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Abstract

Variability, stochastic or otherwise, is a central feature of neural activity. Yet the means by

which estimates of variation and uncertainty are derived from noisy observations of neural

activity is often heuristic, with more weight given to numerical convenience than statistical

rigour. For two-photon imaging data, composed of fundamentally probabilistic streams of

photon detections, the problem is particularly acute. Here, we present a statistical pipeline

for the inference and analysis of neural activity using Gaussian Process regression, applied

to two-photon recordings of light-driven activity in ex vivo mouse retina. We demonstrate the

flexibility and extensibility of these models, considering cases with non-stationary statistics,

driven by complex parametric stimuli, in signal discrimination, hierarchical clustering and

other inference tasks. Sparse approximation methods allow these models to be fitted rap-

idly, permitting them to actively guide the design of light stimulation in the midst of ongoing

two-photon experiments.

Author summary

There are many sources of noise in recordings of neural activity, and the first challenge in

neural data analysis is to separate this noise from experimentally relevant variation. This

is particularly problematic for two-photon imaging data. Two-photon imaging uses fluo-

rescent indicators to measure changes in the concentration of molecules involved in cell

signalling, and adds a variety of numerical, biological and optical noise sources. We pres-

ent a method for disentangling this signal and noise using Gaussian processes, a family of

probabilistic models which provide a principled way of inferring mean activity and vari-

ability. In addition to signal recovery, we show that these models can test the evidence for

whether and where two signals are different and that these tests can be used to look for

groups in sets of signals. We explore how these models can be extended to predict how

signals will change under different experimental conditions, and that these predictions

can be used to select new conditions for further exploration.
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Introduction

Over the last two decades, two-photon (2P) imaging has become one of the premier tools for

studying coding in neural systems from the population level down to individual neural com-

partments [1]. The resulting data is highly variable due to the inherent variability of neurons

and technical sources of noise in the imaging process [2, 3]. Yet we typically assume that

beneath the noisy signals which are observed there is a smooth latent function describing the

activity of a neuron or a neural compartment. In a typical analysis pipeline for 2P data, we

attempt to recover this function by grouping noisy observations from pixels into regions of

interest (ROIs), which cover the soma or different compartments of a neuron, temporally

interpolating them to a common frame rate and averaging across repetitions of the same stim-

ulus (see also Box 1). Each stage is intended to smooth the observations and get closer to the

“true” underlying activity function of the neuron. To measure the uncertainty about this latent

activity function, often the variance between repetitions of the same experimental condition is

used, with little assessment of whether this reflects the actual uncertainty given measurement

and neural variability.

Here, we propose a different approach based on Gaussian Process (GP) regression [4] to

infer signals from 2P recordings in a statistically principled manner, propagating the uncer-

tainty all the way from the measurements to the desired inference. This regression procedure

recovers an estimate of the true activity of the neuron, whether changes in calcium or gluta-

mate concentration, from observations with experimental noise. This is facilitated by model-

ling explicitly the change in the signal over time and as a function of stimulus parameters.

Gaussian processes are probabilistic models, which describe the functional relationship

between a set of predictors and a set of observations (see Box 2 for a mathematical primer). In

contrast to typical pre-processing pipelines, the statistical properties of the observed signal are

considered explicitly as part of the model optimisation. Recently developed sparse GP approxi-

mations allow us to apply these models to comparatively large datasets with several thousand

observations, as are common in 2P experiments [5].

Using 2P recordings of calcium and glutamate dynamics in isolated mouse retina, we dem-

onstrate how these models can be used to construct probabilistic representations of neural

activity. We treat several use cases: First, we show that GP-based analysis of 2P recordings can

be used to perform comparisons between the responses of a given cell under different condi-

tions, allowing one to identify parts of the response with significant differences. Second, we

exploit the properties of the GPs to perform a hierarchical clustering of cell responses and

provides quantitative criteria for deciding how many clusters to keep. In addition, we use the

framework to test which stimulus parameters influence neural activity in an ANOVA-like

framework. Finally, we explore how the representation of uncertainty can be exploited for

experimental design, informing the choice of parameters to optimally reduce the uncertainty

about the neural response.

Results

We applied a Bayesian framework based on Gaussian Process (GP) regression to efficiently

infer neural activity with uncertainty estimates from recordings of light stimulus-driven activ-

ity in the mouse retina. The retina decomposes a stream of images into parallel channels repre-

senting salient stimulus features. The central circuit of this network is a feedforward pathway

relaying the initial signal from the photoreceptors through the intermediate bipolar cells to

retinal ganglion cells (RGCs), and from there through the optic nerve to the rest of the visual

system. Inhibitory interneurons called horizontal and amacrine cells play key roles in the adap-

tation and feature extraction (for review, see [6]). In the datasets analysed here, we measured

Bayesian hypothesis testing and experimental design for two-photon imaging data

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007205 August 2, 2019 2 / 27

Eye Institute (NEI; 1R01EY023766-01A1 to TE) and

the Max Planck Society (MPG; M.FE.A.KYBE0004

to KF). The funders had no role in study design,

data collection and analysis, decision to publish or

preparations of the manuscript.

Competing interests: The authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.pcbi.1007205


three stages of the excitatory pathway: Firstly, the presynaptic calcium signal in the axon termi-

nals of a bipolar cell using the synthetic indicator dyes Oregon-Green BAPTA-1 (OGB-1) and

GCaMP6f (the latter data previously published in [7]). Secondly, the glutamate release from

these terminals, as measured by the genetically-encoded biosensor iGluSnFR [8, 9]. Finally, the

calcium signal in RGC somata loaded with OGB-1 through bulk electroporation [10].

In our framework, a GP model (see Box 2 for mathematical primer) infers an estimate of

the activity of a neuron from the observed fluorescence of each ROI in a scan field, which are

typically cell somata or axon terminals. The estimated function models the “true” activation

state of the neuron, i.e. the concentration of calcium or glutamate. In addition, we model the

Box 1: Analysis pipelines for two-photon imaging data

Two-photon imaging data can typically be described by two spatial dimensions (x, y)

and a time dimension (t), at which fluorescence of an activity indicator is measured. In

addition, there is a second set of variables one needs to consider: those of the stimulus,

which are described with a set of parameters (θ). Thus, a single measurement Fx,y,t,θ

describes the fluorescence at point (x, y) and time t, given that stimulus θ was shown.

The dimensionality of the parameter vector will vary between stimuli and experiments.

In an analysis pipeline, we want to perform inference about e.g. whether a stimulus

parameter systematically influences the neural activity, i.e. whether Fx;y;t;y1
¼ Fx;y;t;y2

. The

first step of such a pipeline is often to transform the fluorescence data Fx,y,t,θ into time-

series representations for a distinct neural structure such as the soma or an axon. This

transformation is usually achieved by defining a set of regions of interest (ROI) in the

spatial dimensions and for each of those, computing the average value of all measured

values in each time point:

Fi;t;y ¼ hFx;y;t;yix;y2ROIi
ð1Þ

Here, hi denote the average. Two-photon imaging provides only near-simultaneous mea-

sures of the structures in the imaging field, as the scanning laser which transverses the

field is only positioned at one point within the field at any given time. At no time point

are two structures truly simultaneously recorded. The activity of each structure at a com-

mon set of time points therefore needs to be inferred to enable the averaging procedure.

The classical pipeline solves the above issues as follows: ROIs are specified, the state of

the ROI is inferred from the mean of its pixel (x,y) values in each scan frame, and inter-

polation (e.g. cubic spline) is used to infer the activity of the ROI at a common set of

time points. Signal uncertainty is calculated by computing the variance of the interpo-

lated signals between stimulus trials. The stimulus parameters are not explicitly modelled

in this pipeline.

