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Abstract

Background: Infectious complications often occur in acute pancreatitis, related to

impaired intestinal barrier function, with prolonged disease course and even

mortality as a result. The bile salt nuclear receptor farnesoid X receptor (FXR),

which is expressed in the ileum, liver and other organs including the pancreas,

exhibits anti-inflammatory effects by inhibiting NF-kB activation and is implicated in

maintaining intestinal barrier integrity and preventing bacterial overgrowth and

translocation. Here we explore, with the aid of complementary animal and human

experiments, the potential role of FXR in acute pancreatitis.

Methods: Experimental acute pancreatitis was induced using the CCK-analogue

cerulein in wild-type and Fxr-/- mice. Severity of acute pancreatitis was assessed

using histology and a semi-quantitative scoring system. Ileal permeability was

analyzed in vitro by Ussing chambers and an in vivo permeability assay. Gene

expression of Fxr and Fxr target genes was studied by quantitative RT-PCR. Serum

FGF19 levels were determined by ELISA in acute pancreatitis patients and healthy

volunteers. A genetic association study in 387 acute pancreatitis patients and 853
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controls was performed using 9 tagging single nucleotide polymorphisms (SNPs)

covering the complete FXR gene and two additional functional SNPs.

Results: In wild-type mice with acute pancreatitis, ileal transepithelial resistance

was reduced and ileal mRNA expression of Fxr target genes Fgf15, SHP, and

IBABP was decreased. Nevertheless, Fxr-/- mice did not exhibit a more severe

acute pancreatitis than wild-type mice. In patients with acute pancreatitis, FGF19

levels were lower than in controls. However, there were no associations of FXR

SNPs or haplotypes with susceptibility to acute pancreatitis, or its course, outcome

or etiology.

Conclusion: We found no evidence for a major role of FXR in acute human or

murine pancreatitis. The observed altered Fxr activity during the course of disease

may be a secondary phenomenon.

Introduction

Acute pancreatitis (AP) is the acute inflammation of the pancreas, and is mostly

caused by gallstones or alcohol abuse [1]. In the majority of patients the course of

the disease is mild, but in around 20% of patients, AP is severe with organ failure

and/or local complications [2]. Mortality from AP is especially caused by

infectious complications, such as bacterial infection of pancreatic necrosis [3, 4].

Failure of the intestinal barrier function plays a critical role, as it allows for

bacterial translocation, facilitating such infectious complications [5-8].

The intracellular bile salt receptor farnesoid X receptor (FXR) is mainly

expressed in ileum and liver, and to some extent in other organs, such as the

pancreas [9], with little information available on its function in the latter organ.

FXR is considered the master regulator of bile acid homeostasis, which regulates

various genes encoding for bile acid transport proteins, including apical sodium-

dependent bile acid transporter (ASBT) and ileal bile acid binding protein

(IBABP) [10, 11]. Also, the enterokine fibroblast growth factor 15 (Fgf15, human

orthologue FGF19), whose expression is controlled by FXR, exerts a negative

feedback regulation of hepatic bile salt neo-synthesis and, at least in mice, induces

gallbladder refilling at the end of the postprandial phase [12].

More recently, FXR has been implicated in the regulation of fat and glucose

metabolism, in the maintenance of intestinal barrier integrity and prevention of

intestinal bacterial overgrowth, by affecting putative FXR-dependent genes such as

angiogenin-1, iNOS, CAR12 and IL18 [13]. In patients with Crohn’s colitis, who

show impaired antibacterial defense and impaired intestinal barrier function, FXR

expression was altered in areas of inflamed mucosa [14]. Furthermore, we recently

showed in two murine models for colitis that administering the semi-synthetic

FXR agonist INT747 (Obeticholic acid) ameliorates intestinal inflammation,

improving colitis symptoms, preserving intestinal barrier function, and reducing
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goblet cell loss [15]. The underlying mechanism for these anti-inflammatory

effects is thought to be inhibition of NF-kB [16]. We also recently detected

impaired mRNA expression of FXR target genes in the ileum of patients with

clinically quiescent Crohn’s colitis [17]. FGF19 signaling has been implicated in

regulating inflammation by antagonizing NF-kB signaling in FGF19 target tissues,

which may include the pancreas [18, 19].

Because of its role in intestinal barrier function, i.e. prevention of bacterial

translocation and modulation of inflammation, we hypothesized that FXR might

play an important role in AP. Deficiency of FXR could result in increased severity

of the pancreatitis, increased bacterial translocation, and infectious complications.

In this study, we therefore explored, with the aid of complementary animal and

human experiments, whether FXR could affect AP.

Materials and Methods

Animals

In the first series of experiments, we used adult male wild-type C57BL/6 mice of

10–12 weeks and 20–30 grams of weight (Harlan, Horst, the Netherlands). For the

second series of experiments, mice with global Fxr deficiency (Fxr-/-) on a C57BL/

6 genetic background [20] were obtained by breeding of heterozygous mice. We

used male adult Fxr-/- and wild-type C57BL/6 littermates of 11–16 weeks and 25–

35 grams of weight. All mice were kept under constant housing conditions (22 C̊,

60% relative humidity and a 12-hour light/dark cycle) for at least two weeks prior

to the start of the experiment, and had free access to water and food (CRM (E),

B.M.I. – Technilab, Someren, the Netherlands) throughout the experiment.

Animal experiments

AP was induced by ten intraperitoneal injections with an hourly interval of

cerulein, a CCK analogue (Sigma-Aldrich Chemie B.V., Zwijndrecht, the

Netherlands; 50 mg/kg in 0.9% NaCl). Controls received an equal volume of

saline. In an initial experiment, pancreatic injury was assessed 24 and 72 hrs after

induction of AP. For this purpose, 30 wild-type mice (Harlan) were randomly

allocated to a control group (n510, sacrificed after 72 hrs) and two experimental

groups that were terminated after 24 hrs (early pancreatitis, n510) and 72 hrs

(late pancreatitis, n510). To assess the impact of Fxr deficiency on AP, Fxr+/+

(wild-type) and Fxr-/- mice received control (n55) or cerulein (n510 per

genotype) treatment and were sacrificed after 24 hrs.

