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Abstract: Phenolic compounds from the flower of Clitoria ternatea L. (PCFCTL) were extracted
using a high-speed shearing extraction technique and purified by AB-8 macroporous resins, and
the phytochemical composition of the purified phenolic compounds from the flower of Clitoria
ternatea L. (PPCFCTL) was then analyzed. Subsequently, its bioactivities including antioxidant
properties, enzyme inhibitory activities, and antiproliferative activities against several tumor cell
lines were evaluated. Results indicated that the contents of total phenolics, flavonoids, flavonols,
flavanols, and phenolic acids in PPCFCTL were increased by 3.29, 4.11, 2.74, 2.43, and 2.96-fold,
respectively, compared with those before being purified by AB-8 macroporous resins. The results
showed PPCFCTL have significant antioxidant ability (measured by reducing power, RP, and ferric
reducing antioxidant power method, FRAP) and good DPPH, ABTS+, and superoxide anion radical
scavenging activities. They can also significantly inhibit lipase, α-amylase, and α-glucosidase. In
addition, morphological changes of HeLa, HepG2, and NCI-H460 tumor cells demonstrated the
superior antitumor performance of PPCFCTL. However, the acetylcholinesterase inhibitory activity
was relatively weak. These findings suggest that PPCFCTL have important potential as natural
antioxidant, antilipidemic, anti-glycemic and antineoplastic agents in health-promoting foods.

Keywords: Clitoria ternatea L.; phenolic compounds; phytochemical properties; antioxidant activities;
enzyme inhibitory activities; antiproliferative activities

1. Introduction

Phenolic compounds, existing in many kinds of plants, can be classified into two main
groups: simple phenols and polyphenols [1]. The simple phenol group includes phenolic
acids, while polyphenols include flavonoids (flavonols, flavanols, flavones, isoflavones),
and lignans. Phenolic compounds are essential to human physiology because they play
protective roles in human bodies, such as antioxidants [2], enzyme inhibitors [3], and
antitumor and anti-inflammatory agents [4,5]. According to Zalba et al., oxidative stress
is a physiological status where the production and metabolism of reactive oxygen species
(ROS) are out of balance [6]. Oxidative stress is reported to be responsible for cancer [7],
atherosclerosis [8], myocardial infarction [9], etc. An increasing number of studies have
shown that most plant phenolic compounds have antioxidant properties with effects
related to the number and position of phenolic hydroxyl groups and other special chemical
structures. In addition, plant phenolic compounds are of great significance in inhibiting
enzyme and anti-proliferation. Modern medical research has shown that many diseases
that afflict people are closely related to the abnormal activities of various enzymes.

To control the activities of these enzymes so as to indirectly cure related diseases,
scientists have carried out many studies on phenolic compounds. It has been reported
that the polyphenolic-rich fraction of Terminalia paniculata bark could inhibit lipase activ-
ity [10]. Moreover, the polyphenols of five cultivars of young apple, including Short-Branch
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Fuji, Pink Lady, Jinshiji, Ruiyang, and Qinyang, reportedly have the ability to inhibit
α-amylase activities, demonstrating a certain therapeutic effect in treating diabetes [11].
The polyphenol-rich extracts from jute leaves have been reported to exhibit a significant
inhibitory effect on α-glucosidase activities, which may be helpful for the treatment of
diabetes mellitus [12]. In addition, previous studies have also found that the cholinergic
enzyme is linked to Alzheimer’s disease, and the inhibition of cholinergic enzymes such as
acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) has been recognized as an
acceptable treatment for this disease [13]. Furthermore, the polyphenols extracted from
lotus seed epicarp significantly inhibited the proliferation of HepG2 cells, a representative
type of cancer cells [14].