In our proposed pipeline, the mean value of the activity of each ROI is computed for

each scan line where this ROI is scanned (corresponding to either the horizontal line in

a linear scan, or one complete arc in the spiral scan), and a Gaussian Process is used to

infer the activity of the ROIs over time and over the stimulus parameters. The variance

of these signals is directly inferred as part of the Gaussian process model, decomposed

into additive observation noise and uncertainty associated with the mean signal (referred

to as “latent uncertainty” throughout, compare Box 2).

Bayesian hypothesis testing and experimental design for two-photon imaging data
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Box 2: Mathematics of Gaussian Process regression

Gaussian processes are distributions over functions, with a mean function and a covari-

ance kernel (for further mathematical details, see [4]):

y ¼ f ðXÞ � GPðmðXÞ; kðX;X0ÞÞ ð2Þ

mðXÞ ¼ E½f ðXÞ� ð3Þ

kðX;X0Þ ¼ E½ðf ðXÞ � E½f ðXÞ�Þðf ðX0Þ � E½f ðX0Þ�Þ� ð4Þ

The covariance kernel models how the function varies as the predictors change. Many

common covariance kernels including the Radial Basis Function and Exponential ker-

nels are members of the class of Matérn covariance kernels. We use the RBF kernel

throughout our pipeline. The kernel’s length-scale l hyperparameter models the rate at

which the observations are expected to change as a function of the predictors.

kRBF;�ðX;X
0Þ ¼ s2

signalexpð�
kX � X0k2

2l2
Þ þ Is2

noise ð5Þ

� ¼ fl; ssignal; snoiseg ð6Þ

Here I is the identity matrix. The signal variance σsignal models the amplitude of the sig-

nal. The noise variance σnoise reflects the uncertainty associated with the signal, and is

modelled as additive Gaussian distributed noise. Jointly, the kernel and its hyperpara-

meters form a prior distribution over the function we wish to infer. We used the log

marginal likelihood

logðpðyjXÞÞ ¼ �
1

2
yT½kðX;X0Þ�� 1y

�
1

2
logj½kðX;X0Þ�j þ �

n
2

log2p

ð7Þ

as an objective function to define the quality of the model with respect to the observa-

tions and to infer the hyperparameters ϕ. In the simplest case of Fig 2, where we model

the activity of ROI i to local or full-field chirp stimuli described by the parameter vector

θ, the predictor matrix X = (t1, t2, . . ., tT) simply corresponds to the time points and the

neural activity is modeled as

Fi;y � GPðmðXÞ; kRBF;�ðX;X
0ÞÞ ð8Þ

The inferred function, where the GP has been conditioned on the observations, inferred

for a new set of points, is defined as

F�i;yjX
�;X; Fi;y

� N ðm�ðX�;XÞ;

S�ðX�;XÞÞ

ð9Þ

The stimulus θ determines the predictor matrices X and X�, which can include more

stimulus parameters than time (sinusoid, moving bar). The functions μphi and Sϕ are

defined in Materials and methods. The hyperparameters σsignal and σμϕ can be used to

compute uncertainty estimates of the neural activity. The uncertainty associated with the
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uncertainty about the estimated function including the observation noise, and the latent

uncertainty about the activity function, once the observation noise is removed.

Modelling uncertainty using Gaussian processes

Our first objective was to infer the neural activity function and its associated uncertainty from

our observations of the activity of single ROIs, located on individual synaptic axon terminals

of a bipolar cell. In bipolar cells injected with the calcium indicator OGB-1, it is possible to

image the anatomy of the cell by recording 3D stacks of x-y images at regular intervals along

the vertical (z) axis (Fig 1a). High resolution scans allowed us to identify individual axon ter-

minals (Fig 1b). Faster scans with lower spatial resolution are required to resolve neural activ-

ity, although the required reduction in resolution is substantially less for spiral configurations

relative to classical linear configurations (Fig 1c and 1d). Although the scan patterns are highly

regular, the spatial organisation of the neural structures results in irregular sampling over time

(Fig 1e–1h).

We recorded bipolar cell calcium and glutamate signals measured during the presentation

of a spatially homogeneous light stimulus including a light step and variations in temporal fre-

quency and contrast (Fig 2a, chirp stimulus), as used in previous studies [7, 11]. We used the

observed activity of a ROI (Fig 2b), and inferred a signal for each repeat using frame-averaging

and cubic-spline interpolation (Fig 2c), corresponding to the classical way of inferring these

functions (i.e. [7, 11]).

We then fitted a GP with a radial basis function (RBF) kernel for the time dimension to the

observed activity (Fig 2d). We monitored the computation time and calculated the likelihood

of an out-of-sample test set to determine a suitable number of inducing inputs. Surprisingly,

this indicated that there was already little improvement in the performance of the model when

more than 250 data points were used (S1a and S1b Fig), and that relatively few iterations of the

fitting algorithm were required (S1c Fig).

To account for temporal non-stationarities in the neural response, we then compared the

GP model to an extended model with input warping (see Methods). One assumption of classi-

cal GP models is that the function space has a stationary autocorrelation function, i.e. that its

correlational structure does not change with respect to a predictor, such as time. However,

light induced neural activity like responses to the chirp, which have highly non-stationary cor-

relational structure, are likely to show a commensurate non-stationarity in the response. We

computed a warping function which transforms the time dimension such that the stimulus

input has a stationary autocorrelation structure (Fig 3a). We then used this warping function

to transform the input to the GP model of the response, under the assumption that the correla-

tional structure of the response matched that of the stimulus input [12, 13](Fig 3b–3d). By per-

forming this extra processing step, we were able to fit a model which could vary in its

autocorrelation.

Our results show a clear difference between the predictions of the warped GP model and

the simpler stationary one. In the simpler model, the selected parameters reflect a trade-off

between models which fit closely to each of the different stimulus components (i.e. steps vs.

chirps), resulting in an inferred mean signal which appears noisy during the light step and

mean function, which we refer to as the “latent uncertainty”, is calculated using Eq (9),

where the Gaussian noise component s2
noise is excluded in the kernel k (see Materials and

methods).

Bayesian hypothesis testing and experimental design for two-photon imaging data
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Fig 1. Two-photon imaging of retinal neurons. Data: Retinal bipolar cell filled with OGB-1 via sharp electrode

injection and recorded using linear and spiral scan configurations. a: Vertical profile. Image coloured according to

fluorescence intensity (yellow: high, blue: low). b: Horizontal (x-y), high-resolution scan of axon terminal system (512

x 512 pixels), corresponding to the domain between the two white ticks in (a). c: Spiral scan of axon terminal system

(16 spirals; 31.25 Hz), as above. d: Linear scan of axon terminal system (32 lines; 15.625 Hz), as above. e: Spiral scan

trajectory with ROI mask superimposed. Black lines indicate scan trajectory. Colours correspond to discrete ROIs. f:

As (e), but with a linear scan configuration. The same ROIs were used. g: Time points at which the scan trajectory

intersects with the ROI mask in (e). 64 ms span corresponds to two spiral scan frames. h: As (g), but for a linear scan

configuration. ROIs correspond to those in (f). 64 ms span corresponds to one linear scan frame.

https://doi.org/10.1371/journal.pcbi.1007205.g001
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poorly tracks the faster chirp oscillations. As a consequence, the inferred uncertainty was rela-

tively stationary over time (Fig 3e). By contrast, in the warped GP model, the inferred mean

signal during the light step was smoother and tracked the faster oscillations much more closely

(Fig 3f). More importantly, in contrast to the interpolated signal derived by a classical pipeline,

the warped GP infers a high level of uncertainty during periods of rapid oscillation which are

at, or close to, the sampling limit of the recording.