Animals were terminated by cervical dislocation or by cardiac puncture under

isoflurane anesthesia. For histopathologic evaluation, parts of the ileum and

pancreas were fixated in 4% formaldehyde. For RNA isolation, parts of the ileum

and liver were immediately snap frozen in liquid nitrogen and stored at 280 C̊.

Plasma samples were stored at 280 C̊ for determination of amylase and bilirubin

by standard clinical chemical assays.
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The experimental design was approved by the animal experiments committee of

Utrecht University, Utrecht, the Netherlands (2007.III.09.117; 2009.III.08.074).

Histopathology

After fixation in 4% formaldehyde, tissues were embedded in paraffin and cut in

serial sections of 4 mm for hematoxylin and eosin (H&E) staining. Qualitative

assessment of the severity of AP was performed in the initial experiment and, in

the second experiment, a slightly modified semi-quantitative scoring system was

used [21, 22]. The following items were scored: edema (0-4 points), number of

neutrophils in the edema (0–4 points), pancreatic ductal pathology (inflammatory

cells; present51; absent50), intralobular inflammatory infiltrate (0–3 points) and

peripheral necrosis of pancreatic tissue (0–4 points). The maximum composite

score was 16. To assess the ileal brush border in the second experiment, PAS-

diastase staining was performed. Histopathological evaluation was performed by

two experienced pathologists (AJJS, MEIS), blinded for experimental study

groups.

Measurement of transepithelial electrical resistance

In the initial experiment, a 4 cm segment of the distal ileum was removed for

electrical resistance measurements in Ussing chambers, as described elsewhere

[22]. Briefly, flat sheets of mucosa were mounted in Ussing chambers with both

sides of the epithelium in contact with Krebs-Ringer’s solution, stirred and gassed

with humidified carbogen at 37 C̊. Three ileal samples per animal were used. The

transepithelial potential difference Vte (mV) was continuously monitored and

transepithelial electrical resistance R (V.cm2) was calculated [22]. The reported

values for the resistance were obtained at the end of the 20 min equilibration

period. At the end of the experiment, viability of the tissue segments was

confirmed based on carbachol-induced voltage increase [22].

In vivo intestinal permeability assay

In the second experiment, intestinal permeability was assessed with fluorescein

isothiocyanate (FITC)-conjugated dextran as previously described [15]. Briefly,

two hours before termination, mice were gavaged with 0.6 mg/g body weight of

FITC-conjugated dextran (MW 3,000–5,000 Da; Sigma-Aldrich). After termina-

tion, FITC fluorescence was measured in plasma with the aid of a fluorometer

(BMG Polarstar Galaxy, MTX Lab Systems, Inc., Vienna, Virginia, USA) and

compared to a calibration line of standard concentrations of FITC-conjugated

dextran.

Analysis of gene expression

Total RNA was isolated from murine ileum and liver (RNeasy Midi Kit, Qiagen,

Hilden, Germany). RNA integrity was tested by RNA gel electrophoresis. cDNA
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was synthesized from total RNA using the iScript cDNA synthesis kit (BioRad,

Hercules, CA, USA). Quantitative RT-PCR was performed using SYBR Green

Supermix (BioRad) on an iCycler iQ system using diluted cDNA as template

(primer sequences are provided in Table S1 in File S1). Expression levels were

estimated using the comparative threshold cycle method. Cyclophilin was used as

housekeeping gene, with similar expression levels in ileum and liver under all

experimental conditions.

Determination of plasma FGF19 levels in patients with acute

pancreatitis

FGF19 levels were determined by ELISA in plasma samples of 15 randomly

selected patients with predicted severe AP [23]. Patients were participants in an

earlier clinical trial (trial registry ISRCTN38327949) and were fed by continuous

enteral nutrition [24]. Clinical data were available from the prospectively collected

trial database [24]. As a control group, FGF19 levels were also determined in a

group of 28 healthy volunteers receiving an oral fat load [25]. In this group, fed

FGF19 levels were calculated as the average of postprandrial FGF19 levels at 2, 3, 4,

and 6 hrs.

Genetic association study

For the genetic association study, a previously described cohort of 387 patients

with a first episode of AP was used [26]. All patients or their legal representatives

gave their written informed consent, and the ethics review boards of all

participating hospitals approved the study protocol. Genomic DNA was isolated

from whole blood using a DNA isolation kit I (Magna Pure LC, Roche

Diagnostics, Indianapolis, USA). Clinical data on the severity of disease and

outcome of all patients were available from the prospectively collected trial

database [24]. The controls consisted of 853 healthy, voluntary, Dutch blood

donors [27]. All control genotypes were in Hardy-Weinberg equilibrium (data not

shown, p.0.05). Call rates for all SNPs were.95%.

Nine tagging single nucleotide polymorphisms (SNPs) covering the complete

FXR gene were selected using Haploview v4.2 [28]. In addition, two functional

SNPs affecting FXR expression (-1G/T, rs56163822) and FXR function (518T/C,

rs61755050) were analyzed [29]. Details of the SNPs studied are given in Table S2

in File S1. Genotyping was performed using TaqMan assays on a TaqMan 7900

HT (Applied Biosystems, Foster City, California, USA). Haplotype analysis was

performed in Haploview [28].