Clitoria ternatea L., belonging to the Fabaceae family, is distributed in tropical and
subtropical regions, including the Caribbean area, Central America, Africa, Southeast
Asia, and India [15,16]. Its roots, stems, leaves, flowers, and seeds are commonly used in
traditional medicine and diets. In combination with ginger powder, fixed oil, tannic acid,
glucose, and bitter acid resin in the seeds can be powerful laxative agents. The seeds can
also be used as food dye [17]. The roots have cooling, laxative, diuretic, anthelmintic, and
anti-inflammatory properties which are of significance in the treatment of severe bronchitis,
asthma, and hectic fever [18]. Stems are recommended for the treatment of snakebites
and scorpion stings in India [19]. Leaves contain ester and resin glycosides [17], which
are used in the treatment of several ailments including body aches, especially infections,
and urogenital disorders. Leaves could also be utilized as anthelmintics and antidotes
to insect stings [20]. Flowers are a good source of dietary anthocyanins and are used as
natural blue colorants in a variety of foods, which have antimicrobial and anti-inflammatory
activities [21–23]. However, not many reports have been published on the phytochemical
properties or antioxidant, enzyme inhibitory, and antiproliferative activities of phenolic
compounds in vitro from the flower of Clitoria ternatea L.

This study aimed to analyze the phytochemical properties of the purified phenolic com-
pounds from the flower of Clitoria ternatea L. (PPCFCTL). We are the first to investigate their
antioxidant capacity and enzyme inhibitory activity against lipase, alpha-amylase, alpha-
glucosidase, and acetylcholinesterase, as well as their antiproliferative activity. We aimed
to obtain a theoretical basis for the development of related products derived from PPCFCTL.

2. Results and Discussion
2.1. Phytochemical Analysis

AB-8 macroporous resin has been a common packing of the column in the purification
of plant phenolics on account of its physicochemical stability, adsorption/desorption
selectivity, and recyclability. The application of AB-8 macroporous resin in the purification
of plant phenolic compounds has been reported in many previous studies [24–26]. In
this research, AB-8 macroporous resin also demonstrated its outstanding performance in
purifying the phenolic compounds from flower of Clitoria ternatea L. (PCFCTL). In this
study, the contents of total phenols, flavonoids, flavonols, flavanols, and phenolic acids
were analyzed with UV–Vis spectrophotometry before and after purification, as shown
in Table 1, where AB-8 macroporous resin performs well in PCFCTL purification. These
significant increases in the purities of total phenolics, flavonoids, flavonols, flavanols, and
phenolic acids indicated the high efficiency of AB-8 macroporous resin, which could be
considered as an ideal purification media. The improvement of the purity of phenolic
compounds is often of great significance for the evaluation of their biological activities [27].

2.2. Antioxidant Activities

DPPH is a kind of free-radical-generating substance which is widely used to mon-
itor the free radical scavenging properties of different antioxidants [28]. As plotted in
Figure 1A, there was a positive correlation between the DPPH radical scavenging activ-
ities of PPCFCTL and ascorbic acid and the concentrations. When the concentrations of
PPCFCTL and ascorbic acid were in the range of 10 to 100 and 1 to 10 µg/mL, the scavenging
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rates were from 11.20 ± 0.37% to 59.40 ± 1.04% and from 8.58 ± 1.54% to 69.66 ± 0.53%,
and their 50% scavenging concentration (SC50) values were 74.96 and 6.74 µg/mL, re-
spectively. According to the corresponding SC50 values, the order of the DPPH radical
scavenging activities was ascorbic acid > PPCFCTL.

Table 1. Phytochemical constituents of PCFCTL and PPCFCTL.

Phenolic Compounds PCFCTL PPCFCTL

Total phenolics (mg GAE/g) 55.24 ± 0.68 a 236.78 ± 0.35 b

Flavonoids (mg RE/g) 33.48 ± 0.44 a 171.22 ± 0.91 b

Flavonols (mg RE/g) 52.96 ± 0.40 a 197.83 ± 1.69 b

Flavanols (mg CE/g) 0.43 ± 0.02 a 1.48 ± 0.05 b

Phenolic acid (mg CAE/g) 14.83 ± 0.23 a 60.04 ± 1.17 b

Data are presented as the mean ± SD of three independent replicates. Means within a column followed by the
same letter are not significantly different (p < 0.05).
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α-amylase, the inhibition of which is considered a strategy in the treatment of type 2 
diabetes, is an enzyme that plays a key role in the digestion of starch [34]. As a result, α-
amylase has also been recognized as a therapeutic target for the modulation of postpran-
dial hyperglycemia. It can be seen from Figure 2B that there was a gradual increase in α-
amylase inhibitory effect with increasing concentrations of PPCFCTL. At the concentra-
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± 1.92%. The IC50 value of PPCFCTL was 1.70 mg/mL, while the IC50 value of acarbose was 
2.76 mg/mL. From the above results, it could be found that PPCFCTL had stronger α-
amylase inhibitory activities. 

