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Abstract

Rationale

Experimental studies suggest that intra-abdominal infection (IAI) induces biological alter-

ations that may affect the risk of lung infection.

Objectives

To investigate the potential effect of IAI at ICU admission on the subsequent occurrence of

ventilator-associated pneumonia (VAP).

Methods

We used data entered into the French prospective multicenter Outcomerea database in

1997–2011. Consecutive patients who had severe sepsis and/or septic shock at ICU admis-

sion and required mechanical ventilation for more than 3 days were included. Patients with

acute pancreatitis were not included.

Measurements and Main Results

Of 2623 database patients meeting the inclusion criteria, 290 (11.1%) had IAI and 2333

(88.9%) had other infections. The IAI group had fewer patients with VAP (56 [19.3%] vs.
806 [34.5%], P<0.01) and longer time to VAP (5.0 vs.10.5 days; P<0.01). After adjustment

on independent risk factors for VAP and previous antimicrobial use, IAI was associated
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with a decreased risk of VAP (hazard ratio, 0.62; 95% confidence interval, 0.46–0.83;

P<0.0017). The pathogens responsible for VAP were not different between the groups with

and without IAI (Pseudomonas aeruginosa, 345 [42.8%] and 24 [42.8%]; Enterobacteria-
ceae, 264 [32.8%] and 19 [34.0%]; and Staphylococcus aureus, 215 [26.7%] and 17

[30.4%], respectively). Crude ICU mortality was not different between the groups with and

without IAI (81 [27.9%] and 747 [32.0%], P = 0.16).

Conclusions

In our observational study of mechanically ventilated ICU patients with severe sepsis and/or

septic shock, VAP occurred less often and later in the group with IAIs compared to the

group with infections at other sites.

Introduction
Despite the availability of numerous therapeutic interventions, ventilator-acquired pneumonia
(VAP) remains a major public health issue [1]. VAP is the leading nosocomial infection in
intensive care unit (ICU) patients and is responsible for high morbidity and mortality rates [2].
Risk factors for VAP include patient characteristics such as co-morbidities and immunodefi-
ciency due, for instance, to chronic corticosteroid therapy or AIDS. In ICU patients, acute
alterations in innate and adaptative immunity with immunoparalysis characterized by
impaired antigen presentation and endotoxin tolerance may play a pivotal role in the occur-
rence of nosocomial infections [3, 4]. Endotoxin tolerance is due to a substantial decrease in
the cytokine response to lipopolysaccharide (LPS) after the first LPS stimulation, as shown in
both animal models and humans [5, 6]. In patients with sepsis, greater magnitude [7] and lon-
ger duration [8] of endotoxin tolerance are associated with adverse outcomes. However, the
role for endotoxin tolerance in the pathophysiology of nosocomial infections remains unclear.
Recent studies suggest that endotoxin tolerance may involve re-programming of immune cells
[9] responsible for changes in their behavior without impairments in phagocytic [10], or bacte-
ricidal capabilities [10].

In patients with peritonitis, large amounts of LPS are found both within the peritoneal cav-
ity, and in the lymph and blood (especially in the hepatic circulation) [11]. Whether the result-
ing immune cell exposure to LPS influences the risk of VAP in ICU patients is unknown. In
animal models, LPS exposure or peritoneal bacterial infection induced by a single local Escheri-
chia coli injection or by cecal ligation and puncture is usually associated with better infection
control during bacteremia or a second intra-abdominal infection (IAI), with improved bacte-
rial clearance as the underlying mechanism [12–14]. Nonetheless, these models have produced
conflicting results in terms of control of subsequent respiratory infection [13, 15, 16]. In some
models, peritonitis was associated with worse outcomes of Gram-positive or Gram-negative
pneumonia [15, 16], whereas another study suggested increased clearance of Pseudomonas aer-
uginosa [13]. Although emergency surgery is associated with an increased risk of nosocomial
infection [17], whether IAI affects the risk of subsequent respiratory tract infection is
unknown.

