
RESEARCH ARTICLE

The duration of antibiotic treatment is

associated with carriage of toxigenic and non-

toxigenic strains of Clostridioides difficile in

dogs

Carolina Albuquerque1, Davide Pagnossin2,3, Kirsten LandsgaardID
2¤a,

Jessica SimpsonID
3, Derek Brown4, June Irvine3, Denise Candlish3, Alison E. Ridyard1,

Gillian Douce3*, Caroline MillinsID
2,5¤b*

1 Small Animal Hospital, School of Veterinary Medicine, University of Glasgow, Glasgow, United Kingdom,

2 Veterinary Pathology, Public Health and Disease Investigation, School of Veterinary Medicine, University of

Glasgow, Glasgow, United Kingdom, 3 Institute of Infection, Immunity and Inflammation, Medical, Veterinary

and Life Sciences, University of Glasgow, Glasgow, United Kingdom, 4 Scottish Microbiology Reference

Laboratories, Glasgow, United Kingdom, 5 Institute of Biodiversity, Animal Health and Comparative

Medicine, University of Glasgow, Glasgow, United Kingdom

¤a Current address: Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical

Sciences, Texas A&M University, College Station, Texas, United States of America

¤b Current address: Department of Livestock and One Health, Institute of Infection, Veterinary and

Ecological Sciences, University of Liverpool, Liverpool, United Kingdom

* Caroline.Millins@Liverpool.ac.uk (CM); Gillian.Douce@Glasgow.ac.uk (GD)

Abstract

Clostridioides difficile is a leading cause of human antibiotic-associated diarrhoeal disease

globally. Zoonotic reservoirs of infection are increasingly suspected to play a role in the

emergence of this disease in the community and dogs are considered as one potential

source. Here we use a canine case-control study at a referral veterinary hospital in Scotland

to assess: i) the risk factors associated with carriage of C. difficile by dogs, ii) whether car-

riage of C. difficile is associated with clinical disease in dogs and iii) the similarity of strains

isolated from dogs with local human clinical surveillance. The overall prevalence of C. diffi-

cile carriage in dogs was 18.7% (95% CI 14.8–23.2%, n = 61/327) of which 34% (n = 21/61)

were toxigenic strains. We found risk factors related to prior antibiotic treatment were signifi-

cantly associated with C. difficile carriage by dogs. However, the presence of toxigenic

strains of C. difficile in a canine faecal sample was not associated with diarrhoeal disease in

dogs. Active toxin was infrequently detected in canine faecal samples carrying toxigenic

strains (2/11 samples). Both dogs in which active toxin was detected had no clinical evi-

dence of gastrointestinal disease. Among the ten toxigenic ribotypes of C. difficile detected

in dogs in this study, six of these (012, 014, 020, 026, 078, 106) were ribotypes commonly

associated with human clinical disease in Scotland, while nontoxigenic isolates largely

belonged to 010 and 039 ribotypes. Whilst C. difficile does not appear commonly associated

with diarrhoeal disease in dogs, antibiotic treatment increases carriage of this bacteria

including toxigenic strains commonly found in human clinical disease.
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Introduction

Clostridioides difficile has emerged as a leading cause of antibiotic associated diarrhoeal disease

in people globally which is associated with significant morbidity, mortality and healthcare

costs [1]. In the past this disease was predominately associated with elderly patients treated

with antibiotics in healthcare environments, however sentinel surveillance studies have

revealed that a substantial proportion of C. difficile infections (CDI) are acquired within the

community [2–5]. Whole genome sequencing has shown that only around a third of hospital

cases can be linked to horizontal transmission from symptomatic patients, with the remainder

caused by diverse strains of C. difficile [6]. The source of these infections, and those arising

within the community is unknown, and may include asymptomatic human carriers, zoonotic

reservoirs, food and the environment [7–9].