Figure 1. Antioxidant activities of PPCFCTL: (A) DPPH radical scavenging activities, (B) ABTS + radical
scavenging activities, (C) superoxide anion radical scavenging activities, (D) reducing power activ-
ities, (E) ferric reducing antioxidant power activities. Data represent means of three independent
experiments (mean ± SD).

The ABTS method is the most widely accepted colorimetric method to measure and
characterize antioxidant capacity. One electron of an antioxidant combines with one electron
of an ABTS+ radical, which can make the green color of the ABTS+ radical solution fade
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away [29]. As shown in Figure 1B, it was seen that the PPCFCTL (from 3 to 30 µg/mL)
were able to dose-dependently inhibit the ABTS+ radical scavenging activities. The effects
of PPCFCTL, which were expressed as percentages of inhibition, were from 23.38 ± 0.30%
to 82.63 ± 0.85%. Ascorbic acid employed as a positive control exhibited notable ABTS+

radical scavenging activities from 8.21 ± 0.70% to 90.43 ± 0.28% as the concentrations
varied from 0.9 to 9.0 µg/mL. The results demonstrated that the SC50 values of PPCFCTL
and ascorbic acids were 9.90 and 4.48 µg/mL.

DNA molecules are vulnerable when exposed to superoxide anion radicals which
can further generate active free radicals, including hydroxyl radical, singlet oxygen, and
hydrogen peroxide [30]. As shown in Figure 1C, the scavenging rate of PPCFCTL on
superoxide anion radicals rose upon the increase in the concentrations. The scavenging
rates of PPCFCTL and ascorbic acid were 13.96 ± 1.97% and 27.60 ± 1.89% when the
concentrations were 8 and 2 µg/mL, respectively. When the concentrations increased to
80 and 20 µg/mL, the rates rose to 77.21 ± 2.15% and 95.90 ± 1.42%. The SC50 value of
PPCFCTL was 39.24 µg/mL, while the value of ascorbic acid was 4.24 µg/mL.

The reduction in Fe3+ indicates an electron donor. Due to their reducing power, pheno-
lic compounds act as electron and/or hydrogen donors to scavenge free radicals in vivo [31].
The activity of PPCFCTL was concentration-dependent as described in Figure 1D. When
the concentrations varied from 12 to 120 µg/mL, the reducing power increased from
0.095 ± 0.006 to 0.590 ± 0.015. The EC50 values of PPCFCTL and ascorbic acid were 86.77
and 6.78 µg/mL, which proved that PPCFCTL had notable reducing power.

The ferric ion reducing antioxidant power (FRAP) assay is based on an electron transfer
reaction where ferric salt is used as an antioxidant [32]. As depicted in Figure 1E, PPCFCTL
showed dose-dependent FRAP within the tested concentration range. At the concentrations
of 4–40 µg/mL, the FRAP of PPCFCTL increased from 0.136 ± 0.010 to 0.710 ± 0.016. The
EC50 value of PPCFCTL was found to be 25.90 µg/mL, which was lower than that of
ascorbic acid (2.98 µg/mL).

2.3. Enzyme Inhibitory Activities

Pancreatic lipase, a fat decomposing enzyme, which is secreted by the pancreas, is
vital in the digestion of triglycerides [33]. Therefore, the application of lipase inhibitors may
inhibit the degradation of fat catalyzed by lipase, which reduces the absorption of fat by the
human body. Figure 2A shows that the inhibitory effect of PPCFCTL on lipase rose as the
concentrations of PPCFCTL increased. The lipase inhibitory rates of PPCFCTL were from
17.71 ± 1.58% to 82.89 ± 3.68%, when the concentrations ranged from 0.075 to 0.60 mg/mL.
The 50% inhibitory concentration (IC50) value of PPCFCTL was 0.28 mg/mL, which was
higher than that of orlistat (0.16 mg/mL). However, it is still an effective lipase inhibitor.