Statistical analysis

Statistical analyses were performed using GraphPad PRISM software (Graphpad

Software, La Jolla, CA, USA). Electrical resistance, histology scores, and clinical

parameters were compared using one-way ANOVA with Tukey’s post-hoc test or

the non-parametric Kruskal-Wallis test with Dunn’s post-hoc test where
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appropriate. Differences in gene expression levels were evaluated using the non-

parametric Kruskal-Wallis test with Dunn’s post-hoc test. Plasma FGF19 levels

were compared between AP patients and healthy controls by ANOVA with

Tukey’s post-hoc test. Statistical analysis of the genetic association study was

performed using two-tailed chi-squared for independence tests of case versus

control allele and haplotype counts in Haploview v4.2 [28]. Uncorrected P-values,

odds ratios (OR) and 95% confidence intervals (95% CI) are given (Table 1 and

Table S3 in File S1). The Bonferroni method was used to correct for multiple

testing. Data of continuous values are shown as mean ¡ standard deviation (SD).

P-values below 0.05 were considered statistically significant.

Results

Acute pancreatitis results in decreased transepithelial resistance

and altered expression of Fxr targets in the ileum

Pancreatic injury was initially assessed in wild-type mice sacrificed at 24 hrs (early

AP) or 72 hrs (late AP) after induction of AP. Plasma amylase levels were twice as

high in the early and late AP mice compared to the control group (mean ¡ SEM,

4521¡527 U/L vs. 2186¡109 U/L, p,0.001). Histopathological examination of

the pancreas revealed edema, influx of neutrophils and necrosis in all mice of the

early pancreatitis group (Figure 1A). In contrast, the pancreata of all mice in the

late pancreatitis group showed no signs of edema or necrosis and displayed

infiltration of lymphocytes and fibroblasts rather than neutrophils. There were no

histopathological abnormalities in the control group. Histopathological exam-

ination of the ileum revealed normal enterocytes without any signs of

inflammatory infiltrate in all groups. Nevertheless, the transepithelial electrical

resistance of the ileum was approximately half in the early AP group compared to

controls and the late AP group (Figure 1B). This indicates that AP induces a

transient increase in ileal permeability.

Impaired intestinal barrier function in patients with inflammatory bowel

disease is accompanied by reduced ileal expression of FXR targets [17]. Ileal gene

expression in mice was therefore analyzed to test the consequences of an AP-

induced decline of transepithelial electrical resistance. Fxr mRNA expression was

comparable between the three experimental groups, as was mRNA expression of

the Fxr-target gene Asbt (Figure 1C). In contrast, mRNA expression of Fxr-target

genes Shp, Fgf15 and Ibabp was reduced in the early AP group compared to

control mice (Figure 1C). In the late pancreatitis group, expression of all Fxr

target genes was normalized (Figure 1C). Fxr and its target genes are exclusively

expressed in the villous lining of differentiated enterocytes [13]. We therefore also

assessed mRNA expression of Villin, which is expressed exclusively in these

differentiated enterocytes [17]. mRNA expression of Villin showed no differences

between the groups, including the early AP group (Figure 1C), indicating that no

intestinal damage was present in this mouse model of AP. Regarding Fxr-

dependent genes implicated in intestinal barrier function [13]: Angiogenin-1
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(Ang1) mRNA expression in the ileum was reduced in the early pancreatitis

group, whereas iNos, Car12 and Il18 were similar in all groups (Figure 1D).

In the liver, mRNA expression of Fxr and its target gene Shp were diminished

after 24 hours, but normalized after 72 hours (Figure 1E). Fgf15 could not be

detected in the liver. Hepatic iNos expression was also lowered after 24 hours,

whereas Ang1 expression increased in the early phase and returned to baseline

expression in the late phase (Figure 1E).

Deficiency of Fxr does not lead to more severe acute pancreatitis

in mice

The above findings indicate that ileal Fxr activity is disturbed in the early phase of

murine AP (i.e. 24 hrs after induction). To test whether Fxr dysfunction

contributes to the pathology of AP, mice deficient for Fxr were given ten hourly

injections of cerulein to induce AP and sacrificed after 24 hrs. Weight loss due to

pancreatitis induction did not differ between wild-type and Fxr-/- mice (mean ¡

SEM: 6.1¡0.37 and 5.2¡1.78% of body weight, respectively, p50.48). In both

wild-type and Fxr-/- pancreatitis groups, plasma amylase levels were significantly

higher than in corresponding groups without AP (mean ¡ SEM; wild-type

controls 2160¡149 U/L, wild-type AP 8013¡923 U/L, p,0.01; Fxr-/- controls

without AP 2285¡96 U/L, Fxr-/- AP 6801¡671 U/L, p,0.01). C-reactive protein

(CRP) in serum of mice of all four experimental groups was always very low

(,5 mg/L), indicating absence of significant systemic inflammation.

In order to identify whether cholestasis was present in these mice as a sign of

post-hepatic bile duct obstruction by the inflamed pancreas, we determined

Table 1. Association of genetic variants of FXR with acute pancreatitis.

Acute pancreatitis patients Controls P value* OR 95% CI

Allele counts Allele counts

Major Minor MAF Major Minor MAF

-1 G.T C/A# 732 14 0.981 1588 36 0.978 0.5926 1.14 0.62–2.10

518 T.C A/G 743 5 0.993 1616 6 0.996 0.3203 1.86 0.60–5.82

rs11837065 C/T 452 250 0.644 1014 592 0.631 0.5663 1.05 0.88–1.27

rs12313471 A/G 699 39 0.947 1548 76 0.953 0.5268 1.15 0.77–1.71

rs11110390 C/T 497 247 0.668 1070 544 0.663 0.8088 1.02 0.85–1.23

rs4764980 G/A 384 354 0.520 832 778 0.517 0.8728 1.01 0.85–1.21

rs11110395 G/T 692 44 0.940 1538 84 0.948 0.4272 1.18 0.81–1.71

rs17030285 C/G 610 102 0.857 1415 215 0.868 0.4599 1.11 0.86–1.42

rs11610264 T/C 536 200 0.728 1160 458 0.717 0.5703 1.06 0.87–1.28

rs10860603 G/A 616 122 0.835 1398 214 0.867 0.0364 1.30 1.02–1.65

rs35739 T/C 398 350 0.532 900 712 0.558 0.2334 1.11 0.93–1.32

OR 5 odds ratio; 95% CI 595% confidence interval.
#Major allele/minor allele; MAF 5 major allele frequency.
*Two-tailed p values were calculated by x2 analysis of allele count.