In practice, we found that the approach described above was more stable and faster than

inferring the autocorrelation function directly from the observed activity. This appeared to be

Fig 2. Inference of signals from two-photon data. Data: ROI from a retinal bipolar cell filled with OGB-1 via sharp electrode

injection (left), and a different ROI from a scan field with bipolar cell terminals in a retina expressing iGluSnFR (right); both

recorded using spiral scan configurations. Model: RBF kernel, 300 inducing inputs, 25 iterations per fit, best of 6 fits per model.

a: “Full-field chirp” light stimulus, consisting of a light step, a frequency-modulated sine wave and a contrast-modulated sine

wave. b: Observed activity of a single ROI. Each point corresponds to the mean activity of the ROI in a single scan line. The time

at which the point was recorded is defined relative to the start of each stimulus trial, such that each trial leads to at least one data

point for every time the laser scans across a given ROI. Information regarding the trial from which the point was derived is not

explicitly incorporated into the model. c: Estimate of underlying signal from frame averaging, cubic spline interpolation and

averaging over trials. This corresponds to the typical approach used in previous papers [7]. d: Fitted sparse Gaussian process.

Black line indicates the mean signal. Intervals indicate uncertainty of the signal with and without the observation noise (light and

dark grey, respectively), to 3 standard deviations. e: Fitted sparse warped Gaussian process. Input warping uses the warping

function shown in the following figure. Model has been projected back onto the original time dimension. f: Five posterior

samples drawn from the fitted sparse warped Gaussian process models.

https://doi.org/10.1371/journal.pcbi.1007205.g002
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due to two factors: the irregular sampling distribution of the observed activity and the observa-

tion noise. Estimating the autocorrelation function separately for each ROI added a consider-

able computational burden to the pre-processing pipeline. In principle, the approach

demonstrated can be applied to any stimulus with a known time-course if it is spatially homo-

geneous. Where this is not the case, the temporal statistics of the observed response may also

be influenced by spatial integration and an alternative model, which explicitly accounted for

this, would be appropriate.

Fig 3. Application of a warping function to model input features. Data: ROI from a retinal bipolar cell filled with

OGB-1 via sharp electrode injection. Model: RBF kernel, 300 inducing inputs, 20 iterations per fit, best of 3 fits per

model. a: “Full-field chirp” stimulus (top). Autocorrelation functions corresponding to Gaussian curves fit to the

empirical autocorrelation function over a 500 ms window (middle). Length scale parameter of the Gaussian

distribution fitted to the autocorrelation functions. b: Cumulative sum of the inverse lengthscale over time. If the signal

were stationary, the lengthscale would be constant, corresponding to the dashed line. This cumulative sum maps time

onto a warped time dimension. c: Full field chirp stimulus with observations of the activity of one ROI labelled with

OGB-1. d: The same stimulus and observations after a warping operation has been applied. e: GP fitted to the original

data. f: GP fitted to the warped data. The function has been projected back onto un-warped time. Note the increased

uncertainty in regions where the stimulus is changing rapidly and the variations in the smoothness of the inferred

signal over time.

https://doi.org/10.1371/journal.pcbi.1007205.g003
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Using GP models for statistical inference

The key benefit of the GP framework is that it provides an explicit estimate of the uncertainty

about the neural activity which can be used to perform well calibrated statistical inference, e.g.

for inferring which periods of neural activity differed between two conditions. This is in con-

trast to classical approaches, where typical analysis follows multiple smoothing steps and often

only the inter-trial variability is considered, providing a poorly calibrated estimate of

uncertainty.

In our framework, we use a GP equality test to identify whether two signals are statistically

different [14]. As an example, we consider the response of bipolar cells to the chirp stimulus as

a function of the spatial extent of the light spot. This is known to modulate bipolar cell

responses, with the difference being induced by lateral inhibition [7, 15–17]. We compared the

calcium and glutamate signals of bipolar cells presented with chirp stimuli whose light spots

differed in size (100μm and full field). We fitted a GP model with time warping to each of the

sets of observations (Fig 4a and 4b), performed maximum likelihood estimation to optimise

the GP parameters with respect to the data, and then computed the difference between the esti-

mated latent functions.

We identified the periods of activity where the stimulus drives greater differences in the

response than would be expected by chance (defined as the three standard deviations around

the estimated difference function not including zero). We found the number of disconnected

regions where the difference is greater than could be expected by chance, which is called the

Euler characteristic (EC). It provides a measure of the strength of the difference between two

signals (Fig 4c) and depends on the number of standard deviations chosen as a threshold. To

estimate whether the EC was higher than expected by chance for a given threshold, we devel-

oped a bootstrap procedure for the GP models. We approximated a null distribution of the EC

by shuffling the observed activity between the two conditions, and calculated an empirical p-

value with respect to this null distribution of the EC.

If we assume a fixed threshold for calling two regions in the signal different (e.g. three s.d.),

we did not find a significant difference between the two stimulus conditions (bootstrap:

p� 0.103, α = 0.01) for the calcium recordings, but for the glutamate recording (bootstrap:

p� 0, α = 0.01). Significant differences occurred during the light step and in both oscillatory

sequences. The shuffle test can also be evaluated for the whole range of thresholds.

For comparison, we computed a similar test using the classical analysis pipeline, using

inter-trial standard deviation as an estimate of the uncertainty associated with the mean signal.

For the bootstrap procedure shuffled the interpolated data between the two stimulus condi-

tions to approximate the null distribution. At the same threshold as above, for neither the cal-

cium (bootstrap: p� 0.062, α = 0.01) nor the glutamate (bootstrap: p� 0.062, α = 0.01)

recording was the EC found to be significantly elevated. It should be noted that the p-values

estimated for the GP and classical pipeline are not directly comparable: the classical approach

does not distinguish between observational and stimulus driven variability, rather identifying

whether observed differences are greater than inter-trial variability.

The choice of a fixed threshold for inferring whether two signals are statistically distinct

may result in overly conservative statistical estimates. While there were no thresholds for

which the classical approach inferred an EC greater than expected from the null distribution,

for the GP models of the calcium and glutamate signals there were a range of thresholds for

which the EC was greater. These ranges differed between the two signals, which may relate to

the effect of the physiological properties of these two signals or to the kinetics of their respec-

tive indicators on the dynamics of the observed signals. We recommend that the selection of a

Bayesian hypothesis testing and experimental design for two-photon imaging data
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threshold be guided by the particular needs of the analysis task, not to keep to statistical con-

ventions developed for other methods.

Evaluating hierarchical clustering with GP models

We next show how GP equality tests can be used to provide a principled criterion for choosing

the number of clusters in a hierarchical clustering of light responses. For example, in a single

imaging plane, one may wish to know whether the observed responses originate form distinct

Fig 4. Gaussian process equality testing. Data: ROI from a retinal bipolar cell filled with OGB-1 by sharp electrode injection (left), and a

different ROI from a scan field with bipolar cell terminals in a retina expressing iGluSnFR (right); both recorded using spiral scan

configurations. Model: GP w. Time Warp: RBF kernel, 300 inducing inputs, 20 iterations per fit, best of 5 fits per model. Classical: pipeline

incorporating frame averaging and interpolation. a: “Chirp” light stimulus. b: Fits of the GP with time warping and classical pipeline to chirp-

driven responses, for calcium and glutamate data. Models fitted to observations of the responses to local (100 μm; top) and full field (middle)

chirp stimulus. Circles indicate relative spatial extent of the light stimulus. Difference between the models for the two stimulus conditions shown

at the bottom. Intervals for the response data show 3 standard deviations above and below the mean function. This variability corresponds to the

standard deviation with and without additive noise for the GPs, and the inter-trial standard deviation for the classical pipeline. Only the

standard deviation without additive noise is shown for the difference of the GPs. Domains where zero-vector not included within this interval

are highlighted with grey ticks, corresponding to regions where the difference between the two signals is greater than expected by chance. c:

Frequency of discrete domains where zero-vector is not included in the credible intervals (also known as the Euler Characteristic; EC) as a

function of the number of standard deviations above and below the respective mean functions. A high EC indicates a large degree of statistical

separation between the two signals, and typically declines as the threshold increases. Bootstrap estimates of the null distribution of the EC are

superimposed, with the mean of the null distributed shown in red. Intervals correspond to three standard deviations above and below the mean

of the null distribution. The black box indicates the thresholds where the EC from the difference test exceeds the highest estimate from the null

distribution by three standard deviations.

https://doi.org/10.1371/journal.pcbi.1007205.g004
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functional groups, perhaps due to the presence of multiple cells or cell types within the record-

ing plane, or multiple neurites of the same cell acting independently [18].