To investigate the potential influence of IAI on the risk of subsequent respiratory infection,
we compared the incidence of VAP and outcomes in patients admitted to the ICU with severe
sepsis and/or septic shock due to IAI versus infections at other sites. To this end, we used the
multicenter prospective database Outcomerea [2].
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Material and Methods

Study population
We used all the records in the French multicenter prospective database Outcomerea covering
the 15-year period from 1997 to 2011. Data were collected as previously described [2]. Briefly,
participating ICUs provided a random sample of at least 50 ICU stays longer than 24 hours.
For each patient, admission characteristics and in-ICU events and scores were recorded daily.
The following were recorded at admission: demographic data, admission diagnosis and admis-
sion category (medical, scheduled surgery, or emergent surgery), chronic co-morbidities (using
the Knaus [18] definition and including the McCabe [19] score), clinical findings, and labora-
tory test results. The Simplified Acute Physiology Score (SAPS) II [20] and Sequential Organ
Failure Assessment (SOFA) [21] were computed at admission then once a day. In addition,
data on procedures and treatments were collected: antibiotics, enteral feeding, corticosteroids
in doses greater than 0.5 mg/Kg, invasive or noninvasive mechanical ventilation, vasopressors,
hemodialysis, insertion and presence of invasive devices (arterial catheter, central venous cath-
eter, Swan-Ganz catheter, and Foley catheter), tracheotomy, and do-not-resuscitate orders.
Hereafter, we refer to the above-described variables as severity-of-illness indicators.

Inclusion criteria were age over 18 years, mechanical ventilation started at ICU admission
and continued for more than 3 calendar-days, and severe sepsis or septic shock. We did not
include patients with acute pancreatitis.

Definitions and patient groups
IAI was defined as any of the following diagnoses: primary peritoneal abscess, secondary or
postoperative peritonitis, and acute cholangitis. Because of their retroperitoneal location and
non portal blood drainage, urinary tract infections were not classified as IAIs. We used this def-
inition to classify the patient into two groups, with and without IAI infection, respectively.

VAP was defined as new and persistent pulmonary infiltrates on chest radiographs com-
bined with purulent tracheal secretions and/or body temperature greater than or equal to
38.5°C or less than or equal to 36.5°C and/or blood leukocyte count greater than or equal to
10�109/L. A definitive diagnosis of VAP required microbiological confirmation by quantitative
culture of a protected specimen brush (>103 cfu/mL), bronchoalveolar lavage (BAL) fluid spec-
imen (>104cfu/mL), or endotracheal aspirate (>105 cfu/mL) [22]. Severe sepsis was defined as
the presence of acute organ dysfunction secondary to infection and septic shock as severe sepsis
with hypotension requiring vasopressor therapy.

Bacterial resistance was defined according to the bacterial species: resistance to methicillin
for Staphylococcus aureus; resistance to ticarcillin, ceftazidime, or imipenem for P. aeruginosa;
and extended-spectrum beta-lactamase production or cephalosporinase hyperproduction for
Enterobacteriaceae.

Ethical issues
The collect and use of data from the Outcomerea database was approved by the institutional
review board of the Outcomerea leader (CECIC Clermont-Ferrand—IRB n°5891; Ref: 2007–
16), which waived the need for signed informed consent of the participants, in accordance with
French legislation on non-interventional studies. However, the patients and their next of kin
were asked whether they were willing to participate in the database, and none declined
participation.
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Statistical analysis
Qualitative and quantitative patient characteristics described as number (%) or median (inter-
quartile range [IQR]), respectively, were compared between the groups with and without IAI
using the chi-square or Mann-Whitney tests, as appropriate. Cumulative incidence curves of
the risk of VAP and of death were plotted for each group. Endpoints (VAP and death) were
censored on day 30. Patients discharged from the ICU (to their home or to an extended-care
facility) were checked to be free of VAP and alive on day 30.