doi:10.1371/journal.pone.0114393.t001
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Figure 1. A – Representative pancreatic histology of wild-type mice from the control group (a, b) and mice with early (c, d) and late (e, f) acute pancreatitis
(H&E staining, 20x and 100x magnifications consecutively). Control mice have normal pancreatic morphology, whereas mice of the early pancreatitis group
exhibit edema, influx of neutrophils and necrosis. Mice of the late pancreatitis group have no edema or necrosis, but show influx of lymphocytes and
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plasma bilirubin levels. In wild-type and Fxr-/- mice, AP did not affect the plasma

bilirubin levels (mean ¡ SEM; wild-type controls 1.8¡0.5 mmol/L, wild-type AP

1.5¡0.2 mmol/L; Fxr-/- without AP 8.0¡2.1 mmol/L, Fxr-/- with AP

5.8¡2.6 mmol/L). Fxr deficiency resulted in elevated bilirubin levels (p,0.05). As

a potential explanation for this phenomenon, we found elevated hepatic

expression of the basolateral bilirubin glucuronide efflux pump Mrp1 in Fxr-/-

mice (data not shown) [30].

We subsequently investigated whether Fxr deficiency affects epithelial

permeability. Plasma levels of FITC-conjugated dextran were not increased by AP

induction in either wild-type or Fxr-/- mice. Nevertheless, Fxr-/- mice had

significantly higher plasma levels of FITC-conjugated dextran than wild-type mice

(mean ¡ SEM: wild-type, 3.41¡0.61 mg/ml vs. Fxr-/-, 7.45¡2.31 mg/ml,

p,0.05), indicating that loss of Fxr leads to increased intestinal permeability.

Upon histopathological examination, wild-type and Fxr-/- control mice did not

exhibit edema, influx of inflammatory cells, or necrosis of the pancreas. In

contrast, all mice in the pancreatitis groups showed clear signs of AP: interlobular

and/or interacinar edema, influx of neutrophils, and necrosis (Figure 2A).

Pancreatitis severity scores were similar in wild-type and Fxr-/- mice (composite

pancreatitis severity score, mean ¡ SEM: 9.9¡0.8 vs. 11.3¡0.7, p50.27;

Figure 2B). When the individual components of the severity score (presence of

edema, inflammatory infiltrate, and necrosis), were analyzed, there were also no

differences found between wild-type and Fxr-/- mice (data not shown).

As expected, AP did not affect the expression of Fxr in the ileum of wild-type

mice (results not shown). In contrast to the results depicted in Figure 1C, the

effects of AP on expression of Fxr targets Shp and Ibabp in the ileum of wild-type

mice did not reach significance in this experiment (results not shown).

Nevertheless, a consistent decrease in expression of Fxr target Fgf15 in the ileum

was still noted following induction of AP (Figure 2C). Deficiency of Fxr resulted

in reduced ileal expression of Fxr targets Shp (data not shown) and Fgf15 (

Figure 2C) in mock-treated mice, with AP having no additional suppressive effect.

Fxr mRNA could still be detected, albeit at a lower level, in the ileum of Fxr-/-

mice. The strategy used for disruption of the Fxr gene in these mice [20] results in

a non-functional transcript as is evident from the near absence of ileal Ibabp

expression in Fxr-/- mice (results not shown).

Upon histopathological examination, there were no inflammatory infiltrates in

the ileum of wild-type or Fxr-/- mice with and without AP and PAS-diastase

fibroblasts. B – Transepithelial electrical resistance of the ileum measured by Ussing chamber experiments. The resistance of the ileum was lower in the
early pancreatitis group in comparison to both controls and the late pancreatitis group. C – Ileal mRNA expression of Fxr and FXR target-genes Asbt, Shp,
Fgf15, and Ibabp, and Villin in wild-type mice of the control group, and the early and late pancreatitis groups. Expression of Fxr, Asbt and Villin did not differ
between experimental groups. Expression of the other Fxr target genes was lower in early acute pancreatitis, but not in late pancreatitis. D – Ileal mRNA
expression of genes implicated in intestinal barrier function, iNos, Ang1, Car12, IL18. Expression of Ang1 was lowered in the early pancreatitis group, the
other genes remained similar in the different experimental conditions. E – Hepatic expression of Fxr, Shp, iNos and Ang1. Hepatic Ang1 was increased in
early pancreatitis, whereas the expression of the other genes was lowered in the early acute pancreatitis group. Expression levels were normalized to
cyclophilin expression. Bars indicate means and SEM, * p,0.05, ** p,0.01, *** p,0.001.

doi:10.1371/journal.pone.0114393.g001
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staining showed intact brush borders (results not shown). There were no

differences in mRNA expression of inflammatory genes Car12 and iNos in the

enterocyte (results not shown). As an additional marker of pro-inflammatory

response, we determined Tnf-a mRNA expression, but found no differences in

expression (results not shown). These findings indicate that there were no signs or

very limited signs of inflammation on the molecular level in the ileum.