This pipeline was composed of two stages, firstly identifying putative clusters, then evaluat-

ing the evidence for different cluster configurations. In the first stage, a GP was estimated for

each ROI in GCaMP6f labelled bipolar cell axon terminals in a PCP2 mouse line (data previ-

ously published in [7]). Then, we hierarchically clustered the mean signals from each GP to

identify putative clusters among the set of responses, using the Ward algorithm and Euclidean

distance (Fig 5a).

Each node in the hierarchy then corresponded to a hypothesis about whether a particular

cluster should be partitioned into two sub-clusters (Fig 5b). In the second stage, we start at the

top of the clustering. At each node, we fit two GPs to the data from all ROIs assigned to each of

the two clusters independently.

We then tested the hypothesis that the two clusters were different using a GP equality test

with the EC as the measure of dissimilarity (Fig 5c–5f). A null distribution for the Euler Char-

acteristic was approximated by a further bootstrap test, where the pair of signals for which the

null distribution of the EC was calculated were drawn at random from the pooled observations

at each node. This process continued iteratively through the hierarchy, terminating when the

Euler Characteristic for a split in two new clusters was not greater than 99.5% of the null distri-

bution at that node.

Interestingly, the first node (N0) separated ROIs belonging to two bipolar cells in the imag-

ing field, with strong quantitative backup for the split (bootstrap: p� 0 at three s.d., α = 0.01,

Fig 5g). The split at the second node (N1) was also accepted (bootstrap: p� 0, α = 0.01 at three

s.d., Fig 5h), which separates ROIs of the left bipolar cell into two groups, indicating potential

sub-clusters within the terminals of a single bipolar cell. Subsequent separations were rejected

(N2, bootstrap: p� 0.68, α = 0.01 at three s.d., Fig 5i). The difference observed within the ter-

minal systems of these cells may reflect functional variation within the output of a single bipo-

lar cell [19]. Were this difference to exist, it would likely be a consequence of differential

inhibition from amacrine cells, and represent an additional layer of complexity in the func-

tional parallelisation of retinal signalling. While our analysis is suggestive of this conclusion,

verification is beyond the scope of this study.

Incorporating stimulus effects into GP model inference

We next extended our GP framework to study the effect of multiple stimulus parameters

and their interactions on the latent neural activity in an ANOVA-like framework [20].

GP-ANOVA models posses multiple kernels, each of which models the effect of a predictor or

an interaction between predictors. In contrast to classical ANOVA, the interaction effects can

have non-linear structure [20], and it is possible to compute not merely the strength of particu-

lar effects but also an inference of the response of a ROI over time as a stimulus feature varies.

To demonstrate the usefulness of this extension, we fitted a GP model to predict the

response of a single ROI to a light stimulus where light intensity was modulated as a sine wave

of varying frequency and contrast (Fig 6a). The input for this model was a predictor matrix

where each column corresponded to one of the stimulus parameters, including two columns

jointly encoding phase as a circular feature, and one each for frequency and contrast (see

Methods).

For the experiments, we selected 150 stimulus parameters using blue noise sampling, such

that parameters were uniformly selected from the parameter space and excluded if they were

below certain thresholds for frequency (< 1Hz) or contrast (< 10%) or too close to an already

existing stimulus parameter. Although the frequency and contrast parameters are fixed during
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Fig 5. Hierarchical clustering of retinal bipolar cell terminals. Data: ROIs from a retinal bipolar cell filled with

OGB-1 by sharp electrode injection recorded using a linear scan configuration. Model: RBF kernel (time), 300

inducing inputs, 20 iterations per fit, best of 3 fits per model. One model fitted for each ROI. a: Mean functions of GP

models fitted to calcium activity in a single recording field. Dendrogram computed using the Ward’s hierarchical

clustering algorithm (left). Nodes where the equality test were performed are labelled N. Colours on the dendrogram

correspond to putative clusters. b: ROI masks overlaid on mean field activity, coloured with respect to the putative

cluster. Each overlay is coloured according to the clustering at the corresponding nodes in (a). c: Euler Characteristic

for each node with respect to the z-score threshold. d, e, f: GP Equality tests performed at each of the labelled nodes.

GPs correspond to the models fitted to each putative cluster (top, middle) and the difference between the two models
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each one second trial of the sine stimulus, the model can accommodate parameters which vary

continuously over time, by encoding this change in the columns of the predictor matrix.

As in a classical ANOVA, there are many possible ways in which the effects of these stimu-

lus parameters can be incorporated into the model. In this case, stimulus features were

(bottom). Intervals correspond to 3 standard deviations above and below mean function. Domains where zero-vector

not included within interval highlighted with grey ticks. g, h, i: Bootstrap estimates of the null distribution of the Euler

Characteristic (EC). Mean of null distributed shown in red. Intervals correspond to three standard deviations above

and below the mean of the null distribution. Estimated EC from (c) superimposed. The black box indicates the

thresholds where the EC from the difference test exceeds the highest estimate from the null distribution.

https://doi.org/10.1371/journal.pcbi.1007205.g005

Fig 6. Extended GP model incorporating stimulus parameters. Data: ROI from a scan field with bipolar cell terminals in a retina

expressing iGluSnFR, recorded using a spiral scan configuration. Model: Product of RBF kernel (time) with composite RBF kernels

(frequency and contrast), 500 inducing inputs, 50 iterations per fit, best of 5 fits per model. a: Observed activity of one ROI filled with

OGB-1 (top); GP model selected by model selection procedure, conditioned on the observations of the ROI. Sine stimulus activity. Data

corresponds to the first 9s of the stimulus. b: Negative log likelihood for each model tested during model selection. Each point

corresponds to a single model, where the kernel consists of the effects adopted in the previous pass, with an additional effect being

evaluated, which will be included if it has the highest negative log likelihood. Each “Pass” corresponds to an exhaustive evaluation of all

possible effects to add to the current kernel. The best performing model in each pass is highlighted with a black circle. c: Locations in

frequency-contrast parameter space selected for the stimulation. Colour map corresponds to the sum of the variance of the latent

function for the fitted GP model evaluated under each parameter combination. Crosses correspond to peaks in the uncertainty where the

stimulus should next be evaluated. Dashed line indicates the limits of the space from which the parameters were sampled. d: GP fitted to

observed chirp responses for the same ROI (middle). Prediction of the activity by the model on the sine stimulus data (top).

https://doi.org/10.1371/journal.pcbi.1007205.g006
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encoded in the kernel (see Methods), either as additive independent effects of phase, contrast

or frequency, or through multiplicative interactions between the features. The cost of adding

more kernels with a fixed amount of data is that the uncertainty associated with each parame-

ter increases as the number of parameters to be learned grows. To compensate for this, we per-

formed kernel selection through a two stage iterative process (Fig 6b). The first stage identified

the kernel which, when included, most strongly improved model performance, as measured

by the log marginal likelihood. Once there were two or more parameters, each new kernel had

to contribute a greater improvement to the model performance than could be expected by

chance, as established by a likelihood ratio test (see Methods). If a kernel was accepted it was

retained in the model in the consecutive iterations (for an overview of the models evaluated in

this pipeline, see S1 and S2 Tables).