α-amylase, the inhibition of which is considered a strategy in the treatment of type 2
diabetes, is an enzyme that plays a key role in the digestion of starch [34]. As a result,
α-amylase has also been recognized as a therapeutic target for the modulation of postpran-
dial hyperglycemia. It can be seen from Figure 2B that there was a gradual increase in
α-amylase inhibitory effect with increasing concentrations of PPCFCTL. At the concen-
trations of 0.45–3.60 mg/mL, the α-amylase inhibitory rates varied from 13.67 ± 2.63%
to 77.72 ± 1.92%. The IC50 value of PPCFCTL was 1.70 mg/mL, while the IC50 value of
acarbose was 2.76 mg/mL. From the above results, it could be found that PPCFCTL had
stronger α-amylase inhibitory activities.

α-glucosidases in the brush border of the small intestine are essential for the process of
degradation from more complex carbohydrates to glucose, which inhibits postprandial glu-
cose peaks, thereby leading to decreased post-load insulin levels [35]. Thus, α-glucosidase
is an important target enzyme for the treatment of type 2 diabetes in humans [36]. It could
be concluded from Figure 2C that both PPCFCTL and ascorbic acid inhibited α-glucosidase
activities in a concentration-dependent manner at the tested concentrations. The IC50
values for the inhibition of α-glucosidase activities by PPCFCTL and acarbose were found
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to be 1.04 and 0.94 mg/mL, respectively. Based on the obtained results, PPCFCTL had a
potent inhibitory effect against α-glucosidases.
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hibitory activities, (C) α-glucosidase inhibitor activities, (D) acetylcholinesterase inhibitory activities.
Data represent means of three independent experiments (mean ± SD).

Acetylcholinesterase is a serine hydrolase [37]. Its principal biological function is
to terminate the impulse transmissions at cholinergic synapses within the nervous sys-
tem by rapidly hydrolyzing the neurotransmitter acetylcholine [38]. Inhibition of acetyl-
cholinesterase is an important strategy for the treatment of Alzheimer’s disease and other
cholinergic transmission deficiency diseases [39]. It can be clearly seen in Figure 2D
that the acetylcholinesterase inhibitory effects of both PPCFCTL and galantamine were
well correlated with the concentrations, and the acetylcholinesterase inhibitory effect
of galantamine was significantly higher than that of PPCFCTL. At the concentration of
0.18 and 1.44 mg/mL, the acetylcholinesterase inhibitory rates of PPCFCTL increased
from 14.25 ± 2.24% to 94.85 ± 4.38%; similarly, at the concentration of 8 × 10−6 and
6.4 × 10−5 mg/mL, the acetylcholinesterase inhibitory rates of galantamine increased from
38.56 ± 1.83% to 77.00 ± 1.33%. The IC50 values of PPCFCTL and galantamine were 0.47
and 1.6 × 10−5 mg/mL, respectively. This result suggested that the PPCFCTL were weak
acetylcholinesterase inhibitors.

2.4. Antiproliferative Activities

In vitro evaluation of anticancer properties using cancer cell lines is an important tool
in discovering new anticancer drugs with high specificity [40]. MTT and other tetrazolium
haline-based detection methods are among the most popular techniques for quantitative
assessment of cell proliferation, viability, and cytotoxicity due to their low cost, high
efficiency, and simplicity [41]. The typical MTT method is the colorimetric determination
on a microtiter plate and the absorbance at the end of the measurement. Tetrazolium acts
as an indicator of intracellular reduction potential, which in turn indicates the overall
state and viability of cells. The enzymolysis of and reduction in tetrazolamide by the cell
dehydrogenase and reducing agent resulted in violet blue and water-insoluble formazan
products [42]. The activities of PPCFCTL on the proliferation of HeLa, HepG2, and NCI-
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H460 cells are illustrated in Figure 3A–C. It was obvious that PPCFCTL inhibited the
proliferation of all the three cell lines in a dose-dependent manner. When the concentration
increased from 150 to 900 µg/mL, the inhibition rates for 24 h of PPCFCTL treatment ranged
from 13.98 ± 4.58% to 81.88 ± 1.35%, 0.66 ± 1.51% to 18.48 ± 3.18%, and 27.71 ± 1.40% to
82.77 ± 3.24%, and for 48 h ranged from 17.82 ± 5.31% to 87.54 ± 2.34%, 53.97 ± 3.70% to
57.06 ± 3.23%, and 36.39 ± 1.17% to 94.51 ± 0.41%, for the HeLa, HepG2, and NCI-H460
cells, respectively. Thus, the effect of 48 h treatment was generally better than that of 24 h
treatment. The experimental results were similar to those of Chen et al. [43].
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2.5. Cellular Morphology