To estimate the impact of IAI on the risk of VAP, we used a Cox model [23] with VAP as
the dependent variable. Antibiotic use was handled as a time-dependent variable assigned a
value of 1 if present on the previous day and a value of 0 otherwise. We then used stepwise
selection to adjust the impact of IAI for confounding factors. The results are reported as hazard
ratios (HRs) and 95% confidence intervals (95%CIs) with ICU day 3 defined as time 0. Data
were censored on day 30.

We modeled the risk of day-30 mortality after VAP using another Cox model in the sub-
group with VAP. Parameters associated with death after VAP were selected using a bivariate
model. The impact of IAI on day-30 VAP-associated mortality was assessed using the same
model, with or without adjustment on other prognostic co-variates. The results are reported as
HRs and 95% CIs with the day of VAP onset defined as time 0.

P values<0.05 were considered significant. Analyses were computed using SAS 9.2software
(SAS Institute; Cary, NC).

Results

Descriptive data
Of 14,825 patients in the Outcomerea database, 2623 fulfilled the inclusion criteria (mechanical
ventilation>3 days and severe sepsis and/or septic shock) and did not have pancreatitis.
Among them, 290 (11.1%) had IAI at ICU admission and 2333 (88.9%) had infections at other
sites (Fig 1).

The main reasons for ICU admission were septic shock in the IAI group (60.3%) and acute
respiratory failure (38.8%), septic shock (18%), and coma (17%) in the non-IAI group. Most
IAI patients (77.2%) were admitted for emergent surgery and most non-IAI patients (80.0%)
for medical reasons. The two groups had similar acute-illness severity as reflected by the SAPS
II and SOFA score (Table 1).

Ventilator-associated pneumonia
VAP occurred in 56 (19.3%) patients in the IAI group and 806 (34.5%) in the non-IAI group
(P<0.01) (Table 1). The median time to VAP was 5 [2; 10] in the non-IAI group and 10.5 [6.5;
17] in the IAI group (p< 0.01) (S3 Table). Both early and late VAP were less common in the
IAI group (Fig 2). Frequency of early VAP (<72h) was 2.1% and 10.4% of patients in IAI and
non-IAI group; frequency of late VAP was 17.2% and 24.1% respectively. In the Cox model
taking presence of antibiotic therapy into account (Table 2), the difference remained significant
(HR, 0.623; 95% CI: 0.463–0.837; P = 0.0017). Factors independently associated with an
increase in VAP risk were male gender (HR, 1.29; 95%CI, 1.11–1.50; P = 0.0008), and smoking
habits (HR, 1.22; 95%CI, 1.03–1.43; P = 0.02). The proportion of patients with VAP in whom
the antibiotics used were effective against the recovered organisms was similar in the groups
with and without IAI (28 [50.0%] and 339 [42.1%], respectively; P = 0.25).

In the group with VAP, the subgroups with and without IAI differed regarding the reasons
for ICU admission, admission category (medical, scheduled surgery, emergency surgery), and
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Glasgow Coma Scale score; they did not differ for age, smoking status, or number of co-mor-
bidities (S3 Table). Time from ICU admission to VAP diagnosis was significantly longer in the
IAI group (5.0 vs. 10.5 days; P<0.01).The distribution of the organisms responsible for VAP
was not significantly different between the two groups. In the groups with and without IAI, P.
aeruginosa was recovered in 345 (42.8%) and 24 (42.8%) VAP episodes, Enterobacteriacae in
264 (32.8%) and 19 (34.0%), and S. aureus in 215 (26.7%) and 17 (30.4%), respectively. No dif-
ferences in antibiotic resistance were found between the two groups (S4 Table).

Fig 1. Flow Chart.

doi:10.1371/journal.pone.0137262.g001
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Table 1. Patient characteristics.