Most research on C. difficile in animals has focused on production animals and horses with

emergence of the 078 ribotype as a significant cause of enteritis in piglets and adult horses

occurring around the same time as emergence of CDI in humans [10]. The frequent isolation

of this organism from the faeces of production animals including pigs, cattle and chickens and

food has led to concerns that spread to humans can occur through contamination of the local

environment or via the food chain [11–15]. Whole genome sequencing of identical strains of

C. difficile in pig farmers and pigs on the same farm suggests that interspecies transmission is

likely, although a common environmental source cannot be excluded [16]. In contrast, less is

known about the potential of companion animals including dogs, to become colonised with C.

difficile, develop disease or act as a zoonotic reservoir. The frequency of dog ownership, close

living relationships with people, and evidence that pet dogs can be a risk factor for human col-

onisation [17], justifies evaluation of this species as a potential reservoir host of zoonotic

strains of C. difficile.
Results from published studies of C. difficile carriage by companion animals report preva-

lence rates in dogs from 0% to 58%, with a lower prevalence in healthy dogs [18–20] and a

higher prevalence reported in hospitalised dogs [21] and those visiting human hospitals [22].

Similar ribotypes have been identified in both canines and humans suggesting potential for

interspecies transmission [23, 24]. A small number of studies have looked at risk factors for C.

difficile carriage in dogs. These studies include risk factors which may increase individual sus-

ceptibility to colonisation such as antibiotic treatment and potential sources of infection such

as diet and household factors [25–29]. Results to date are often contradictory, which may

reflect differences in study design and geographic location.

Similarly, existing studies investigating associations between C. difficile and disease in dogs

have found contrasting results. C. difficile in humans is largely a toxin-mediated disease with

most pathogenic isolates of C. difficile producing one or both major toxins: toxin A (an entero-

toxin) and toxin B (a cytotoxin) [30]. Nontoxigenic and toxigenic strains of C. difficile have

been detected by several studies in both healthy dogs and those with diarrhoea by bacterial cul-

ture and PCR testing for toxin genes [25, 31, 32]. To assess for associations between carriage of

toxigenic strains and clinical disease, testing for the presence of active toxin in faecal samples

from healthy dogs and those with diarrhoea is also needed [18]. Some studies which have

tested for active toxin have suggested an association between the presence of toxin in faecal

samples and diarrhoeal disease in dogs [18, 33, 34]. However, others have not which may in

part be explained by differences in methods used to detect active toxin in samples [35].

To assess the potential role of dogs as a zoonotic reservoir of C. difficile, and association

with clinical diarrhoeal disease in dogs we designed a case-control study of dogs presenting to

a veterinary referral practice in Scotland. Our study had the following objectives; i) to assess

the risk factors associated with carriage of C. difficile by dogs, ii) to test for associations
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between carriage of C. difficile and diarrhoeal disease in dogs and iii) to determine if dogs

carry strains of C. difficile that are frequently associated with clinical disease in humans.

Materials and methods

Ethical approval for the study was obtained from the University of Glasgow, School of Veteri-

nary Medicine Ethics and Welfare Committee (Reference number 11a/16). Informed written

consent was obtained from all participants recruited to complete a questionnaire survey and

informed written consent for the use of residual clinical samples for research was given by all

participants in the study. To investigate whether C. difficile carriage was associated with disease

in dogs we recruited a total of 327 dogs referred from across the west of Scotland to the Uni-

versity of Glasgow School of Veterinary Medicine Small Animal Hospital (hereafter described

as the referral hospital). A referral hospital was chosen for the study due to the large geographic

catchment area, ability to include dogs with a range of potential risk factors for carriage of C.

difficile and the capacity to investigate the association of C. difficile carriage with diarrhoeal

disease. A fresh faecal sample collected by the owner on the day of admission to the hospital or

a sample from the first stool passed within 48 hours of admission was used to evaluate C. diffi-
cile colonisation of dogs within the community [25]. Dogs referred for treatment of either

acute or chronic diarrhoea (n = 101) or for non-gastrointestinal reasons (n = 226) were

recruited to the study between June 2016 and October 2019.