Cell morphology is a common index reflecting the physiological and growth state of
cells. The observation of cell morphology can be used to judge the physiological and growth
state of cells, so as to further reflect the effect of drugs on cell growth [44]. Morphological
changes of HeLa, HepG2, and NCI-H460 cells treated and untreated with different concen-
trations of PPCFCTL were observed after 24 and 48 h. As shown in Figures 4–6, according
to the model control group, it could be seen that the cells of HeLa, HepG2, and NCIH460
all presented irregular shapes and grew adherent to the inner wall of the culture plate.
Especially after 48 h of culture, the cells were tightly connected and increased significantly
in number. However, compared with the model control group, after PPCFCTL (750 and
900 µg/mL) or 5-fluorouracil (5-FU) treatment for 24 and 48 h, the number of adherent
cells decreased significantly, and the cell morphology changed from an irregular shape
to a round shape. At the same time, it could also be seen that the 900 µg/mL PPCFCTL
treatment was more effective than that of 750 µg/mL. Collectively, these results suggested
that PPCFCTL effectively inhibit the proliferation of HeLa, HepG2, and NCI-H460 cells
in vitro. The result of the assay was similar to that of the literature [45].
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Figure 4. Effect of PPCFCTL on morphology of HeLa cells. Negative control group ((A) 24 and
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3. Materials and Methods
3.1. Plant Material

Clitoria ternatea L. was purchased from Guangxi Qinzhou BaiCaoYuan Biotechnology
Co., Ltd. (Qinzhou, Guangxi, China). Its flower was taxonomically authenticated and
deposited with voucher number no. 20180322-2 at the herbarium of Food Department,
Xuzhou University of Technology, Xuzhou. It was dried in an oven (GZX-9070MBE, Boxun,
Shanghai, China) with air circulation at 60 ◦C, and the dried material was ground to fine,
homogeneous powder using a grinder (WKX-160, Jingcheng, Qingzhou, Shandong, China),
sieved through a 60-mesh sieve, and kept in a sealed plastic bag at −20 ◦C prior to use.

3.2. Chemicals and Reagents

Gallic acid (≥98%), rutin (≥98%), catechin (≥98%), pyrogallol (≥98%), ascorbic acid,
p-nitrophenyl palmitate (p-NPP), orlistat, 3,5-dinitrosalicylic acid (DNS), p-nitrophenyl-α-D-
glucopyranoside (p-NPG), 5,5′-dithiobis(2-nitrobenzoic acid) (DTNB), and acetylthiocholine
iodide (AChI) were purchased from Hefei Bomei Biotechnology Co., Ltd. (Hefei, An-
hui, China). 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT, M5655,
≥97.5%) was purchased from Sigma-Aldrich Co., Ltd. (St. Louis, MO, USA). Folin–
Ciocalteau reagent was purchased from Shanghai Jinsui Biotechnology Co., Ltd. (Shanghai,
China). p-(dimethylamino)cinnamaldehyde (p-DMACA) and galanthamine were pur-
chased from Shanghai Yuanye Biotechnology Co., Ltd. (Shanghai, China). The human
cervical carcinoma cell line HeLa, the human liver cancer cell line HepG2, and human large
cell lung cancer cell line NCI-H460 were obtained from the Cell bank of typical culture
preservation Committee of the Chinese Academy of Sciences. Trypsin–EDTA solution and
5-FU (F6627, ≥99%) were purchased from Beyotime Biotechnology Co., Ltd. (Shanghai,
China). All other chemicals used were of analytical grade and procured from Sinopharm
Chemical Reagent Co., Ltd. (Shanghai, China). AB-8 macroporous resin was purchased
from Anhui Sanxing Resin Technology Co., Ltd. (Bengbu, Anhui, China).