N (%)

variable Patients without IAI Patients with IAI P value

(n = 2333) (n = 290)

Age in y, median (IQR) 66 [54; 76] 71 [60; 78] <.01

Male 1510 (64.7) 158 (54.5) <.01

Smoking habits 574 (24.6) 46 (15.9) <.01

BMI, median (IQR) 25.3 [22.5; 27.8] 25.3 [23; 29.1] 0.05

Main reason for ICU admission

Coma 396 (17.0) 8 (2.8) <.01

Respiratory distress 905 (38.8) 34 (11.7) <.01

Septic shock 421 (18.0) 175 (60.3) <.01

Hemorrhagic shock 73 (3.1) 5 (1.7) 0.18

Cardiogenic shock 105 (4.5) 1 (0.3) <.01

Other shock 65 (2.8) 8 (2.8) 0.98

MOF 79 (3.4) 32 (11.0) <.01

Trauma 20 (0.9) 3 (1.0) 0.76

COPD symptoms 106 (4.5) 3 (1.0) <.01

Admission category <.01

Medical 1899 (80.0) 39 (13.5)

Scheduled surgery 196 (8.4) 27 (9.3)

Emergency surgery 271 (11.6) 224 (77.2)

Type of surgery

Vascular 54 (2.3) 4 (1.4) 0.31

Cardiac 27 (1.2) 1 (0.3) 0.20

Orthopedic 21 (0.9) 1 (0.3) 0.33

Head and neck 6 (0.3) 0(0.0) 0.39

Gynecological 2 (0.1) 2 (0.7) 0.01

Gastrointestinal 46 (2) 177 (61) <.01

Chronic co-morbidities

At least one 1143 (49.0) 112 (38.6) <.01

Respiratory 508 (21.8) 32 (11.0) <.01

Cardiac 345 (14.8) 37 (12.8) 0.36

Renal 102 (4.4) 11 (3.8) 0.65

Immunodepression 338 (14.5) 34 (11.7) 0.20

Hepatic 157 (6.7) 20 (6.9) 0.91

Reason for mechanical ventilation

Respiratory failure 965 (41.4) 36 (12.4) <.01

Coma 436 (18.7) 10 (3.4) <.01

Catecholamines 1284 (55.0) 196 (67.6) <.01

SAPS II, median (IQR)a 53 [41; 66] 52 [41; 62] 0.28

SOFA, median (IQR)b 8 [5; 11] 7 [6; 10] 0.26

Nosocomial infection during the ICU stay

VAP 806 (34.5) 56 (19.3) <.01

Catheter-related 132 (5.7) 8 (2.8) 0.04

Urinary tract 63 (2.7) 3 (1.0) 0.09

Surgical site 34 (1.5) 21 (7.2) <.01

Other site 14 (0.6) 2 (0.7) 0.85

(Continued)
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Mortality
Crude ICU mortality was 27.9% (81 patients) in the IAI group and 32.0% (747) in the non-IAI
group (p = 0.16) (Table 1). As expected, mortality was higher in the group with VAP. However,
within the group with VAP, the cumulative incidence of death was not different between the
IAI and non-IAI groups (Fig 3). Other factors associated with mortality were chronic co-mor-
bidities such as hematological malignancies, cancer, or HIV infection and severity of the infec-
tion (septic shock, use of catecholamines, renal failure, impaired hematosis, and impaired
hemostasis) (S5 Table).

Discussion
In a large prospective cohort of ICU patients with severe sepsis and/or septic shock, IAI was
associated with a decreased risk of VAP and longer time to VAP onset, compared to infections
at other sites. Neither ICU mortality nor hospital mortality differed between the groups with
and without IAI.