Assessment of risk factors for C. difficile carriage by dogs

A questionnaire designed to assess potential risk factors for the carriage of C. difficile by dogs

was completed by a subset of owners (n = 200) recruited to the study (S1 File). All owners pre-

senting to the referral hospital with their dog between June to December 2016 were invited to

complete the survey unless the dog was critically ill. The survey was designed to provide infor-

mation on potential risk factors for increased susceptibility for C. difficile carriage and to iden-

tify potential sources of infection. We requested information on the diet, breed, sex and age of

the dog and information on the household, including co-habiting pets, elderly people or infants.

We examined clinical records from the referring practice to obtain clinical information on anti-

biotic, antacid, immunosuppressive treatment and the number of visits and days as an inpatient

at a veterinary hospital within the three months prior to admission to the referral hospital.

Detection and strain typing of C. difficile from canine faecal samples

Following collection, canine faecal samples were placed in anaerobic jars, stored at 4˚C, and

processed within 72 hours. One gram of each faecal sample was emulsified in 2ml of ethanol

and incubated at room temperature for 30 minutes to select for resistant C. difficile spores,

which were then germinated by plating of 200ml of this suspension on Brazier’s taurocholate

cycloserine cefoxitin agar (TCCA) supplemented with 5% defibrinated horse blood and egg

white emulsion. Each sample was cultured in duplicate and incubated for a maximum of 7

days in an anaerobic chamber (Don Whitley, UK). Colonies showing typical C. difficile colony

morphology and which appeared black when subcultured onto Biomerieux chromID1 C. dif-
ficile agar were selected. Clones were identified as C. difficile by amplification and analysis of

the 16S (V4) ribosomal RNA sequence (S1 Table). Chromosomal DNA was prepared from

each isolate using DNeasy Blood and Tissue kits, (Qiagen, Hilden, Germany), following the

manufacturer’s instructions. Amplified PCR products were purified using the Qiaquick PCR

purification kit, and sequenced by Source Bioscience (Livingston, UK). The bacterial species

for each isolate was determined by subjecting each sequenced and trimmed PCR product to

BLAST analysis using the National Centre for Biotechnology (NCBI) Nucleotide database.
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All isolates were ribotyped at the Scottish Microbiology Reference Laboratory (Glasgow)

using PCR ribotyping as previously described [36, 37]. Variable-length intragenic spacer

regions of the rRNA complex were amplified by PCR and visualised following agarose gel elec-

trophoresis. Ribotype patterns were assigned following analysis using BioNumerics software

v7.6 (Applied Maths, Sint-Maart-ens-Latem, Belgium). Patterns were compared with libraries

using the Pearson Correlation Coefficient of similarity with a 1% optimization setting. A

library containing a number of examples of individual ribotype patterns allowed the correct

identification of similar ribotypes such as RT014 and RT020 as evidenced by the laboratory’s

performance in external quality control schemes [37].

Detection of toxin genes by PCR assays for tcdA and tcdB and detection of active

toxin. All isolates of C. difficile were tested for the presence of fragments of the tcdA and

tcdB genes by PCR amplification with primers designed using the annotated C. difficile
630 genome (S1 Table). Successful primer binding was confirmed in silico with sequences

from representative strains of C. difficile. These primers amplify the first 427 and 417bp

tcdA and tcdB respectively. Amplification was shown to be specific by inclusion of DNA from

the epidemic, toxin-producing strain C. difficile R20291 and from a PaLoc negative strain,

1342.

A subset of 116 faecal samples collected between 2018–19, were tested for the presence of

active toxin using a cytotoxicity assay. Of these samples, 22 were from dogs presenting with

diarrhoea (8 with acute diarrhoea and 14 with chronic diarrhoea) and 94 samples were from

control dogs without diarrhoea. To detect the presence of toxin, aliquots of fresh faeces, were

stored in anaerobic jars at 4˚C and within 48 hours of collection, were emulsified in 2ml of