3.3. Preparation of PPCFCTL
3.3.1. Extraction of PCFCTL

The flower powder (30.0 g) was weighed and transferred into the extraction container
(2.0 L). Thereafter, 750 mL of 80% ethanol (v/v) was added and emulsified with a high-
speed shearing machine (ZHBE-50, Zhijing, Zhengzhou, China). The extraction process
lasted 10 times, 200 s each time at a machine voltage of 100 V. The crude extracts were then
collected, filtered, concentrated, and lyophilized for further purification.

3.3.2. Purification of PCFCTL

PCFCTL purification was implemented as previously reported with applicable mod-
ifications [24]. First, AB-8 macroporous resins were put into a chromatographic column
(2.6 × 60 cm) using the wet method, and the final bed volume (BV) was 320 mL. Then, a
dynamic adsorption test was conducted on the column. The sample solution consisted of
2 g crude extract and 500 mL deionized water, and the pH was adjusted with 1 mol/L HCl
to 4.6. The solution was added to the column with a constant flow pump at a flow rate of
1 BV/h. After that, the dynamic desorption test was performed. The column was eluted
with distilled water until the eluent became transparent. Later, 3.5 BV of 80% ethanol was
used to rinse the column at 0.5 BV/h. Finally, the eluted solution was collected, concen-
trated, and lyophilized. The lyophilized product after purification is called PPCFCTL. The
schematic diagram of the extraction and separation of PCFCTL from Clitoria ternatea L. is
shown in Figure 7.

3.4. Phytochemical Detemination

Total phenolic content was measured using the reported method with minor modifica-
tions [46]. According to the calibration curve of rutin, the phenolic content was determined
as mg GAE/g (freeze-dried sample). GAE stands for gallic acid equivalent.
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Total flavonoid content was measured using the reported method with minor modifica-
tions [47]. According to the calibration curve of rutin, the flavonoid content was determined
as mg RE/g mg (freeze-dried sample). RE stands for rutin equivalent.

Total flavonol content was measured using the reported method with minor modifica-
tions [48]. According to the calibration curve of rutin, the flavonol content was determined
as mg RE/g (freeze-dried sample). RE stands for rutin equivalent.

Total flavanol content was measured using the reported method with minor mod-
ifications [49]. According to the calibration curve of catechin, the flavanol content was
determined as mg CE/g (freeze-dried sample). CE stands for catechin equivalent.

Total phenolic acid content was measured using the reported method with minor
modifications [50]. According to the calibration curve of caffeic acid, the phenolic acid
content was determined as mg CAE/g (freeze-dried sample). CAE stands for caffeic
acid equivalent.

3.5. Antioxidant Assays
3.5.1. DPPH Radical Scavenging Assay

The DPPH radical scavenging activities were measured using the reported method
with minor modifications [51]. The process was as follows: 50 µL of varying concentrations
of PPCFCTL was added to 150 µL of 0.15 mM DPPH (in ethanol) in 96-well plates. Then,
the mixed solution was incubated in the dark at 37 ◦C for 1.0 h; afterward, the absorbance
of the solution at 517 nm was measured using a microplate reader (Synergy H1, Bio-Tek,
Winooski, VT, USA). Ascorbic acid served as a positive control. The scavenging rate was
calculated using the formula below (As stands for the absorbance of the sample group and
Ac for the blank control group.):

Inhibition rate (%) = (1− As

Ac
)× 100 (1)

3.5.2. ABTS+ Radical Scavenging Assay

The ABTS+ radical scavenging activities were measured using the reported method
with minor modifications [51]. The process was as follows: 5 mL of 7 mM ABTS and 88 µL
of 140 mM potassium persulphate were mixed in 96-well plates to generate ABTS+ radicals.
Then, the mixture was left to stand for 12–16 h in the dark at room temperature which
adjusted the absorbance at 734 nm of the solution to 0.85 ± 0.02. Afterward, 40 µL of
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varying concentrations of PPCFCTL was mixed with 160 µL of ABTS solution in 96-well
plates; the mixture was incubated in the dark at 37 ◦C for 1 h. Finally, the absorbance of
the solution after incubation was measured using a microplate reader. Ascorbic acid was
employed as a positive control. The ABTS+ radical scavenging rate was calculated using
Equation (1).