We are not aware of previous studies reporting a protective effect of IAI against VAP in
patients with severe sepsis and/or septic shock. We chose to evaluate the potential influence of
IAI on the occurrence of VAP because most animal models of sepsis-related immunodeficiency
involve the induction of IAI. Our results are at variance with those of these animal studies,
most of which suggest that IAI may increase the risk of VAP. First reading these results may

Table 1. (Continued)

N (%)

variable Patients without IAI Patients with IAI P value

(n = 2333) (n = 290)

Hospital <.01

A 341 (14.6) 32 (11.0)

B 79 (3.4) 36 (12.4)

C 213 (9.1) 12 (4.1)

D 141 (6.0) 10 (3.5)

E 548 (23.5) 45 (15.5)

F 124 (5.3) 9 (3.1)

G 26 (1.1) 4 (1.4)

H 713 (30.6) 139 (47.9)

I 148 (6.3) 3 (1.0)

Chest tube the first 2 days 255 (10.9) 25 (8.6) 0.23

Neuromuscular blockers the first 2 days 293 (12.6) 12 (4.1) <.01

LOD score <.01

<3 342 (14.7) 54 (18.6)

3 to 5 758 (32.5) 114 (39.3)

6 to 7 552 (23.7) 67 (23.1)

>7 681 (29.2) 55 (19.0)

ICU stay length in days, median (IQR) 16 [10; 27] 15 [9; 26] 0.49

Death in the ICU 747 (32) 81 (27.9) 0.16

IAI, intra-abdominal infection; IQR, interquartile range; BMI, body mass index; MOF, multiple organ failures; COPD, chronic obstructive pulmonary

disease; SAPS II, Simplified Acute Physiology Score, version II; SOFA, Sequential Organ Failure Assessment; ICU, intensive care unit; VAP, ventilator-

associated pneumonia

doi:10.1371/journal.pone.0137262.t001
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seem surprising. However, human patients and animal models differ in many respects [24–26].
Experimental animals are typically young and devoid of chronic illnesses [25, 26] whereas our
patients are older and have at least a chronic disease for about half of them in both groups. In
addition, they show strong resistance to LPS [27]. Beside the technical parameters of achieve-
ment of infectious models, the time interval between the IAI and lung infection is of para-
mount importance [27]. In animal models, pathogens are instilled into the airways 2 to 24
hours after IAI induction [15, 16], which is a considerably shorter interval than the time from
IAI to VAP in ICU patients. Thus, the animal models consist in co-infection rather than
sequential infection. Interestingly, in a few studies involving a longer time to lung infection
induction, bacterial clearance [13] and pneumonia control [28] were improved by previous

Fig 2. Occurrence of ventilator-associated pneumonia in patients admitted to the ICU for severe sepsis and/or septic shock related to intra-
abdominal infections (IAIs) or to infections at other sites. Cumulative incidence plot.

doi:10.1371/journal.pone.0137262.g002
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infection. In addition, the size of the bacterial inoculum used to induce pneumonia may affect
severity in animal models [15, 16, 25, 27]. Finally, the instillation of bacteria into the lungs does
not replicate the pathogenic mechanism of VAP, which probably involves repeated bacterial
microinhalations.

In a previous clinical study, intra-abdominal surgery was followed by a high incidence of
hospital-acquired pneumonia with higher morbidity, longer hospital stays, and higher costs
[29]. This study did not distinguish between patients with and without IAI and did not com-
pare with other populations suffering from VAP. In our study in patients with severe sepsis
and/or septic shock, VAP was less common in the group with IAI compared to the group with
infections at other sites. The low overall incidence of VAP may be due to the use of quantitative
distal samples for the diagnosis in most of our patients.

Several mechanisms may explain the decreased risk of VAP in our group with IAI. First, the
administration of high antibiotic doses to treat IAI may protect against early VAP. An effect of

Table 2. Result of the Coxmodel analysis of the impact of intra-abdominal infection on the subsequent risk of ventilator-associated pneumonia.