PBS and solid material removed by centrifugation. Pilot experiments with known concentra-

tions of toxin spiked into fresh canine faecal pellets confirmed this storage method did not

alter the capacity to detect toxin activity. The supernatant was filtered through a 0.2um mem-

brane filter and the resultant material was serially diluted in PBS and added to a prepared

monolayer of Vero cells. To confirm specificity of cytotoxicity, a second set of samples, pre-

pared in parallel, were treated with Clostridium sordellii antitoxin (NIBSC, 20 IU/ml). This

antitoxin cross-reacts with C. difficile toxin and has been used to confirm the presence of C.

difficile toxin activity in human samples [38]. Treated cells were then incubated for 18–24

hours at 37˚C with 5% CO2, before cells were fixed with 1% formalin for 30 minutes and

stained using Giemsa stain (SIGMA-ALDRICH1, 6% diluted) for 1 hour. Cell rounding,

which is associated with C. difficile toxin presence was assessed microscopically. A sample was

considered positive if cell rounding was observed that was neutralized by addition of the C. sor-
dellii antitoxin [38].

Statistical analysis

All statistical analyses were carried out in R version 4.0.2 (R Development Core Team, Vienna,

Austria using the package lme4 [39] for analyses. Collinearity was tested for using the variance

inflation factor in the car package in ‘R’ [40]. Prevalence was calculated using the prop.test

function in ‘R’.

Assessment of risk factors for carriage of C. difficile. C. difficile carriage in dogs (present

or absent) was modelled in a binomial general linear model (GLM) with a logit link as a func-

tion of each of the following potential risk factors listed in Table 1. Risk factors with a p value

of< 0.10 based on univariable analysis were included in a multivariable general linear model

of C. difficile carriage (present or absent) with binomially distributed errors and a logit link.

Starting from the maximum global model, stepwise backwards model selection was carried out

using likelihood ratio tests.
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Testing for an association between C. difficile carriage and diarrhoeal disease in dogs.

To test whether the carriage of toxigenic strains of C. difficile was associated with diarrhoea,

the presence or absence of diarrhoea in each dog (n = 327) was modelled using a GLM with

binomially distributed errors and a logit link, as a function of C. difficile carriage, and sepa-

rately as a function of carriage of a toxigenic strain of C. difficile (based on the PCR presence of

one or both toxin genes).

Comparison of strains detected in dogs with clinical surveillance for C.

difficile in humans

To assess the potential for shared strains between dogs and humans, ribotypes detected from

dogs in this study were compared to ribotypes recorded from human surveillance of C. difficile
cases by the National Microbiology Reference laboratory in Scotland between 2015 and 2018

[41–43].

Table 1. Univariable analysis of risk factors potentially associated with the carriage of C. difficile in dogs presented to the University of Glasgow, Small Animal Hos-

pital referral hospital.

Explanatory Variable Sample size Factor level Odds ratio (95% CI) p value�

Sex and neutering status 5/29 Female 1.0 (reference) 0.92

8/55 Female (N) 0.82 (0.24–2.95)

10/51 Male 1.17 (0.37–4.13)

11/61 Male (N) 0.98 (0.32–3.38)

Age (months) 200 NA 1.01 (1.002–1.02) 0.016

Raw meat in diet 32/182 No 1.0 (reference) 0.46

2/18 Yes 0.59 (0.09–2.20)

Cooked meat in diet 21/119 No 1.0 (reference) 0.77

13/81 Yes 0.89 (0.41–1.88)

Other pets in household 21/98 No 1.0 (reference) 0.10

13/102 Yes 0.54 (0.25–1.13)

Number of people in household 18/106 Two or less 1.0 (reference) 0.94

16/92 More than two 1.03 (0.49–2.16)

Infant (< 2 years) or person > 65 years in household 29/174 No 1.0 (reference) 0.75

5/26 Yes 1.19 (0.37–3.21)

Antibiotic treatment last 3 months 10/99 No 1.0 (reference) 0.009

24/101 Yes 2.77 (1.28–6.42)

Length of antibiotic treatment (days) 200 NA 1.08 (1.04–1.11) <0.001

Treatment with more than 1 antibiotic 200 No antibiotic 1.0 (reference) 0.024

One antibiotic 2.2 (0.89–5.58)