3.5.3. Superoxide Anion Radical Scavenging Assay

The superoxide anion radical scavenging activities were measured using the reported
method with minor modifications [51]. The process was as follows: 20 µL of varying
concentrations of PPCFCTL was added to 100 µL of Tris-HCl buffer (50 mM, pH 8.20) in
96-well plates. Then, the mixed solution was incubated in the dark at 37 ◦C for 20 min.
Afterward, 8 µL of pyrogallol, namely 3 mM of pyrogallol in 10 mM of HCl, which was
pre-incubated in the dark at 37 ◦C for 5 min, was injected into the plates, and the mixture
was incubated in the dark at 37 ◦C for 5 min. Soon after that, 32 µL of 1 M HCl was added
to terminate the reactions. Finally, the absorbance at 320 nm of the mixed solution was
measured using a microplate reader; ascorbic acid was employed as a positive control.
The superoxide anion radical scavenging rate was calculated using the formula below (As
stands for the absorbance of the sample group, Asb for the sample background group, and
Ac for the blank control group):

Scavenging rate (%) = (1− As − Asb
Ac

)× 100 (2)

3.5.4. Reducing Power (RP) Assay

The reducing power of PPCFCTL was measured using the reported method with
minor modifications [51]. The process was as follows: 10 µL of varying concentrations of
PPCFCTL was added to the mixed solution of 25 µL of 0.2 M phosphate buffer (PBS, pH 6.6)
and 25 µL of 1% (w/v) potassium ferricyanide in 96-well plates. Then, the mixed solution
was incubated in the dark at 37 ◦C for 30 min. Then, 25 µL of 10% (w/v) trichloroacetic acid
was injected into the plates to terminate the reactions. Afterward, 17 µL of 0.1% (w/v) ferric
chloride and 85 µL of distilled water were added to the mixture. Finally, the absorbance
of the mixed solution at 700 nm was measured using a microplate reader; ascorbic acid
was employed as a positive control. The reducing power effect of PPCFCTL was calculated
using the formula below (Arp stands for the reducing power, while As stands for the
absorbance of the sample group and Ac for the blank control group):

Arp = (As − Ac) (3)

3.5.5. Ferric Reducing Antioxidant Power (FRAP) Assay

The ferric reducing antioxidant power of PPCFCTL was measured using the reported
method with minor modifications [51]. The process was as follows: 10 mM TPTZ (in
40 mM HCl), 20 mM ferric chloride, and acetate buffer (0.3 M, pH 3.6) were mixed in the
proportion of 1:1:10 (v/v/v) to produce the FRAP reagent which was prepared right before
use. Then, 15 µL of varying concentrations of PPCFCTL was added to 185 µL of FRAP
reagent in 96-well plates. Afterward, the mixed solution was incubated in the dark at
37 ◦C for 10 min. Finally, the absorbance of the solution at 593 nm was measured using a
microplate reader; ascorbic acid was employed as a positive control. Afrap stands for the
ferric reducing antioxidant power and was calculated using Equation (3).

3.6. Enzyme Inhibitory Assays
3.6.1. Lipase Inhibitory Assay

The inhibitory effect of PPCFCTL on lipase was measured using the reported method
with minor modifications [52]. The experiment procedure, concentration and dose of the
reagents, incubation conditions (37 ◦C, 10 or 20 min), and detection method (microplate
reader, 405 nm) were the same as those of the reference. The 405 nm absorbance of the
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solution indicated the inhibitory rate of PPCFCTL on lipase (orlistat as a positive control),
which was determined using the equation below. (As stands for the absorbance of the
sample group, Asb for the sample background group, An for the negative control group,
and Anb for the negative background control group):

Inhibition rate (%) = (1− As − Asb
An − Anb

)× 100 (4)

3.6.2. α-Amylase Inhibitory Assay

The inhibitory effect of PPCFCTL on α-amylase was measured using the reported
method with minor modifications [53]. The experiment procedure, concentration and
dose of the reagents, incubation conditions (37 or 100 ◦C, 5 or 20 min), and detection
method (microplate reader, 540 nm) were the same as those of the reference. The 540 nm
absorbance of the solutions indicated the inhibitory rate of PPCFCTL on α-amylase which
was determined by Equation (4).