Parameter DF Parameter estimate Std Chi-Square P value HR 95%CI

Antibiotic on the previous day 1 -0.25 0.07 11.68 0.0006 0.78 0.67 0.89

IAI 1 -0.47 0.15 9.84 0.0017 0.62 0.46 0.83

Hospital 0.0001

A 1 -0.24 0.17 1.98 0.16 0.78 0.56 1.10

B 1 0.15 0.22 0.46 0.50 1.16 0.76 1.78

C 1 -0.01 0.19 0.00 0.95 0.99 0.68 1.43

D 1 0.32 0.19 2.78 0.10 1.38 0.94 2.02

E 1 -0.24 0.16 2.07 0.15 0.79 0.57 1.09

F 1 0.20 0.20 0.99 0.32 1.22 0.83 1.79

G 1 -0.49 0.37 1.77 0.18 0.61 0.30 1.26

H 1 -0.26 0.16 2.58 0.11 0.77 0.56 1.06

Male 1 0.26 0.08 11.32 0.0008 1.29 1.11 1.50

Smoking habits 1 0.20 0.08 5.65 0.0174 1.22 1.03 1.43

Chest tube the first 2 days 1 0.34 0.10 10.53 0.0012 1.40 1.14 1.72

Neuromuscular blockers the first 2 days 1 0.34 0.10 11.62 0.0007 1.41 1.16 1.72

Septic shock 1 -0.62 0.12 27.01 <.0001 0.54 0.42 0.68

Respiratory distress 1 -0.31 0.1 10.13 0.0015 0.73 0.60 0.89

COPD symptoms 1 -0.52 0.21 6.02 0.0142 0.59 0.39 0.90

LOD score 0.0143

<3 1 0.20 0.11 3.24 0.07 1.23 0.98 1.53

3 to 5 1 -0.04 0.09 0.20 0.65 0.96 0.80 1.15

6 to 7 1 0.20 0.10 4.51 0.03 1.23 1.02 1.48

Chronic co-morbidities respiratory 1 -0.01 0.09 0.00 0.95 0.99 0.83 1.20

Age 0.81

< 53 1 -0.07 0.11 0.38 0.53 0.94 0.76 1.15

53 to 65 1 -0.08 0.10 0.71 0.40 0.92 0.75 1.12

66 to 76 1 -0.01 0.10 0.01 0.92 0.99 0.82 1.20

MOF symptoms 1 -0.08 0.19 0.19 0.66 0.9 0.63 1.35

Coma symptoms 1 0.08 0.11 0.55 0.46 1.09 0.87 1.36

IAI, intra-abdominal infection; DF, degrees of freedom; HR, hazard ratio; 95%CI, 95% confidence interval; COPD, chronic obstructive pulmonary disease;

LOD, Logistic Organ Dysfunction score

doi:10.1371/journal.pone.0137262.t002
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this mechanism is unlikely in our study, however, as the patients in both groups had similar
sepsis severity and received similar broad-spectrum antibiotics for similar durations. For the
same reasons, the selection of reduced sensibility microbes due to the previous use of broad
spectrum antibiotics is unlikely. Second, the paralytic ileus related to IAI often requires gastric
tube placement to empty the stomach and the absence of enteral feeding, which may decrease
the risk of inhalation and therefore the risk of VAP [22].

Fig 3. Cumulative incidence plot for death in patients with and without intra-abdominal infections (IAIs).

doi:10.1371/journal.pone.0137262.g003
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Third, the magnitude of the initial inflammatory response in the lung may affect the second-
ary antiinfectious response. The systemic inflammatory response that characterizes sepsis is
associated with greater activation of pulmonary inflammatory processes in IAI than in other
infections [30–32].

