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ABSTRACT: Prediction of passive permeation rates of solutes across lipid bilayers is
important to drug design, toxicology, and other biological processes such as signaling.
The inhomogeneous solubility-diffusion (ISD) equation is traditionally used to relate
the position-dependent potential of mean force and diffusivity to the permeability
coefficient. The ISD equation is derived via the Smoluchowski equation and assumes
overdamped system dynamics. It has been suggested that the complex membrane
environment may exhibit more complicated damping conditions. Here we derive a
variant of the inhomogeneous solubility diffusion equation as a function of the mean
first passage time (MFPT) and show how milestoning, a method that can estimate
kinetic quantities of interest, can be used to estimate the MFPT of membrane crossing
and, by extension, the permeability coefficient. We further describe a second scheme,
agnostic to the damping condition, to estimate the permeability coefficient from
milestoning results or other methods that compute a probability of membrane crossing. The derived relationships are tested
using a one-dimensional Langevin dynamics toy system confirming that the presented theoretical methods can be used to
estimate permeabilities given simulation and milestoning results.

■ INTRODUCTION
Passive transport of solutes across membranes is of key
importance for processes such as the uptake and excretion of
drug compounds. Poor permeability can cause unfavorable
pharmacokinetics or bioavailability leading to drug attrition.1

From this perspective of drug design, methods which provide
molecular level insight into the permeation process are of high
interest. As such, many physical models of permeability have
been developed; these methods are recently reviewed.2

Mathematically, the permeability coefficient P of a solute is
described by relating the flux per unit area, J, across a bilayer
and the concentration gradient, Δu, as

=
Δ

P
J
u (1)

From this relation, assuming overdamped conditions and
accounting for drift caused by the potential of mean force
(PMF) we get the inhomogeneous solubility-diffusion equation
(ISD)3−7
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where R is the resistivity, β = 1/kBT where T is the temperature,
kB is Boltzmann’s constant, W(z) is the PMF, D(z) is the local
diffusivity constant and z1, z2 are two positions just outside of
opposing sides of the membrane. Estimates of W(z) and D(z)
can be predicted using molecular dynamics (MD) simu-
lations.2,6,7 While the ISD has been applied successfully in many

studies,2,5,8−22 recent work by various groups has suggested that
the dynamics of crowded environments, such as inside the
bilayer, may exhibit more complicated behaviors.2,23 The
dynamics inside of the bilayer has not, to the best of our
knowledge, been probed in detail.2

The theory of milestoning is a promising new approach to
study molecular processes by employing many unbiased short
independent simulations in subregions of phase space to
predict thermodynamic and kinetic properties of interest.
Salient descriptions of milestoning theory can be found in refs
24−26. Previously, milestoning has been applied to the
permeability problem by Cardenas et al., studying the
permeation of block tryptophan across a membrane.27

Cardenas et al. later studied the permeation of small peptide
NATA across a DOPC bilayer using milestoning. In their later
work, they proposed a scheme to estimate the permeability
coefficient.28,29 This scheme is comprised of three steps
involving (1) estimating the diffusivity of the small molecule
in bulk, (2) the measurement of the steady state flux from bulk
into the membrane, and (3) the estimation of permeant
crossing probability. We will show that the additional
calculations in step 2 are not necessary and the permeability
can be computed directly from the milestoning results and bulk
diffusivity.

Special Issue: J. Andrew McCammon Festschrift

Received: March 18, 2016
Revised: April 30, 2016
Published: May 6, 2016

Article

pubs.acs.org/JPCB

© 2016 American Chemical Society 8606 DOI: 10.1021/acs.jpcb.6b02814
J. Phys. Chem. B 2016, 120, 8606−8616

This is an open access article published under an ACS AuthorChoice License, which permits
copying and redistribution of the article or any adaptations for non-commercial purposes.

pubs.acs.org/JPCB
http://dx.doi.org/10.1021/acs.jpcb.6b02814
http://pubs.acs.org/page/policy/authorchoice/index.html
http://pubs.acs.org/page/policy/authorchoice_termsofuse.html


In this work, we derive two methods for obtaining
permeability coefficients based on milestoning results. The
first derivation is a new formulation of the ISD relating the
mean first passage time (MFPT) to the permeability coefficient
P assuming overdamped dynamics. The second derivation
makes no assumptions about system damping and relates P to
the transition probability of crossing a membrane over diffusing
to a previous position in bulk solvent. We evaluate the
compatibility of using either approach depending on damping
dynamics using a one-dimensional (1D) Langevin dynamics
system across various W(z) and D(z) profiles, showing that the
new relations yield solutions in good accord with previous
results.