Plasma FGF19 levels are lowered in patients with acute

pancreatitis

To obtain an impression of FXR activation in patients with AP, we studied plasma

FGF19 levels in patients with predicted severe pancreatitis. Plasma FGF19 levels in

AP patients under digestive conditions were significantly lower than in healthy

volunteers after ingestion of a single bolus of fat (0.33¡0.19 vs. 0.62¡0.30 ng/

Figure 2. A - Representative pancreatic histology following induction of acute pancreatitis (H&E staining, 20x and 100x consecutive magnifications for each
experimental group): wild-type control (a,b); wild-type acute pancreatitis (c,d); Fxr-/- control (e,f); Fxr-/- acute pancreatitis (g,h). B – Semi-quantitative
composite pancreatitis severity score of histopathological examination of pancreas samples from wild-type and Fxr-/- mice with and without acute
pancreatitis. Absence of Fxr does not result in more severe acute pancreatitis. C – Ileal mRNA expression of Fgf15 in wild-type and Fxr-/- mice with and
without early acute pancreatitis. Fgf15 expression was decreased in wild-type mice with acute pancreatitis. Bars indicate mean and SEM.

doi:10.1371/journal.pone.0114393.g002
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mL, p,0.001; Figure 3). This suggests that in patients with AP, FGF19 may be

decreased in a similar way as to that observed in the AP mouse model.

Genetic polymorphisms in FXR are not associated with acute

pancreatitis

To study a potential association between AP and FXR, 387 patients with AP and

853 controls were genotyped for 9 tagging and 2 functional SNPs in the FXR

locus. An association with AP was seen for one of the variants (rs10860603,

p50.0364, OR 1.30, 95% CI 1.02–1.65) (Table 1). This association did not,

however, withstand correction for the number of tested SNPs (pcorrected 50.40).

There was no association of haplotypes of FXR with AP (data not shown).

To investigate a potential association between FXR and the course and outcome

of AP, we studied the prevalence of the genetic variants in patients with a severe

course versus a mild course of AP, patients with infected pancreatic necrosis

versus patients without it, and patients who died from the pancreatitis versus

those who survived (Table S3 in File S1). One of the tag SNPs seemed to be

associated with a severe course of AP (rs10860603, p50.0368, OR 1.61, 95% CI

1.00–2.60) and one with infection of pancreatic necrosis (rs11110395, p50.0099,

OR 2.55, 95% CI 1.28–5.07). Haplotypes containing the same risk allele also

seemed to show association (data not shown). Another tag SNP showed a

significant difference between patients who died and those who survived

(rs11837065, p50.0272, OR 2.09, 95% CI 1.07–4.06). After Bonferroni correction

for multiple testing, however, there were no associations of SNPs or haplotypes in

the FXR gene with course or outcome of AP. Finally, we compared patients with

biliary AP to patients with AP of non-biliary origin. None of the SNPs was

associated with a biliary cause of AP (Table S3 in File S1).

Figure 3. FGF19 plasma levels in patients with predicted severe acute pancreatitis during continuous
enteral nutrition. For comparison, FGF19 plasma levels of healthy controls in the fasting state and after a
single bolus of fat are also shown. The postprandial levels represent the average of plasma FGF19 levels at 2,
3, 4 and 6 hours after fat ingestion. There appears to be a blunted FGF19 release in the pancreatitis group.
Bars indicate mean and SD.

doi:10.1371/journal.pone.0114393.g003
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Discussion

Failure of the intestinal barrier plays an important role in human acute

pancreatitis, because it facilitates bacterial translocation which can lead to

infectious complications. Such complications strongly increase mortality due to

pancreatitis. Which specific molecular events eventually lead to failure of the

intestinal barrier in acute pancreatitis is still largely unclear. In mouse [31] and rat

[32, 33] experimental acute pancreatitis, however, it has been shown that tight

junction failure in the pancreas is a very early event. In rats, more specifically,

disruption of the actin cytoskeleton and of tight junctions occurring in

experimental pancreatitis leads to increased paracellular permeability [32, 34].

Because of the role of FXR in intestinal barrier function, namely prevention of

bacterial translocation and modulation of inflammation, we hypothesized that

FXR might play an important role in AP. Deficiency of FXR might lead to

increased severity of pancreatitis, increased bacterial translocation and subsequent

infectious complications. In this study, we therefore explored, with the aid of

complementary animal and human experiments, whether FXR could affect AP.

We observed that induction of AP by repeated administration of a supraphysio-

logical dose of the CCK-analogue cerulein was accompanied by decreased

expression of Fxr target genes in the ileum. However, the ileal Fxr pathway

appears to have no major pathogenic role in this model of AP, as indicated by

similar pancreatic histopathology following induction of AP in mice with global

deficiency of Fxr and in wild-type controls. Moreover, a case-control association

study indicated that genetic variation in the FXR locus is not associated with the

risk, etiology or outcome of AP in human subjects. The collective findings of our

study indicate that FXR is not a major player in the pathogenesis of AP.

In an initial experiment in wild-type mice, we observed that expression of ileal

Fxr target genes Fgf15, Shp and Ibabp (Figure 1C) was disturbed at 24 hrs after

induction of AP, while expression levels recovered at the time point that

histopathological damage of the pancreas had largely resolved (i.e. 72 hrs after AP

induction). Of note, decline of Fxr activity was shown through decreased

expression of Fxr target genes, without change of FXR expression. This

phenomenon is in line with previous data obtained in patients with Crohn’s

disease, in animal colitis models, and in vitro and ex vivo models, where FXR

expression itself was not significantly changed by pro-inflammatory cytokines.