>1 antibiotic 3.52 (1.38–9.16)

Immunosuppressive treatment 30/182 No 1.0 (reference) 0.55

4/18 Yes 1.45 (0.39–4.37)

Antacid treatment 23/153 No 1.0 (reference) 0.19

11/47 Yes 1.73 (0.75–3.81)

Overnight stay in veterinary hospital 20/131 No 1.0 (reference) 0.33

14/67 Yes 1.47 (0.68–3.11)

Visits to veterinary hospital 6/48 One or less 1.0 (reference) 0.54

20/104 2–5 1.71 (0.67–4.96)

8/48 >5 1.40 (0.45–4.59)

�p value from likelihood ratio tests compared to a null model

https://doi.org/10.1371/journal.pone.0245949.t001
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Results

Prevalence and strain diversity of C. difficile in canine faecal samples

The overall prevalence of C. difficile from canine faecal samples in this study was 18.7% (95%

C.I. 14.8–23.2%, n = 61/327). The majority of isolates were nontoxigenic strains (63.4%

n = 39/61) while 21/61 were toxigenic strains with the PCR presence of either or both tcdA

and tcdB genes. One isolate was not tested for toxin genes. A total of 13 different ribotypes

were detected in the canine samples, and 10 of these ribotypes included toxigenic isolates (Fig

1, S2 Table).

Detection of toxin activity in fresh faecal samples

A total of 116 faecal samples were tested within 48h of collection for the presence of active

toxin as determined by Vero cell rounding. Two samples tested positive, and cytotoxic activity

was neutralised by C. sordellii antitoxin. Both faecal samples with active toxin present were

from dogs with no clinical evidence of diarrhoea. C. difficile was subsequently cultured from

26 of the 116 faecal samples tested for active toxin (21 dogs without diarrhoea, and 5 dogs with

diarrhoea) and 11 of these isolates were toxigenic. This included both samples which tested

positive with the cytotoxicity assay. Ribotype analysis revealed these strains to be 020 and 106

types respectively (S2 Table).

Risk factors for carriage of C. difficile by dogs

Results of univariable analysis of risk factors and carriage of C. difficile are shown in Table 1.

In a multivariable model, dogs were more likely to carry C. difficile with an increasing length

of treatment on antibiotics, for each day of antibiotic treatment (OR = 1.08, 95% C.I. 1.04–

1.11), p<0.001 (Table 2). Other explanatory variables including age (months), treatment with

multiple antibiotics and the presence of multiple pets in the household were not maintained in

the final model.

Fig 1. Ribotypes of C. difficile from dogs in this study, shown according to whether they were isolated from dogs with

or without diarrhoea (A) and whether strains were classed as toxigenic or nontoxigenic (B) based on a PCR positive

test for either or both tcdA and tcdB genes.

https://doi.org/10.1371/journal.pone.0245949.g001

Table 2. Results from the final selected multivariable general linear model to explain carriage of C. difficile by dogs.

Model description Fixed effects Mean (Estd) SE Odds ratio (95% CI) p value�

C. difficile carriage (presence/absence) Intercept -2.1 0.25 NA NA

Length of antibiotic treatment (days) 0.047 0.012 1.08 (1.04–1.11) <0.001

�p value from LRT

https://doi.org/10.1371/journal.pone.0245949.t002
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Testing for an association between C. difficile carriage and diarrhoeal disease in dogs.

Neither carriage of C. difficile (OR = 1.33 95% CI = 0.74–2.38, p = 0.34), or the presence of

toxigenic strains of C. difficile in a faecal sample (OR = 0.50, 95% CI = 0.14–1.41, p = 0.20) was

associated with diarrhoea in dogs. Toxigenic strains of C. difficile were detected both in dogs

with diarrhoea and in dogs with no evidence of gastrointestinal disease (Fig 1).