We fitted a GP model to the glutamate signal of a single ROI in the IPL in response to the

sine stimulus using this procedure. After three iterations the improvement in model perfor-

mance was less than the required ratio. We tested one further iteration which also returned a

negative result, and the process ceased. The kernels which were accepted included an interac-

tion kernel between all three parameters and a frequency-contrast kernel (Λ = 11.25,

p< 0.001). A frequency kernel (Λ = 4.01946568, p = 0.045) was rejected in the third stage, and

a phase kernel was rejected (Λ = 2.29, p = 0.130).

We then used the model to predict neural activity for unseen parameter combinations and

quantified how uncertain our predictions about the activity in response to these were [21–23].

Intuitively, the model should have the least uncertainty about stimulus parameters which had

been observed. Uncertainty then should increase as a function of the distance from the

observed parameters. We quantified uncertainty by computing the expected response of the

ROI and taking the sum of the latent variance (Fig 6c).

For the studied cell, calcium recordings to stimulation with the chirp stimulus were also

available (Fig 6d), and we compared the model fitted directly to the chirp response data to pre-

dictions from the model fitted to the sine data. There were some qualitative similarities

between the two models, such as the overall amplitude of the signal, and the decrease in signal

amplitude as the frequency of the stimulus increased. The prediction that the signal amplitude

would slightly increase with contrast was not reflected in the chirp data, where the relationship

was more ambiguous. The quality of prediction of the activity at high frequencies was difficult

to evaluate, as there is a high-level of uncertainty about the mean signal at those frequencies.

One factor to consider with regards to this direct comparison is that the differences in the

chirp responses may be due to temporal dependencies over time.

Active Bayesian experimentation

A critical advantage of our framework is that we can use it for Bayesian experimental design.

This is useful, as in 2P imaging experiments time is usually severely limited. For example, iso-

lated mouse retinal tissue becomes unresponsive to light stimulation in a matter of hours, and

single recording fields often bleach within half an hour of recording. To efficiently explore the

space of possible stimulus features under severe time constraints is thus a critical problem,

which GP models can be used to address [21, 22].

To show how this works, we performed an experiment using GP models to guide parameter

selection. In retinal tissue expressing iGluSnFR we selected a single ROI, likely representing a

single bipolar cell axon terminal. We used two control stimuli to evaluate the parameter selec-

tion: a local chirp stimulus playing over three trials, to which we fitted a warped GP, and a

sinusoidal stimulus with 90 parameters uniformly sampled from the parameter space (Fig 7a),

to which we fitted a GP with the kernels derived in the previous likelihood ratio procedure.
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We performed three rounds of active parameter selection, starting with 30 uniformly sampled

parameters in the first iteration, fitting the GP and using parameters selected by identifying 30

peaks in the uncertainty map in the subsequent two iterations. We then used the models from

each iteration to predict how the ROI would respond during the oscillatory components of the

chirp stimulus (Fig 7b).

Parameters selected using the active approach were more broadly distributed across the

parameter space, although we noted that the peak finding algorithm was biased away from the

edges. In the purely random design procedure, parameters often clustered and there were

large empty regions, resulting in high uncertainty in these regions. Neither the random nor

the active parameter procedure inferred a good prediction of the contrast-varying chirp com-

ponent, which in the case of the active parameter inference was likely due to the bias away

from the periphery of the parameter space, resulting in very few samples in the proximity of

Fig 7. Active parameter selection with Gaussian processes. Data: ROI from a scan field with bipolar cell terminals in

a retina expressing iGluSnFR, recorded using a spiral scan configuration. Model: Product of RBF kernel (time) with

composite RBF kernels (frequency and contrast), 500 inducing inputs, 50 iterations per fit, best of 4 fits per model. a:

Control stimulus consisting of 90 parameter sets of frequency and contrast. Uncertainty in each region computed as

the sum of the latent uncertainty for a GP estimated under all parameter configurations. The chirp response for this

ROI is shown above. The completed GP model for the sine response is estimated over the full dataset, the model

inference for the sinusoidal chirp components is shown. b: Active parameter selection using GP with corresponding

inferences for chirp stimulus.

https://doi.org/10.1371/journal.pcbi.1007205.g007
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the 8Hz parametric edge. At lower frequencies the experimental design algorithm seemed bet-

ter able to capture qualitative aspects of the chirp response, such as the decrease in response

amplitude as the frequency increased, though again the lack of samples at the very highest fre-

quencies resulted in a high level of uncertainty.

Combining model components

We finally constructed a model which combined stimulus effect modelling and hierarchical

clustering into a single framework. We fitted the model to calcium recordings of RGC activity

in response to a bright bar moving in different directions on a dark background. RGCs show

different response polarities and a large range of response kinetics to this stimulus [11] and

some modulate the response amplitude as a function of stimulus direction. The model incor-

porated the stimulus features of time and direction as additive effects, alongside with a time-

direction interaction effect (Fig 8a and 8b). The data were then sorted using hierarchical clus-

tering (Fig 8c and 8d; S2 Fig) and for the purpose of demonstration the first three nodes of the

hierarchy were tested using GP equality tests (Fig 8e–8h).

The algorithm first separated ON and OFF responses into separate clusters (N0, bootstrap:

p� 0 at three s.d., Fig 8i). The ON cluster was then further divided into sustained and tran-

sient responses (N1, bootstrap: p� 0 at three s.d., Fig 8j). The sustained ON responses were

finally separated into direction selective and non-direction selective clusters (N2, bootstrap:

p� 0.01 at three s.d., Fig 8k). We did not test further splits for significance.

Discussion

Here we presented a data analysis pipeline for 2P imaging data based on Gaussian Processes.

The advantage of this framework is that uncertainty about the underlying latent neural activity

can be propagated through the analysis pipeline, so statistical inference can be performed in a

principled way. We applied our pipeline to recordings of mouse retinal bipolar and ganglion

cell activity driven by light stimuli, showing how: (1) to determine whether and when two

response functions are statistically distinct; (2) to evaluate the strength of the evidence for a

partition of data into functional clusters; (3) to determine the relevant stimulus effects to incor-

porate into a model of neural responses; and (4) to guide the choice of stimulus parameters for

iterations of a closed loop adaptive experiment.

Estimation of uncertainty

Accurately characterising the variability of neural responses is essential for understanding neu-

ral coding. Noise manifests itself throughout sensory systems and presents a fundamental

problem for information processing [2]. While imaging ex-vivo retinal tissue does not present

some of the challenges as in vivo cortical recordings (where movement is a significant source

of variability), two-photon imaging in ex-vivo tissue is still subject to many sources of variance,

due to fluctuations in biosensor excitation and photon detection, among other factors. This

issue may be particularly acute for two-photon imaging of retinal tissue, where it is necessary

to keep the excitation energy low to avoid laser-evoked responses, which may result in lower

overall fluorescent signals relative to in vivo recordings of non-light-sensitive tissue. Computa-

tional processing can introduce further variability, e.g. due to the discretisation of the mea-

sured signal. This is rarely acknowledged, perhaps due to the convenience of standard

approaches. In principle, splines in combination with generalized additive models (GAMs, e.g.

[24]) provide an alternative framework to perform uncertainty aware analysis of calcium imag-

ing data. Exploring and contrasting this to the GP framework introduced here is beyond the

scope of this paper.
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Fig 8. GP model of retinal ganglion cell responses to a moving bar stimulus. Data: ROIs from a field of RGC somata

labelled with OGB-1 using electroporation, recorded using a spiral scan configuration. Model: Product of RBF kernel

(time) with composite RBF kernel (direction), 300 inducing inputs, 25 iterations per fit, best of 3 fits per model. a:

Observed activity of one ROI representing an RGC soma labelled with OGB-1 (top). GP model superimposed.