These findings indicate that the inhibition of FXR target gene expression is due to

decreased FXR activity [35]. Decline in ileal FXR target gene expression is likely to

be due to impaired delivery of its activating bile salt ligands. It is well known that

under pro-inflammatory conditions such as AP, small intestinal motility is

decreased, both under fasting and fed conditions, with decreased ileal bile salt

delivery as a result [36]. Since AP did not affect bilirubin levels in our wild-type

and Fxr-/- mice, post-hepatic obstruction by the inflamed pancreas is unlikely. The

transient decline in ileal Fgf15 expression likely accounted for de-repression of

hepatic Cyp7a1, as higher expression of this bile salt synthetic gene was found after

24 hrs (data not shown). In our Ussing chamber experiments in wild-type mice,
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impaired ileal Fxr activation was accompanied by decreased transepithelial

resistance at the early time point (Figure 1B), indicative for increased intestinal

permeability, without ileal inflammation. In contrast, in our second series of

experiments, plasma levels of FITC-conjugated dextran were not increased by AP

induction in either wild-type or Fxr-/- mice. These findings indicate that

transepithelial resistance measurements are a more sensitive marker for disturbed

intestinal permeability than FITC-conjugated dextran. Nevertheless, Fxr-/- mice

had significantly higher plasma levels of FITC-conjugated dextran than wild-type

mice, which was in line with the increased intestinal permeability in Fxr-/- mice

previously reported [13].

Although transient Fxr dysfunction was apparent in the early phase of acute

murine pancreatitis, this likely did not have a pathogenic contribution, as the

severity of AP was similar in mice with genetic disruption of Fxr and controls (

Figure 2A and B). The lack of effect upon loss-of-function may relate to decreased

intestinal transport of activating bile salt ligands to Fxr in the ileum, as discussed

above, and other Fxr expressing tissues of wild-type mice, and result in a

phenotype resembling that of the true Fxr-deficient mouse. If this interpretation is

correct, gain-of-function studies (e.g. Fxr agonism) may, in theory, be more

suitable to address the role of Fxr in AP. Likewise, other models of AP that do not

rely on overstimulation of the gallbladder and exocrine pancreas function could,

in theory, be employed to further delineate a role of Fxr in AP. Nevertheless, our

combined human and murine data strongly argue against a critical role of Fxr in

human AP.

In line with our data in wild-type mice, our analysis of non-fasted serum FGF19

levels suggests that ileal FXR dysfunction could also occur in patients with AP.

Being a bile salt-regulated enterokine, circulating FGF19 levels increase

postprandially in healthy controls (Figure 3). FGF19 levels in enterally fed patients

with AP, however, are close to values observed in fasted controls. A possible role

of FXR in human AP was further addressed by studying genetic variation at the

FXR locus in a cohort of 387 cases and 853 controls. None of the 11 SNPs tested

(9 tagging and 2 functional variants), nor the inferred haplotypes, were

independently associated with AP. Likewise, none of the variants were

independently associated with the risk or course of AP, nor in haplotypes. Thus,

genetic variation in the FXR locus does not predispose to, or have a major impact

on the course of AP in human subjects.

Of note, genetic variation in the FXR locus did not differ between subjects with

a biliary (i.e. gallstone) or non-biliary (mainly alcohol) cause of AP. Fxr-/- mice on

a lithogenic diet are highly susceptible to cholesterol gallstone formation due to

altered biliary lipid composition [37], although data on the role of FXR in human

cholesterol gallstone formation are extremely limited. In female, non-obese

gallstone patients, decreased expression of FXR and its target genes ASBT, ileal

lipid binding protein (ILBP) and OSTa-OSTb (all involved in bile acid transport)

has been described in the enterocyte [38, 39]. These findings suggest an intestinal

defect with decreased absorption and subsequently a diminished bile acid pool

[40]. Data on FXR gene polymorphisms in biliary disease show conflicting results.
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In a Mexican population, the most commonly found FXR haplotype was

associated with gallstone prevalence in males, whereas no association was found in

German and Chilean populations [41]. Our data yielding an absence of

association of FXR polymorphisms or haplotypes contribute to knowledge in the

subgroup of patients with gallstone pancreatitis. This subgroup is noteworthy for

the presence of small gallstones and biliary sludge [42].

In conclusion, loss-of-function of Fxr did not affect the severity of pancreatitis

in the relatively mild model of cerulein-induced AP (fast recovery, no infection,

mild histopathological abnormalities). Moreover, our genetic study does not

support a major role for variation in the FXR locus as a determinant of human

AP.

Supporting Information

File S1. Supporting tables. Table S1. Primer sequences. Table S2. SNP

information. Table S3. Association analysis of genetic variants in FXR with

subgroups of acute pancreatitis patients.

doi:10.1371/journal.pone.0114393.s001 (DOC)
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Gastroenterology and Hepatology, University Medical Center Utrecht) and Ben de

Jong (Department of Medical Microbiology and Immunology, St. Antonius

Hospital, Nieuwegein) for technical assistance; Professor K.N. Faber (Department

of Gastroenterology and Hepatology, University Medical Center Groningen) for

biochemical analyses, and Jackie Senior (Department of Genetics, University

Medical Center Groningen) for critically reading the manuscript. We thank the

Dutch Pancreatitis Study Group for DNA, plasma and clinical data of acute

pancreatitis patients.

Author Contributions
Performed the experiments: RMN FGS AEK ABAK AV. Analyzed the data: RMN

FGS AJJS ABAK MEIS GTR KJvE. Contributed reagents/materials/analysis tools:

FGS ABAK GTR MEIS CW KJvE. Conceived and designed the experiments: RMN

FGS LMAA KJvE. Wrote the paper: RMN FGS KJvE. Data acquisition: RMN FGS

AJJS AEK ABAK MEIS AV. Analysis and interpretation of data: RMN FGS ABAK

GTR KJvE. Critical revision of manuscript: AJJS AEK LMAA ABAK GTR MEIS

AV CW HGG. Supervision of study: CW HGG KJvE. Approved the final draft

submitted: RMN FGS AJJS AEK LMAA ABAK GTR MEIS AV CW HGG KJvE.