Comparison of strains detected in dogs with clinical surveillance for

C. difficile in humans

Human clinical surveillance of C. difficile strains during the time period of this study are shown

in S3 Table. The frequency of the most common 12 ribotypes are shown which represent

approximately two thirds of the total number of human isolates detected. Six of these ribotypes,

012, 014, 020, 026, 078, 106 were isolated from dogs in this study. These six ribotypes represent

approximately one third of the total number of isolates collected from human CDI surveillance.

Discussion

This study has found that C. difficile can be frequently isolated from diarrhoeic and non-diar-

rhoeic canine faecal samples, and carriage of toxigenic strains by dogs is not associated with

diarrhoeal disease. As in humans and other species, antibiotic treatment was significantly asso-

ciated with the carriage of C. difficile by dogs. Several toxigenic ribotypes detected in dogs in

this study are among the most frequently reported ribotypes from clinical surveillance of peo-

ple in the same locality over the period of the study.

The overall prevalence of C. difficile carriage in dogs in this study was 18.7%, similar to pre-

vious studies from referral hospitals in other countries which reported rates of 18.4% and

13.7% [21, 27]. Prevalence rates in healthy dogs presenting to primary care veterinary clinics

and those living in shelters are reported to be lower, ranging from 0% to 6.1% [20, 31]. Several

factors could contribute to these apparent differences, including geographic area, laboratory

methods and age and clinical history of dogs recruited to these studies. In our study toxigenic

isolates accounted for 34% of positive cultures (n = 21/61); previous studies have reported a

prevalence of toxigenic isolates of 36.8% to 69% [21, 23, 25, 28]. The most commonly isolated

ribotypes in our study cohort were ribotypes 039 and 010, followed by 020, a toxigenic ribotype

that was recovered most frequently from non-diarrhoeic dogs (Fig 1). Isolates from two ribo-

types (039 and 012) contained both toxigenic and nontoxigenic strains (Fig 1). This result is

unusual as typically 039 isolates are nontoxigenic, while 012 isolates are toxigenic [44], and

will be further investigated using whole genome sequencing. In contrast to studies of produc-

tion animals and horses where the 078 ribotype often dominates, no dominate strain appears

associated with canine colonisation [20, 24, 26, 29, 45, 46]. Other European studies have

reported the 010 ribotype as one of the most common strains isolated from dogs [20, 24, 29,

45, 46]. In these studies, ribotypes 014 and 020 were also frequently isolated.

We found risk factors related to antibiotic treatment within the previous three months were

significantly associated with carriage of C. difficile by dogs. The length of antibiotic treatment

was the only factor supported in a multivariable model, with a seven-day course of treatment

predicted to increase the risk of carriage by 1.67 times (95% CI 1.30–2.13, p<0.001). Some

previous studies in dogs have found an association between previous antibiotic administration

and C. difficile carriage [27, 29, 47] whereas other studies did not [21, 25, 28]. As in humans

and horses the mechanism underpinning the positive relationship between antibiotic treat-

ment and C. difficile carriage is likely due to loss of microbiome diversity within the gut [48].

As a result, C. difficile is able to germinate and rapidly multiply in the available niche. Age was

also positively associated with carriage of C. difficile on univariable analysis with a slightly
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increased risk of carriage per year OR = 1.13 (95% CI = 1.02–1.25, p = 0.016), as reported by

other studies [21, 28]. This positive relationship could suggest an extended duration of coloni-

sation, though no longitudinal studies of carriage in dogs have been carried out to date. Alter-

natively, there could be increased host susceptibility with age. We were unable to identify a

potential source of C. difficile colonisation of dogs from our questionnaire survey. Previous

studies have found that dogs living with an immunocompromised person or contact with a

person with diarrhoea can increase the risk of colonisation in dogs, while feeding a dry food

diet reduces risk [19, 29, 49, 50]. Although comparison of the results of published studies in

dogs is limited by difference in study design and geographic area, a potential explanation for

variation in ribotypes detected in dogs among different studies could be that carriage is driven

mainly by host susceptibility. If this hypothesis is true, the strains isolated from dogs may be

reflective of those which they are exposed to on a daily basis in food and the environment

[9, 14].