3.6.3. α-Glucosidase Inhibitory Assay

The inhibitory effect of PPCFCTL on α-glucosidase was measured using the reported
method with minor modifications [53]. The experiment procedure, concentration and
dose of the reagents, incubation conditions (37 ◦C, 10 or 5 min), and detection method
(microplate reader, 405 nm) were the same as those of the reference. The 405 nm absorbance
of the solution indicated the inhibitory rate of PPCFCTL on α-glucosidase (acarbose as a
positive control) which was determined by Equation (4).

3.6.4. Acetylcholinesterase Inhibitory Assay

The inhibitory effect of PPCFCTL on acetylcholinesterase was measured using the
reported method with minor modifications [53]. The experiment procedure, concentra-
tion and dose of the reagents, incubation conditions (37 ◦C; 5, 15, or 20 min), and detec-
tion method (microplate reader, 405 nm) were the same as those of the reference. The
405 nm absorbance of the final solution indicated the inhibitory rate of PPCFCTL on acetyl-
cholinesterase (galantamine as a positive control) which was determined by Equation (4).

3.7. Antiproliferative Assays
3.7.1. Cell Culture

The HeLa, HepG2, and NCI-H460 cells were cultivated in RPMI-1640. Heat-inactivated
FBS (10%), 100 units/mL penicillin, and 100 µg/mL streptomycin which was stored in
37 ◦C humidified air with 5% CO2 were provided as a supplement, and they were from
the Jiangsu Food Safety Biochip Testing Technology Engineering Laboratory, Xuzhou
University of Technology, Xuzhou, Jiangsu, China.

3.7.2. Cell Viability Assay Using MTT Method

The protocol of antiproliferative assays was adapted from the one reported by
Guo et al. [54]. The process was as follows: the cells in the logarithmic growth period
at 1 × 105 cells/mL were prepared. Then, 100 µL of the cells and the samples were mixed
to achieve the final concentrations of 0, 14.06, 28.12, 56.25, 112.50, 225.00, 450.00, and
900.00 µg/mL. Afterward, the mixture was shaken slightly for 1 min and incubated in a
humidified atmosphere of 5% CO2 at 37 ◦C for 24 and 48 h; then, 20 µL of MTT (5 mg/mL,
in PBS) was added, and the solution was incubated for another 4 h in an incubator with hu-
midified air including 5% CO2 at 37 ◦C. After the supernatant was discarded, the formazan
precipitates were dissolved in 150 µL DMSO after another 10 min of incubation at room
temperature in the dark. The 490 nm absorbance indicated the inhibitory rate of PPCFCTL
on cells (5-FU as a positive control), which was calculated using the formula below (As
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stands for the absorbance of the sample group, An for the negative control group, and Ab
for the blank control group):

Inhibition rate (%) = (1− As − Ab
An − Ab

)× 100 (5)

3.7.3. Cell Morphology

The morphological changes of HeLa, HepG2, and NCI-H460 cells were observed under
an optical inverted microscope (TS100-F, Nikon, Chiyoda District, Tokyo Metropolitan,
Japan) at ×100 magnification after treatment with 0, 750, 900 µg/mL of PPCFCTL and
150 µg/mL of 5-FU for 24 and 48 h.

3.8. Statistical Analysis

All experiments were performed in triplicate, and the results were reported in the
form of mean ± standard deviation. The analysis was performed with using SPSS V18.0
software (IBM Co., Armonk, NY, USA), and the figures were plotted using Origin V9.1
software (Origin Lab Co., Northampton, MA, USA).

4. Conclusions

By the comparison of the contents of total phenolics, flavonoids, flavonols, flavanols,
and phenolic acids in PCFCTL and PPCFCTL, conclusions can be drawn that AB-8 macro-
porous resin can effectively purify PPCFCTL. In this study, we provide the first in-depth
assessment of the antioxidant, enzyme inhibition, and antiproliferative properties of
PPCFCTL. The study revealed that PPCFCTL may be developed as naturally potential
antioxidants or antilipidemic, antidiabetic, or antineoplastic drugs in the nutraceutical and
pharmaceutical industries. However, their mechanisms of antilipidemic, antidiabetic, and
antineoplastic activities in vivo need further research. The experimental results showed
that PPCFCTL were not effective acetylcholinesterase inhibitors.
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