Intervals correspond to the variance of the latent function, 3 standard deviations above and below the mean. Below are

the moving bar directions for each trial. b: GP model fitted to data in (a) without (top) and with (bottom) interaction

kernel. Both models include additive effects for direction and time. Coloured according to response amplitude (red:

high, blue: low). c: Hierarchical clustering of fitted models. Colours on dendrogram correspond to colours on ROI

mask. Posterior means for each ROI in each cluster are shown in S2 Fig. d: ROI mask with cluster colours for k = 4

corresponding to clustering in (c). A baseline s.d. was computed from the 500 ms of activity preceding the light step.

ROIs where the amplitude of the step response was less than 2 s.d. greater or lower than the mean signal were
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Computational limitations of the proposed models

Classical GP models can be computationally costly due to the need to compute the inverse of

the kernel matrix involving all training data [4]. To make practical use of GPs for modelling

large 2P recordings, we capitalized on recent advances in sparse approximations for GPs that

work with a limited number of inducing points [5] and demonstrated their applicability for a

real world task. In addition, we only performed point-estimates for hyperparameters instead of

fully Bayesian inference and pre-determined kernels before statistical evaluation. This was

important for two reasons: firstly, a processing pipeline should not be excessively computation-

ally costly, so as to make them impractical for general use with larger datasets; and secondly,

the application of these models in closed-loop imaging experiments was only possible if one

complete iteration of the process (data acquisition; pre-processing; prediction; parameter selec-

tion) could be completed in a few minutes. In principle, our approach could be extended to a

fully Bayesian framework with hyperpriors on the model parameters, although this introduces

additional difficulties for sparse approximation and still entails a greater computational burden

[25]. While our work solely addressed Gaussian distributed data, the models can be readily

extended to point processes as well. There, sparse approximation techniques overcome the

computational intractability of the model, and allow inference on relatively large datasets [26].

Active experimental design of 2P experiments

Although we demonstrated the potential for using GP models during 2P experiments, there

were several limitations to our approach. We were able to reduce the time per iteration of our

active experiments to less than five minutes, addressing a key practical concern. However, it

emerged during the experiment that the peak-finding algorithm was biased away from the

periphery of the stimulus space, which made the chirp stimulus unsuitable as our “ground

truth” for model evaluation.

The parameter batch size may also have been too small for each iteration. Batch size is a

critical consideration in active Bayesian experimentation. Where the cost per iteration is low,

single parameters can be selected for each iteration, for which the objective function can be rel-

atively easily defined and evaluated. In one recent publication, Charles et al. [23] used GPs to

model the effect of inter-trial variability in monkey V1 neurons, using sequential parameter

selection to optimise a coloured light stimulus. For experiments where iterations are prohibi-

tively expensive, new parameters can be selected in batches, although this requires interactions

between parameters to be taken into account, which can be computationally expensive to eval-

uate. In such cases, approximate methods provide an attractive method for reducing computa-

tional overheads (e.g. [22]). Batch parameter selection algorithms which account for, or

approximate, parameter interactions would likely overcome simple peak finding methods.

Conclusion

Historical obstacles to the use of Bayesian methods such as the difficulty of their implementa-

tion and their computational cost have been reduced. Much research over the past decade has

excluded. e, f, g: GP Equality Tests for each node. Top and middle correspond to the two putative clusters, bottom is

the mean difference between them. h: Euler Characteristic as a function of the number of standard deviations above

and below the respective mean functions, for each node. i, j, k: Euler Characteristics (EC) from difference tests at the

first three nodes, with bootstrap estimates of the null distribution of the EC superimposed. The mean of the null

distributed shown in red. Intervals correspond to three standard deviations above and below the mean of the null

distribution. The black bar indicates the thresholds where the EC from the difference test exceeds the highest estimate

from the null distribution by three standard deviations.

https://doi.org/10.1371/journal.pcbi.1007205.g008
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focused on the problem of minimising the computational complexity of the algorithms

through sparse approximation methods and efficient parameter estimation (such as [5]). New

libraries for popular coding languages—such as GPy [27], PyMC3 [28], and pySTAN [29] for

Python 3—have lowered the barrier to entry. Likewise, we provide a collection of notebooks

with this paper to allow straightforward application of our framework.

Taken together, our approach exploits the flexibility and extensibility of Gaussian process

models to improve on classical approaches for two photon data analysis and addresses impor-

tant analytical tasks in a way that preserves a representation of uncertainty propagated up

from the underlying data. We feel that it will be particularly useful for disentangling the

dynamics of neural circuits in the early visual system under complex, multivariate experimen-

tal conditions.

Materials and methods

Ethics statement

All animal procedures were performed according to the laws governing animal experimenta-

tion issued by the German Government. The documentation for the animal and tissue prepa-

ration was submitted in accordance with Mitteilung nach §4 Abs. 3 Tierschutzgesetz, and

approved by the Regierungspräsidium Tübingen on 09.11.2016. Viral injection documentation

Tierversuch Nr. AK6/13 was appraised by the ethics committee and approved by Regierung-

spräsidium Tübingen, on 05.11.2013.

Animals and tissue preparation

For single-cell-injection experiments, we used one adult mouse cross-bred between transgenic

line B6.Cg-Tg(Pcp2-cre)3555Jdhu/J (Tg3555, JAX 010536) and the Cre-dependent red fluores-

cence reporter line B6;129S6-Gt(ROSA)26Sortm9(CAG-tdTomato)Hze/J (Ai9tdTomato, JAX 007905).

For glutamate-imaging, we used one adult C57BL/6J mouse. Owing to the exploratory nature

of our study, we did not use blinding and did not perform a power analysis to predetermine

sample size.

Animals were housed under a standard 12h day-night cycle. For recordings, animals were

dark-adapted for� 1h, then anaesthetised with isoflurane (Baxter) and killed by cervical dislo-

cation. The eyes were removed and hemisected in carboxygenated (95% O2, 5% CO2) artificial

cerebral spinal fluid (ACSF) solution containing (in mM): 125 NaCl, 2.5 KCl, 2 CaCl2, 1

MgCl2, 1.25 NaH2PO4, 26 NaHCO3, 20 glucose, and 0.5 L-glutamine (pH 7.4). Then, the tissue

was moved to the recording chamber of the microscope, where it was continuously perfused

with carboxygenated ACSF at� 37˚C. The ACSF contained� 0.1μM sulforhodamine-101

(SR101, Invitrogen) to reveal blood vessels and any damaged cells in the red fluorescence chan-

nel. All procedures were carried out under very dim red (>650nm) light.

Single cell injection

Sharp electrodes were pulled on a P-1000 micropipette puller (Sutter Instruments) with resis-

tances between 70–100MO. Afterwards, the tip (� 500μm) of each electrode was bent on a cus-

tom-made microforge. Single bipolar cell somata in the inner nuclear layer were filled with the

fluorescent calcium indicator Oregon-Green BAPTA-1 (OGB-1) by using the pulse function

(500ms) of the MultiClamp 700B software (Molecular Devices). OGB-1 (hexapotassium salt;

Life Technologies) was prepared as 15mM in distilled water. Immediately after filling, the elec-

trode was carefully retracted. Imaging started after about 30 minutes after the injection to

allow cells to recover and the dye to diffuse within the cell. At the end of the recording, a stack
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of images was captured for the cellular morphology, which was then traced semi-automatically

using the Simple Neurite Tracer plugin implemented in Fiji [30].