The significance of C. difficile as cause of disease in dogs is unclear, since toxigenic strains

can be isolated from healthy, as well as diarrhoeic dogs [25, 31]. Our study was in agreement

with others which did not find an association between carriage of toxigenic strains of C. diffi-
cile and diarrhoea [25, 34]. Carriage of toxigenic strains in our study was assessed through cul-

ture and PCR to detect the presence of either or both of the toxin genes tcdA and tcdB.

Although variability in toxin genes may potentially affect primer binding and ability to detect

these genes using PCR (see footnote, S2 Table) [51], a problem with primer binding is sus-

pected to be an issue in only one 017 isolate for the tcdA gene. Based on comparative sequences

from typical isolates of these ribotypes and the fragment amplified by PCR, this isolate would

be expected to be positive by PCR. This did not affect classification of this isolate as a toxigenic

strain since the tcdB gene was detected. Our finding that active toxin was not detected in the

majority of dogs carrying toxigenic strains of C. difficile, also found in another recent study

[52] may suggest one possible reason why carriage does not seem to be commonly associated

with diarrhoea. These results are consistent with either toxigenic strains being most frequently

carried in the canine gut without active transcription of the toxins, or very small quantities of

toxin being produced which were below the detection limits of our assay. In our study only

two of eleven canine faecal samples which carried toxigenic strains tested positive for active

toxin and both of these samples were from non-diarrhoeic dogs. Some previous studies which

indicated a relationship between the presence of active toxin and C. difficile associated disease

in dogs may have been affected by low sensitivity and specificity of ELISA’s used to detect

toxin in dogs [35].

We were limited in our study cohort in evaluating associations between diarrhoea and car-

riage of toxigenic strains of C. difficile by the relatively low numbers of diarrhoeic samples car-

rying toxigenic strains of C. difficile (n = 4). No pattern in the history, clinical presentation or

diagnosis was observed among these cases and endoscopic evaluation of the colon was not car-

ried out as part of clinical investigations in these dogs. Due to time and logistical constraints

we were only able to implement the cytotoxicity assay for part of the study period which meant

only one of these four cases was tested for active toxin. This was not found to be present, sug-

gesting that C. difficile was not the cause of the diarrhoea. Although C. difficile may still be a

potential cause of diarrhoea in dogs, our results suggest that the frequency of disease is likely

to be low. The availability of reliable tests for active toxin which are suitable for use in a diag-

nostic laboratory setting is likely to limit clinical investigations into the significance of toxi-

genic isolates. Cytotoxicity assays are labour intensive and unlikely to be widely available.

There is evidence that the epidemiology of CDI in humans is changing, with increasing

numbers of cases reported from patients residing within the community and attribution of the

source of infections in most of these cases is unknown [7, 53]. This study, in agreement with
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other recent studies shows that ribotypes associated within human clinical disease can be car-

ried asymptomatically with the canine gut. Six of the ten toxigenic ribotypes of C. difficile
detected in dogs in this study (012, 014, 020, 026, 078, 106) are also some of the most common

isolates detected by human clinical surveillance in Scotland from 2015–2018 (S3 Table) [41–

43]. A subset of these ribotypes (014, 020 and 078) are amongst the most prevalent causes of C.

difficile-associated diarrhoea in Europe [54, 55]. Results from this and other companion ani-

mal studies demonstrating shared ribotypes amongst dogs and humans suggest that dogs

could contribute to a reservoir for human infections, either directly or by contaminating the

environment. Understanding the potential significance of carriage of toxigenic strains of C.

difficile by companion animals to human community CDI will require integrated molecular

epidemiology studies of community CDI with investigation of food, environment and poten-

tial zoonotic sources.

Conclusions

We have found that C. difficile carriage in dogs presenting to a referral hospital in Scotland is

relatively common, and an increasing length of antibiotic therapy is associated with a higher

risk of C. difficile carriage. The findings of this study and others suggest that C. difficile is not

commonly associated with diarrhoeal disease in dogs. Dogs carried several toxigenic strains

associated with human clinical disease and could potentially act as a source of infection for

humans, or spore accumulation within the environment.
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