Role of FXR in Acute Pancreatitis

PLOS ONE | DOI:10.1371/journal.pone.0114393 December 3, 2014 14 / 17

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0114393.s001


References

1. Frossard JL, Steer ML, Pastor CM (2008) Acute pancreatitis. Lancet 371: 143–152.

2. Banks PA, Freeman ML (2006) Practice guidelines in acute pancreatitis. Am J Gastroenterol 101:
2379–2400.

3. Beger HG, Rau B, Mayer J, Pralle U (1997) Natural course of acute pancreatitis. World J Surg 21: 130–
135.

4. Besselink MG, van Santvoort HC, Boermeester MA, Nieuwenhuijs VB, van Goor H, et al. (2009)
Timing and impact of infections in acute pancreatitis. Br J Surg 96: 267–273.

5. Besselink MG, van Santvoort HC, Renooij W, de Smet MB, Boermeester MA, et al. (2009) Intestinal
barrier dysfunction in a randomized trial of a specific probiotic composition in acute pancreatitis. Ann
Surg 250: 712–719.

6. Ammori BJ, Leeder PC, King RF, Barclay GR, Martin IG, et al. (1999) Early increase in intestinal
permeability in patients with severe acute pancreatitis: correlation with endotoxemia, organ failure, and
mortality. J Gastrointest Surg 3: 252–262.

7. Deitch EA (1990) The role of intestinal barrier failure and bacterial translocation in the development of
systemic infection and multiple organ failure. Arch Surg 125: 403–404.

8. Van Leeuwen PA, Boermeester MA, Houdijk AP, Ferwerda CC, Cuesta MA, et al. (1994) Clinical
significance of translocation. Gut 35: S28–S34.

9. Bookout AL, Jeong Y, Downes M, Yu RT, Evans RM, et al. (2006) Anatomical profiling of nuclear
receptor expression reveals a hierarchical transcriptional network. Cell 126: 789–799.

10. Rizzo G, Renga B, Mencarelli A, Pellicciari R, Fiorucci S (2005) Role of FXR in regulating bile acid
homeostasis and relevance for human diseases. Curr Drug Targets Immune Endocr Metabol Disord 5:
289–303.

11. Wang YD, Chen WD, Moore DD, Huang W (2008) FXR: a metabolic regulator and cell protector. Cell
Res 18: 1087–1095.

12. Choi M, Moschetta A, Bookout AL, Peng L, Umetani M, et al. (2006) Identification of a hormonal basis
for gallbladder filling. Nat Med 12: 1253–1255.

13. Inagaki T, Moschetta A, Lee YK, Peng L, Zhao G, et al. (2006) Regulation of antibacterial defense in
the small intestine by the nuclear bile acid receptor. Proc Natl Acad Sci U. S. A. 103: 3920–3925.

14. Vavassori P, Mencarelli A, Renga B, Distrutti E, Fiorucci S (2009) The bile acid receptor FXR is a
modulator of intestinal innate immunity. J Immunol 183: 6251–6261.

15. Gadaleta RM, van Erpecum KJ, Oldenburg B, Willemsen EC, Renooij W, et al. (2011) Farnesoid X
receptor activation inhibits inflammation and preserves the intestinal barrier in inflammatory bowel
disease. Gut 60: 463–472.

16. Wang YD, Chen WD, Wang M, Yu D, Forman BM, et al. (2008) Farnesoid X receptor antagonizes
nuclear factor kappaB in hepatic inflammatory response. Hepatology 48: 1632–1643.

17. Nijmeijer RM, Gadaleta RM, van Mil SW, van Bodegraven AA, Crusius JB, et al. (2011) Farnesoid X
receptor (FXR) activation and FXR genetic variation in inflammatory bowel disease. PLOS ONE 6:
e23745.

18. Drafahl KA, McAndrew CW, Meyer AN, Haas M, Donoghue DJ (2010) The receptor tyrosine kinase
FGFR4 negatively regulates NF-kappaB signaling. PLOS ONE 5: e14412.

19. Zweers SJ, Booij KA, Komuta M, Roskams T, Gouma DJ, et al. (2012) The human gallbladder
secretes fibroblast growth factor 19 into bile: towards defining the role of fibroblast growth factor 19 in the
enterobiliary tract. Hepatology 55: 575–583.

20. Kok T, Hulzebos CV, Wolters H, Havinga R, Agellon LB, et al. (2003) Enterohepatic circulation of bile
salts in farnesoid X receptor-deficient mice: efficient intestinal bile salt absorption in the absence of ileal
bile acid-binding protein. J Biol Chem 278: 41930–41937.

21. Demols A, Le Moine O, Desalle F, Quertinmont E, van Laethem JL, et al. (2000) CD4(+)T cells play
an important role in acute experimental pancreatitis in mice. Gastroenterology 118: 582–590.

Role of FXR in Acute Pancreatitis

PLOS ONE | DOI:10.1371/journal.pone.0114393 December 3, 2014 15 / 17



22. Rychter JW, van Minnen LP, Verheem A, Timmerman HM, Rijkers GT, et al. (2009) Pretreatment but
not treatment with probiotics abolishes mouse intestinal barrier dysfunction in acute pancreatitis. Surgery
145: 157–167.

23. Schaap FG, van der Gaag NA, Gouma DJ, Jansen PL (2009) High expression of the bile salt-
homeostatic hormone fibroblast growth factor 19 in the liver of patients with extrahepatic cholestasis.
Hepatology 49: 1228–1235.

24. Besselink MG, van Santvoort HC, Buskens E, Boermeester MA, van Goor H, et al. (2008) Probiotic
prophylaxis in predicted severe acute pancreatitis: a randomised, double-blind, placebo-controlled trial.
Lancet 371: 651–659.