Virus injection

For virus injections, we used adult wild-type mice (C57BL/6J). Animals were anesthetized

with 10% ketamine (Bela-Pharm GmbH & Co. KG) and 2% xylazine (Rompun, Bayer Vital

GmbH) in 0.9% NaCl (Fresenius). A volume of 1μl of the viral construct (AAV2.hSyn.

iGluSnFR.WPRE.SV40, Penn Vector Core) was injected into the vitreous humour of both eyes

via a Hamilton injection system (syringe: 7634-01, needles: 207434, point style 3, length

51mm, Hamilton Messtechnik GmbH) mounted on a micromanipulator (World Precision

Instruments). Imaging experiments were performed 3 weeks after virus injection.

Two-photon imaging

We used a MOM-type 2P microscope (designed by W. Denk, now MPI Martinsried; pur-

chased from Sutter Instruments/Science Products). The design and procedures have been

described previously [7, 11, 31]). In brief, the system was equipped with a mode-locked Ti:Sap-

phire laser (MaiTai-HP DeepSee, Newport Spectra-Physics), two fluorescence detection chan-

nels for OGB-1 or iGluSnFR (HQ 510/84, AHF/Chroma) and SR101/tdTomato (HQ 630/60,

AHF), and a water immersion objective (W Plan-Apochromat 20x /1.0 DIC M27, Zeiss). The

laser was tuned to 927nm for imaging OGB-1, iGluSnFR or SR101. For image acquisition, we

used custom-made software (ScanM by M. Müller, MPI Martinsried, and T. Euler) running

under IGOR Pro 6.3 for Windows (Wavemetrics), taking time lapsed 32 x 32 pixel image scans

(at 15.625Hz) or 16-line “spiral” scans (at 31.25Hz). For documenting morphology, 512 x 512

pixel images were acquired with step size of 0.5μm along the Z axis.

Fast spiral scan imaging

To resolve transient changes in calcium concentration or glutamate release (i.e. with decay

times of�100ms), scan rates of around 20Hz or more are wanted. Many scanning 2P micro-

scopes use conventional (non-resonant) galvanometric scanners and are limited by the inertia

of the scan mirrors, which introduce positional errors at high scan rates. This is especially criti-

cal for typical linear (image) scans, with their abrupt changes in direction when jumping

between scan lines. For constant spatial resolution, faster scan rates are often realised by

decreasing the scan area. However, it is possible to increase the spatio-temporal resolution by

using non-linear “spiral scan” configurations. These overcome the key mechanical limitation

of linear scans, that they incorporate sharp turns, rather than following smoother trajectories.

Unlike linear scans, which are composed of single linear trajectories repeated along an axis at

regular intervals, spiral scan configurations consist of radial trajectories moving away from a

central point at a constant speed and rotation and permit rapid movement of the scan mirrors.

A regular radial grid can be constructed by generating a single spiral trajectory and succes-

sively rotating it around a central point. We used an Archimedean spiral is used to generate

each trajectory (r = Θ1/a), where the radial distance r from the central point is a function of the

angle Θ and a tightness parameter a which determines the rate of rotation around the centre.

With a grid composed of 16 such curves we can resolve, for instance, axon terminals of retinal

bipolar cells at twice the spatial and twice the temporal resolution of linear recordings. One

can see the advantages of such scan configurations by showing how frequently the scan trajec-

tory intersects with ROIs in a single frame. The times at which labelled structures are observed

by these trajectories are both more frequent and more irregularly distributed in time than a

typical linear scan, providing a superior temporal resolution.
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Light stimulation

For light stimulation, a modified LightCrafter (DLPLCR4500, Texas instruments; modification

by EKB Technology) was focused through the objective lens of the microscope. Instead of stan-

dard RGB light-emitting diodes (LEDs), it was fitted with a green (576nm) and a UV (390nm)

LED for matching the spectral sensitivity of mouse M- and S-opsins [32]. To prevent the LEDs

from interfering with the fluorescence detection, the light from the projector was band-pass-

filtered (ET Dualband Exciter, 380-407/562-589, AHF) and the LEDs were synchronised with

the microscope’s scan retrace. Stimulator intensity was calibrated to range from 0.5 � 103

(“black” background image) to 20 � 103 (“white” full field) photoisomerisations P�/s/cone [7].

The light stimulus was centred before every experiment, such that its centre corresponded to

the centre of the recording field. In linear scans, the stimulus is displayed while the trajectory

moves between consecutive lines; while for the spiral scans this occurs while the trajectory

returns from the periphery to the centre.

Light stimuli were generated using the QDSpy light stimulation software, which is written

in Python 3 [33]. The chirp stimulus ran for 4 repeats of 32s each, with the stimulus extent

alternating between a 800μm and a 100μm light spot. The moving bar stimulus consisted of a

300μm rectangular bar moving at 1000μm/s for 4 seconds along 8 evenly space directions,

repeated three times for each direction. The sine stimulus consisted of a 100μm light spot, and

ran for 45 1s-trials, with contrast and frequency varying in each trial. The contrast and fre-

quency parameters were chosen by blue-noise sampling 150 parameters from the parameter

space, between 10% and 100% contrast and 1Hz to 8Hz frequency. Later closed-loop experi-

ments used a sine stimulus with 90 parameter sets sampled uniformly from the parameter

space, in addition to 3x30 parameters sets, of which the first were chosen from random uni-

form sampling and the latter two sets by active Bayesian inference.

Data analysis

Initial data analysis was performed in IGOR Pro 6. Regions of Interest (ROIs) were defined

manually using the SARFIA toolbox for IGOR Pro [34]. In the iGluSnFR recordings, a cus-

tom-script generated a correlation map [7], which defined structures for the ROI drawing. The

observations were synchronised to the light stimuli using time markers which were generated

by the stimulation software and acquired during imaging. Once the initial pre-processing was

completed, the data was exported to HDF5 files, and all subsequent analysis was performed in

Python 3.5.

Gaussian process models

Gaussian process (GP) models were used to infer the relationship between time, stimulus

parameters and the observed activity of each ROI. Thus, the predictor matrix X was a function

of the stimulus parameters and time, short hand referred to as θ. An introduction to the math-

ematics of GP regression is provided in Box 2. All GPs used the Radial Basis Function (RBF)

kernel, with additive Gaussian noise.

kRBF;�ðX;X
0Þ ¼ s2

signal expð�
kX � X0k2

2l2
Þ þ Is2

noise ð10Þ

� ¼ fl; ssignal; snoiseg ð11Þ

The lengthscale l, signal variance σsignal and noise variance σnoise were learned as part of the

model optimisation. Since the fluorescence measurements Fi,θ for ROI i were irregularly
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spaced in time, the mean μ and covariance S of the signal Fi were inferred for a new set of pre-

dictors X� where time is regularly spaced:

m�ðX
�jXÞ ¼ k�ðX

�;XÞðk�ðX;XÞ þ Is2

noiseÞ
� 1Fi;y ð12Þ

S�ðX�jXÞ ¼ k�ðX�;X�Þ�

k�ðX�;XÞðk�ðX;XÞ þ Is2
noiseÞ

� 1k�ðX;X�Þ
ð13Þ

The additive noise component Is2
noise was removed for statistical inference, and we refer to

the resultant noise-free GP as the “latent function”, in line with the terminology in the GPy

documentation [27]. Confidence intervals were calculated as

m�ðX
�Þ � 3 � diagðS�ðX

�ÞÞ ð14Þ

The Gaussian process models were developed in the GPy framework [27]. Feature encod-

ing, input warping, equality tests, parameter selection and closed-loop parameter selection

were computed using custom scripts, which we provide as supplementary content to this docu-

ment and online at https://github.com/berenslab/bayesian_2p_pipeline. Hierarchical cluster-

ing was performed using scripts from the Scipy library, using Euclidean distance, the Ward

algorithm and maxclust as the criteria [35]. The Ward algorithm was chosen as it tends to

infer balanced clusters across the hierarchy. Adaptive parameter selection used a local peak

finding algorithm from the Scikit-Image library.

