AOD influence the DoP. Over land surface 
with a given AOD, the average DoP of fine mode is lower than that of 
coarse mode characterized as polluted dust (Chen et al., 2020). Taken 
overall with our results, what is important in determining the DoP of 
the sky is not the dominant morphology but the mass concentration 
of fine mode particles. This possibly explains why foraging duration 
did not increase with increasing DR in this study. However, when 
foraging trip duration was regressed on DR only (alongside meteo-
rological variables) in our study, DR did not show any significant ef-
fect while the opposite was true for the fine PM mass concentration 
(Table S4). Therefore, mass concentration of fine PM overrides the 
effect of DR on foraging performance of honeybee.

Given that the average foraging duration of disoriented colonies 
was significantly longer than oriented colonies in an experimental 
study (I’Anson Price et  al.,  2019), the increased trip duration ob-
served in this study during a heavy air pollution episode was possibly 
attributed to the complexity of visual cues as expected.

It is noteworthy that the foraging duration of forager bees after 
the dust storm did not return to their predust storm levels. Though 
the average fine PM mass concentration of the postdust storm pe-
riod (49 µg/m3) was as low as that of the predust storm mass con-
centration (48 µg/m3), the bees still spent 32 min more in foraging. 
This may be traced to a low quality of food foraged and physical 
damage they incurred during the dust event. Since newly stored 
(1-day-old) fresh pollen is 3 times more likely to be consumed than 
older stored (10-day-old) pollen (Carroll et al., 2017), a state of mal-
nutrition among the colony may persist if low-quality food resources 
are stored and consumed for a few days. However, because we did 
not look into variations in quality or availability of floral resources 
through the study period, any causal link between foraging trip dura-
tion and resource availability depending different air quality should 
be considered in further studies.

F I G U R E  2   Predicted foraging trip duration (min) from the 
model against fine PM mass concentration for given values of the 
other predictors. Temperature = 28°C, Wind speed = 7 km/h, 
Humidity = 10%, Cloud-cover = Overcast
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F I G U R E  3   Predicted effects of fine PM mass concentration 
on foraging trip duration under overcast skies. All the other 
predictor variables are mean-centered. The solid line indicates the 
mean slope estimate, and the shaded area is the predicted 95% 
confidence interval
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In a recent study conducted in India where there are many of 
the world most polluted cities, significant correlations between 
PM10 increases and physiological changes of Giant Asian hon-
eybees (Apis dorsata) were found (Thimmegowda et  al.,  2020). 
Giant Asian honeybee samples from severely polluted areas (in 
Bangalore, India) showed significantly lower rates of survival. 
Also, the bees from the highly polluted sites were more exposed 
to toxic metals such as lead (Pb). Serious physical damages on 
wings, antennae, and hindlegs were observed as well. More im-
portantly, colony-level chronic impacts through gene expression 
could also be predicted. For example, vitellogenin, associated with 
survival of worker bees, was found depleted in bees sampled from 
the highly polluted site compared with those from the low pol-
luted site (Thimmegowda et al., 2020). This is important because 
the reduced fitness of individual foragers and their colony due to 
degraded foraging performance may have detrimental impacts on 
pollination services.

The experimental design of this study was restricted owing to 
an outbreak of intense air pollution during the study period. In 
addition, we note that our results may not reflect nor specify the 
presence of certain types of air pollutants such as nitrogen dioxide 
and hydroxyl radicals. For instance, Fuentes et al.  (2016) studied 
the effects of air pollutants such as ozone on floral scents. They 
found that floral volatile compounds were greatly degraded even 
when the atmosphere was moderately polluted. Honeybee forag-
ers took longer to locate floral sources even in very low O3 levels 
(less than 20 parts per billion on a per volume basis). However, in 
general, relatively short sunshine durations during a heavy pol-
lution episode may prevent ozone precursors such as hydroxyl 
radicals from producing surface O3 (Lee et al., 2004). Interactions 
between different pollutant types can elicit different effects on 
honeybee foraging.

Though substantial attention has been paid to the pollina-
tion crisis in the US and Europe (Goulson et al., 2015; Teichroew 
et  al.,  2017), insufficient attention has been paid to the Asian 
countries that are also facing a crisis. In Asia, pollinator depen-
dency is increasing in terms of crop yield (Potts et al., 2016) while 
air quality remains low persistently. For example, declines in some 
economically significant bee species have been locally reported 
in China (Teichroew et  al.,  2017). However, since air pollutants 
travel between not only countries but also continents, making a 
full circuit (Lee et al., 2019; Uno et al., 2009), the pollination cri-
sis attributable to poor air quality should not be a localized issue. 
Continued climate change is also anticipated to increase airborne 
fine PM. Though effects of climate change on fine PM vary region 
to region, substantial increase in its mass concentrations are pre-
dicted in sources regions and more populated areas (Fang et al. 
2013; Silva et al. 2017). In addition, under a warming climate, in-
creases in frequency and severity of wildfires are expected to in-
crease fine PM emissions in many regions (Schuur et al. 2015; Liu 
et al. 2016; Wotton et al. 2017).

Despite a lack of literature to correlate worsening air quality 
with bee population decline, the interplay of air pollution with other 

plausible stressors can amplify such a risk. For instance, the longer 
foragers search for food and navigate between their home and re-
sources, the more likely they are to encounter other stressors such 
as insecticide residue and parasites (Fuentes et al., 2016).

Overall, our results lead us to conclude that the foraging per-
formance of individual honeybees could be impeded due to low air 
quality. This is the first empirical study seeking to quantify variations 
in foraging duration that depend on air quality, while also analyz-
ing foraging duration with respect to optical property of the atmo-
sphere. Reduced foraging performance can be another stress adding 
to existing stressors that are believed to be the most proximate 
causes of the global bee decline.
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