25. Nierman MC, Rip J, Kuivenhoven JA, van Raalte DH, Hutten BA, et al. (2005) Carriers of the frequent
lipoprotein lipase S447X variant exhibit enhanced postprandial apoprotein B-48 clearance. Metabolism
54: 1499–1503.

26. Nijmeijer RM, van Santvoort HC, Zhernakova A, Teller S, Scheiber JA, et al. (2013) Association
analysis of genetic variants in the Myosin IXB gene in acute pancreatitis. PLOS ONE 8: e85870.

27. Wapenaar MC, Monsuur AJ, van Bodegraven AA, Weersma RK, Bevova MR, et al. (2008)
Associations with tight junction genes PARD3 and MAGI2 in Dutch patients point to a common barrier
defect for coeliac disease and ulcerative colitis. Gut 57: 463–467.

28. Barrett JC, Fry B, Maller J, Daly MJ (2005) Haploview: analysis and visualization of LD and haplotype
maps. Bioinformatics 21: 263–265.

29. Van Mil SW, Milona A, Dixon PH, Mullenbach R, Geenes VL, et al. (2007) Functional variants of the
central bile acid sensor FXR identified in intrahepatic cholestasis of pregnancy. Gastroenterology 133:
507–516.

30. Jedlitschky G, Leier I, Buchholz U, Hummel-Eisenbeiss J, Burchell B, et al. (1997) ATP-dependent
transport of bilirubin glucuronides by the multidrug resistance protein MRP1 and its hepatocyte
canalicular isoform MRP2. Biochem J 327 (Pt 1): 305–310.

31. Schmitt M, Klonowski-Stumpe H, Eckert M, Luthen R, Haussinger D (2004) Disruption of
paracellular sealing is an early event in acute caerulein-pancreatitis. Pancreas 28: 181–190.

32. Fallon MB, Gorelick FS, Anderson JM, Mennone A, Saluja A, et al. (1995) Effect of cerulein
hyperstimulation on the paracellular barrier of rat exocrine pancreas. Gastroenterology 108: 1863–1872.

33. Lutgendorff F, Nijmeijer RM, Sandstrom PA, Trulsson LM, Magnusson KE, et al. (2009) Probiotics
prevent intestinal barrier dysfunction in acute pancreatitis in rats via induction of ileal mucosal
glutathione biosynthesis. PLoS ONE 4: e4512.

34. Schnekenburger J, Mayerle J, Kruger B, Buchwalow I, Weiss FU, et al. (2005) Protein tyrosine
phosphatase kappa and SHP-1 are involved in the regulation of cell-cell contacts at adherens junctions
in the exocrine pancreas. Gut 54: 1445–1455.

35. Gadaleta RM, Oldenburg B, Willemsen EC, Spit M, Murzilli S, et al. (2011) Activation of bile salt
nuclear receptor FXR is repressed by pro-inflammatory cytokines activating NF-kappaB signaling in the
intestine. Biochim Biophys Acta 1812: 851–858.

36. Van Felius I, Akkermans LM, Bosscha K, Verheem A, Harmsen W, et al. (2003) Interdigestive small
bowel motility and duodenal bacterial overgrowth in experimental acute pancreatitis. Neurogastroenterol
Motil 15: 267–276.

37. Moschetta A, Bookout AL, Mangelsdorf DJ (2004) Prevention of cholesterol gallstone disease by FXR
agonists in a mouse model. Nat Med 10: 1352–1358.

38. Bergheim I, Harsch S, Mueller O, Schimmel S, Fritz P, et al. (2006) Apical sodium bile acid transporter
and ileal lipid binding protein in gallstone carriers. J Lipid Res 47: 42–50.

39. Renner O, Harsch S, Strohmeyer A, Schimmel S, Stange EF (2008) Reduced ileal expression of
OSTalpha-OSTbeta in non-obese gallstone disease. J Lipid Res 49: 2045–2054.

40. Gadaleta RM, van Mil SW, Oldenburg B, Siersema PD, Klomp LW, et al. (2010) Bile acids and their
nuclear receptor FXR: Relevance for hepatobiliary and gastrointestinal disease. Biochim Biophys Acta
1801: 683–692.

41. Kovacs P, Kress R, Rocha J, Kurtz U, Miquel JF, et al. (2008) Variation of the gene encoding the
nuclear bile salt receptor FXR and gallstone susceptibility in mice and humans. J Hepatol 48: 116–124.

Role of FXR in Acute Pancreatitis

PLOS ONE | DOI:10.1371/journal.pone.0114393 December 3, 2014 16 / 17



42. Venneman NG, Renooij W, Rehfeld JF, VanBerge-Henegouwen GP, Go PM, et al. (2005) Small
gallstones, preserved gallbladder motility, and fast crystallization are associated with pancreatitis.
Hepatology 41: 738–746.

Role of FXR in Acute Pancreatitis

PLOS ONE | DOI:10.1371/journal.pone.0114393 December 3, 2014 17 / 17


	TABLE_1
	Figure 1
	Figure 2
	Figure 3
	Section_24
	Reference 1
	Reference 2
	Reference 3
	Reference 4
	Reference 5
	Reference 6
	Reference 7
	Reference 8
	Reference 9
	Reference 10
	Reference 11
	Reference 12
	Reference 13
	Reference 14
	Reference 15
	Reference 16
	Reference 17
	Reference 18
	Reference 19
	Reference 20
	Reference 21
	Reference 22
	Reference 23
	Reference 24
	Reference 25
	Reference 26
	Reference 27
	Reference 28
	Reference 29
	Reference 30
	Reference 31
	Reference 32
	Reference 33
	Reference 34
	Reference 35
	Reference 36
	Reference 37
	Reference 38
	Reference 39
	Reference 40
	Reference 41
	Reference 42