Since our datasets included several thousand observations, it was necessary to use sparse

approximation methods to fit the GP models. The sparse approximation algorithm provided

in GPy follows [5], whereby the kernel is approximated using a subset of the data, termed the

inducing inputs. The selection of the inducing inputs is learned as part of the model optimisa-

tion, selecting the inputs which minimise the KL-Divergence between the approximation and

the target distribution. Details are provided in [5].

Gaussian process equality tests

The Gaussian process equality test establishes whether two functions modelled by GPs are

equal [14]. It operates by computing the difference between the two distributions and identify-

ing whether the credible region encompasses the zero vector across the complete domain of

the predictors. If the zero vector is outside of these intervals, we say the two functions are dis-

tinct with probability 1 − a. The probability is calculated using the mean μ� and covariance k�

of the posterior of our two functions, excluding their respective noise components from the

estimate of the covariance.

mD
�
ðX�jXÞm�

TSD

�
ðX�jXÞS�m

D

�
ðX�jXÞ � w2ð1 � aÞ ð15Þ

mD
�
ðX�jXÞ ¼ m1

�
ðX�jXÞ � m2

�
ðX�jXÞ ð16Þ

SD

�
ðX�jXÞ ¼ S1

�
ðX�jXÞ þ S2

�
ðX�jXÞ ð17Þ

Euler characteristic bootstrap

The total number of discrete, non-intersecting regions where two Gaussian processes differ

more than could be expected by chance is termed the Euler characteristic (EC) [36]. The EC is
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a measure of the geometry of random fields which accounts for the smoothness of the underly-

ing functions, and is well established in fMRI research, where it forms part of the broader liter-

ature on statistical mapping [37]. While the expected value of the EC can be analytically

tractable under certain conditions, we wished to incorporate it into our pipeline in a manner

which was not sensitive to the number of input dimensions and could handle non-stationary

autocorrelation functions, and so inferred its null distribution through bootstrap resampling.

To evaluate whether the values of the EC, which were obtained from the GP equality tests,

were statistically significant, we constructed an approximate null distribution by bootstrapping

samples from pooled data and performing equality tests on these samples. The procedure was

as follows: the observations from each of the signals being compared were pooled to form a

larger set of observations; from this set, pairs of samples each 300 observations in size were

drawn at random, without replacement; Gaussian processes were fitted to each of the samples

in the pair; the difference between the two Gaussian process models was calculated; the Euler

characteristic was calculated from this difference for varying thresholds. This was repeated 500

times to build an approximate null distribution.

We applied this bootstrap test in Figs 4, 5 and 8. For Fig 4, the observations were pooled

from the responses to the stimulus; for Figs 5 and 8, for each node the observations were

pooled from the two putative clusters. For the comparisons to the classical pipeline, the null

distribution was computed by shuffling the observations between stimulus conditions, with a

total of 500 shuffled pairs used for the estimation. Approximate p-values were computed by

calculating the proportion of the N shuffled sample pairs which had a greater EC value than

that calculated from the GP equality test.

Non-stationary autocorrelation

To address non-stationarity of the chirp response data, we computed the autocorrelation func-

tion for the chirp stimulus in 500 ms windows spaced at 1/16 s intervals (512 windows total).

As we used RBF kernels for our regression, we fitted a Gaussian curve to each autocorrelation

function and retained the inferred lengthscale lt for each window. A further parameter A mod-

ulates the height of the function.

covðfstimulusÞ � Ae
ðx� mÞ2

2l2t ð18Þ

If the signal were stationary, we would observe that the lengthscale parameter was constant

with respect to time.

By using the cumulative sum of the inverse of the lengthscale as the predictor, we could

derive a warping function which transformed the predictors such that the stimulus autocorre-

lation was stationary.

We assumed that the autocorrelation of the observed signal was approximately equal to that

of the light stimulus input, and used the warping function to transform the observations. This

transformation could be inverted to visualise the fitted GP with respect to the original time base.

fwarpedðxtÞ �
1

2l2t
ð19Þ

Gaussian process ANOVA

GP models can also be used for functional Analysis of Variance [20]. These GP-ANOVA mod-

els disentangle the contribution and interaction of different predictors to the observed func-

tion. The GP models for the chirp stimulus data modelled the observed activity with time
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relative to the start of each stimulus trial as the predictor X. For the moving bar stimulus, a

direction parameter was encoded as a 2D circular feature by converting the angle α in polar

coordinates to an xy position in Cartesian coordinates (cos(2πα/360), sin(2πα/360)). Likewise,

for the sine wave stimuli the phase of the oscillation was encoded as (cos(2πtf), sin(2πtf)), while

frequency and contrast were encoded linearly.

In contrast to classical ANOVA, the effects and interactions can be non-linear. Flexible ker-

nel composition makes such models comparatively simple to implement. Kernels can be com-

bined in a number of ways [4], each expressing some belief about the effect of a parameter,

most commonly by taking the sum or product of two kernels. Additive components represent

effects of predictors which are independent of one another, while multiplicative kernels repre-

sent interactions between predictors. For example, for a kernel encoding two stimulus parame-

ters xa and xb, with both additive and interactive effects and RBF kernels, the correlation

function of the GP model would be:

k�ðX;X
0Þ ¼ k�ðxa; x

0

aÞ þ k�ðxb; x
0

bÞ þ k�ðXa;b;X
0

a;bÞ ð20Þ

Here, Xa,b = (xa, xb). We estimated interaction effects of different stimulus parameters in

our GP ANOVA models by including kernels which learned a single lengthscale parameter

over multiple input dimensions. This inferred the joint effect of the parameters as a single

function; where, since the parameters are z-scored, a change in the magnitude of one stimulus

parameter would have the same effect as varying the other by an equal magnitude. This

approach to GP ANOVA provides an efficient and principled way of choosing optimal hyper-

parameters to infer stimulus effects.

For the chirp stimulus, where there is one predictor, a single kernel encoding the autocorre-

lation of the signal over time was used. For the warped GPs, the warped time was used instead.

For the moving bar and sine wave stimuli, additional kernels were included to model the

effects of their respective parameters. The GP model for the moving bar responses included

both additive effects for time and direction, and a time-direction interaction effect. Likelihood

ratio tests were used to select kernels from the full set of additive and multiplicative stimulus

effects:

w2 ¼ � 2lnð
L0

L1

Þ ð21Þ

Where LN is the likelihood of the fitted model, and the addition of the proposed parameter

is rejected if the improvement in the likelihood is greater than chance with probability 1 − a.

These tests were applied iteratively until a kernel was rejected. For the closed loop experimen-

tation, we retained the model from the previous selection procedure with the randomly para-

meterised sine stimulus.

The data used throughout this paper and corresponding code used to compute the models

will be provided as supplementary material alongside this paper.

Supporting information

S1 Fig. Model performance. Model: RBF kernel, best of 5 fits per model. a: Mean time elapsed

per iteration of the MLE. This scales approximately linearly with the number of points. b: Out

of sample estimate of negative log likelihood after 30 iterations. Estimates as a function of the

number of inducing points. c: Model performance of out of sample test points relative to the

maximum number of iterations, evaluated for 300 inducing points.

(PNG)
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S2 Fig. Direction selectivity clusters. Model: Product of RBF kernel (time) with RBF kernel

(direction), 300 inducing inputs, 25 iterations per fit, best of 3 fits per model. Each heat map

corresponds to the posterior mean of the fitted GP. Columns correspond to clusters.

(PNG)

S1 Table. Oscillatory kernels. Each kernel incorporates either independent or interactive

effects of the stimulus parameter into the prediction. Kernels were selected by a sequence of

likelihood ratio tests, the results of which are shown in S2 Table.

(ODS)

S2 Table. Oscillatory models. Results from the sequential likelihood ratio test from which the

stimulus parameter model was constructed for the sinusoidal stimulus data.

(ODS)
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