Fourth, next to these observations an important phenomenon that may be involved in
pathophysiological mechanisms explaining the observed discrepancy between groups in our
study is associated with the location (peritoneal) of the infection for many reasons: (a) the
presence of endotoxemia [33]. It has been widely demonstrated that presence (and default of
blood clearance) of LPS is associated with a compromised immunity leading to an increased
risk of Gram-negative infection (which is the case in our study with 74.8 and 73.4% of VAP
associated with Gram-negative bacteria in non-IAI and IAI group respectively) [34]. Perito-
nitis may be associated with a faster decrease in free and lipoproteins-bounded circulating
LPS by early filtration of digestive venous blood by the liver (and notably Kupffer cells)
which play a central role in LPS elimination [35] and surgical peritoneal cleaning reducing
the amount of local bacterial fragments. (b) During intra-abdominal infection, more than
during any other infection, the systemic response is associated with an inflammatory activa-
tion in the lung parenchyma [30–32] leading to the production by alveolar macrophages of
proinflammatory cytokines and chemokines [32] favoring chemoattraction of monocytes
[31, 36] and neutrophils [37, 38]. Systemic activated neutrophils can infiltrate lung capillary
network before penetrating the parenchyma [38, 39]. Even after exposure to a first stimula-
tion by LPS, as in the case of peritoneal infection, neutrophils still retain a proinflammatory
phenotype and can respond to GM-CSF stimulation [40] which is present in large amount in
the lung parenchyma [38]. Presence of alveolar macrophages, monocytes and activated neu-
trophils may protect the lung parenchyma from new pathogens colonization, reducing the
bacterial inoculums and then preventing the occurrence of an early secondary VAP [41].
This notion is of particular interest as much as the first stimulation with a pathogen or any
PAMP (pathogen associated molecular pattern) do not modify the ability of alveolar macro-
phages to produce a proinflammatory response during a second stimulation because of their
resistance to endotoxin reprogramming [42, 43].

Finally, although patients with severe sepsis and IAI were at decreased risk for VAP, their
risk of death was similar to that in the non-IAI group. The attributable mortality of VAP is
about 6% [2] and our study was not powered to detect a significant difference in VAP-associ-
ated mortality. In surgical patients, particularly those with IAI, respiratory tract infections,
most notably VAP, are usually associated with worse outcomes [44]. Earlier data obtained by
our group suggest higher VAP mortality rates in surgical than nonsurgical patients [44]. The
present study was not designed to assess attributable mortality, as we performed comparisons
only within the group of patients with VAP.

Although we took a large amount of information into account and used highly effective sta-
tistical methods to correct for various biases, several limitations should be underlined.

First, a diagnostic criterion for VAP is the presence of chest radiograph abnormalities due
to local inflammation. In patients with severe IAI but no pneumonia, such abnormalities are
the rule, which may lead to delays in suspecting and diagnosing VAP. Another challenge when
diagnosing VAP is that many patients with infections at non-intra-abdominal sites exhibit a
variety of chest radiograph abnormalities, particularly when their first infection is pneumonia.
Second, the diagnosis of VAP relied on different types of microbiological diagnosis techniques:
quantitative cultures of tracheal aspirates or protected distal specimens (brush, telescopic cath-
eter, or bronchoalveolar lavage), leading to difference in VAP incidence. Nonetheless such cri-
teria correspond to the usual international guidelines, notably using clinical pulmonary
infection score (CPIS) and its modified versions [45] leading us to consider the VAP diagnosis
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as relevant in our cohort. Third, we did not compare the incidence of VAP between patients
with IAI and patients without infections at ICU admission. However, two such groups would
differ markedly regarding numerous confounding factors, among which initial antibiotic ther-
apy and duration of mechanical ventilation would be of paramount importance. Fourth, our
non-IAI group was highly heterogeneous, as the types of infection varied widely. The number
of infection-site subgroups would have been too large and the size of each subgroup too small
for a valid subgroup analysis. In our point of view this is a very interesting point due to the
opportunity to compare peritoneal infection which was largely studied in many animal models
and as patient diseases to other infections that are usually not polymicrobial and do not involve
such large amount of bacteria, LPS and do not benefit from liver immediate filtration. Finally,
our database did not contain biological data (e.g., cytokine levels) or histological data relevant
to the link between IAI and VAP, needing forthcoming studies to confirm our pathophysiolog-
ical hypothesis.

Conclusion
IAI as the cause of severe sepsis and/or septic shock seems associated with a lower risk and
later occurrence of VAP compared to infections at other sites. This finding requires confirma-
tion in other cohorts and warrants studies into potential pathophysiological mechanisms.
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