■ THEORY
Relating Permeability to Mean First Passage Time via

the Smoluchowski Equation. The physical description of
permeability can be drawn as a membrane separating donor and
acceptor compartments (Figure 1). Assuming that the

dynamics are overdamped, permeation across a membrane
can be modeled as a one-dimensional process using the 1D
Smoluchowski equation
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where u(z,t) is the probability distribution at position z and
time t, v(z,t) is the drift velocity, and J(z,t) is the infinitesimal
flux. A particle travels through a viscous medium at velocity v =
F(z)/γ, where F is the force on the particle and γ is the friction
coefficient. Using the Smoluchowski-Einstein relation γ−1 = βD,
assuming steady-state conditions, and applying that

= −F W z
z
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, we can convert the partial differential equation

into an ordinary differential equation
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Integrating and multiplying by
βe
D z( )

W z( )
, we get
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where A1 is a constant. The RHS can be condensed into a
single differential
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By integrating, we can obtain a general expression for the
steady-state concentration
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We now apply the boundary conditions shown in Figure 1.
Assuming that the acceptor compartment is a sink, u(a) = 0,
and that in bulk W(a) = 0
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Solving for A2
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Substituting eq 9 into eq 7, we get a difference of two
integrals. Combining them into a single integral and setting the
concentration of the donor compartment at position b to that
of bulk u0
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We can solve for the constant A1
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Combining eqs 11, 9, and 7, the concentration u(z) can be
expressed according to
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Returning to the calculation of the stationary flux, substituting
eq 5 into eq 3, and recognizing that the flux is just the negative
of our first constant of integration, we get that
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Substituting into eq 1 and assuming that Δu = u0, we get the
ISD
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Figure 1. Schematic of membrane permeability showing the
concentration of permeant with respect to position. We define that
the concentration at z = b is u0 and z = a is 0. Assuming overdamped
dynamics along with these boundary conditions, we get the
inhomogeneous solubility-diffusion equation and its relation to passage
time.
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Mean First Passage Time. The MFPT ⟨t⟩ of a diffusional
encounter can be generally expressed as30

∫
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here V is the total volume of the system in question, m is the
total number of isolated sinks, and Ai is the total area of the ith
sink. In our 1D case, the expression is simplified
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Taking the integral of eq 12 and reversing the order of
integration in the numerator, we get
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Noting the equivalence of ∫ b
a ∫ z

a f(x)dx dz = ∫ b
a ∫ b

z f(x)dx dz
for symmetrical functions over z|b < z < a and dividing by J(a)
= −A1 we get
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The MFPT can be related to the permeability coefficient by
integrating eq 18 by parts
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where the second term on the RHS has been shown to be equal
to the MFPT by others10,27,31,32 and can be derived by applying
Fubini’s theorem. Rewriting in terms of P and ⟨t⟩
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and rearranging we get the permeability as it relates to ⟨t⟩
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This is formally equivalent to the ISD and obviates the
calculation of the local diffusivity, requiring only the local PMF
(or equivalently, the local stationary concentration of the
permeant) and the MFPT.
Permeability from Milestoning Using Crossing Prob-

ability. Our second permeability derivation in this section is
very similar to that used in Brownian dynamics (BD)
simulations that make use of the Northrup-Allison-McCammon
(NAM) algorithm.33 As in BD simulations, the b-surface is the
starting position of particles in the simulations. Conversely, the
q-surface and a-surface are absorbing boundaries during the
simulations. The quantity ρ is the proportion of permeants that
start at the b-surface and cross the membrane to touch the a-
surface and not “escape” to the q-surface. Here, we attempt to
be consistent with notation used in the NAM derivation. The

only exception is that NAM uses a β to represent the
probability of crossing the a-surface, but we use the symbol ρ
instead to avoid confusion with the thermodynamic β used in
the previous section. This probability ρ can be found using
milestoning.
We define one additional surface in bulk solution on the

donor side of the membrane: 0-surface (placed at z = 0 for
mathematical convenience). Note that a > b > q > 0. A steady-
state Smoluchowski problem (Figure 2) is set up in the bulk

domain between the 0-surface and the b-surface, where the
concentration at the 0-surface boundary is held at u0 and the
concentration at the b-surface is held at 0. Any flux across the b-
surface has a probability equal to ρ that it will be taken across
the membrane and 1 − ρ to return to the q-surface. Under this
scheme, the permeability from the 0-surface to a-surface can be
found according to

=→P
J a
u
( )

a0
0 (22)

where u0 is the difference between the concentration at the 0-
surface and the concentration at the a-surface, and J(a) is the
flux across the a-surface. Because we assume steady-state
conditions, the flux across the a-surface must be equal to the
flux across the 0-surface

=→P
J
u
(0)

a0
0 (23)

Because the region between the 0-surface and b-surface exists
in bulk solution, we assume that the PMF is constant and the
dynamics overdamped, and we can use a 1D Smoluchowski
equation for a continuum description of this region. Although
the q-surface is an absorbing boundary during the simulations
and milestoning calculations, the q-surface will become a source
boundary in the continuum Smoluchowski calculations for the
region where 0 < z < b. Here, it is useful to split this domain
into two pieces: 0 < z < q, q < z < b. We then solve a system of
two Smoluchowski equations. Domain 1:

Figure 2. Shown here is the milestoning system setup. The stationary
concentrations in the bulk u1 and u2 are subject to boundary
conditions at z = 0 and z = b. A permeant that hits the b-surface has a
probability of ρ to cross the membrane and a probability 1 − ρ to
return to the q-surface. These boundaries and domains are not
necessarily drawn to scale.
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Figure 3. PMF and diffusivity profiles used for each system. Each profile is represented using a piecewise cubic Hermite polynomial interpolated
from a set of user specified values.
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Domains 1 and 2:
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where D is the diffusion coefficient of the particle in bulk water.
The last equation, eq 24h, assumes that the flux through the 0-
surface (J1) is less than the flux going through the b-surface (J2)
because some of that flow comes back and appears once again
on the q-surface. Because anything that goes through the b-
surface has a probability of 1 − ρ to return to the q-surface, the
flow out of the q-surface is what flows through the b-surface
(J2) multiplied by 1 − ρ. This is equal to the difference between
J2 and J1. We find a general solution to eqs 24a and 24d by
integrating twice

= +u c z d1 1 1 (25a)

= +u c z d2 2 2 (25b)

where c1, c2, d1, and d2 are constants of integration. By eqs 24a
and 24d we know that J = D(−du/dz), and therefore J1 = −Dc1
and J2 = −Dc2 and thus eq 24h simplifies to c1 = ρc2. Upon
applying the boundary conditions from eqs 24c and 24f to eq
25 we get that d1 = u0 and d2 = −c1b/ρ. Substituting the above
relations and eq 25 into 24g and solving for c1 we get

ρ
ρ
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Rearranging for the flux, J1, and dividing by u0, we get the
permeability from the 0-surface to the a-surface

ρ
ρ
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Now we remove the contribution to the permeability by the
bulk layer, 0 < z < b, to obtain the true permeability across the
membrane Pb→a. This is done most effectively by working with
the resistivity, R = 1/P. Expressing the resistivities across the
domain as a sum of resistivities over subdomains
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a b b a
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Assuming a constant PMF and diffusivity in bulk, 0 < z < b, the
resistivity in that domain can be expressed as

=→R
b
Db0 (29)

obtained by solving the Smoluchowski equation for a flat PMF
and diffusion profile. Plugging eq 29 into eq 28 and inverting
we get the true membrane permeability as related to the
crossing probability ρ

ρ
ρ
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For subsequent discussion, we refer to eq 21 as the MFPT in
ISD relation (MFPT-ISD), and eq 30 as the permeability based
on crossing probability (PBCP).

■ METHODS

Langevin Dynamics Model. To demonstrate the validity
of the above relations, we have developed a 1D Langevin
dynamics model to generate sample trajectories over a user
specified PMF and viscosity profile. All code used has been
made available through GitHub at https://github.com/ctlee/
langevin-milestoning. The profiles are represented using
interpolated cubic Hermite polynomials shown in Figure 3.
Four different systems are considered, flat, small-barrier, urea-
like barrier, and codeine-like. The flat system emulated
diffusion in bulk with viscosity chosen to match water. For
the small-barrier system, an arbitrary barrier height was chosen
such that brute force computation could yield successful
crossings. Meanwhile the urea- and codeine-like systems are
interpolated from profiles from ref 34. To facilitate convergence
of calculations, the viscosity of the membrane environment is
set to 0.005 kg m−1 s−1. Each of the membrane simulations
employ the same viscosity profiles. The hydrodynamic radius
and mass of the particle were arbitrarily chosen for the flat and
small-barrier cases while the urea and codeine cases use
molecular weight and a radius as predicted by software
HydroPro.35 The parameters used in each case are shown in
Table 1. The diffusivity along the profile, D, can be calculated
from the Stokes−Einstein relation

πη
= =D

k T
R

k T
c6

B

hyd

B

(31)

where η is the viscosity, Rhyd is the hydrodynamic radius, and c
is the friction coefficient. Notably, new systems can be
generated with any user-specified PMF, viscosity, mass, and
hydrodynamic radius parameters of interest.
We integrate the Langevin equation using a velocity−Verlet-

like integrator by Grønbech-Jensen−Farago36 to generate
sample trajectories
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Table 1. Parameter Inputs to the Langevin Dynamics Simulations for Each Case

flat small barrier urea codeine

Rhyd (Å) 5 5 2.86 4.32
mass (g/mol) 20 20 60 299
T (K) 298 298 298 298
brute dt (s) 1 × 10−12 1 × 10−12 1 × 10−12 1 × 10−12

milestone dt (s) 1 × 10−15 1 × 10−15 1 × 10−15 1 × 10−15
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where q is the position, t is the current time, c is the friction
coefficient, b and a are unitless constants, f is the force, v is the
velocity, and m is the particle mass. This integrator was derived
by integrating the noise term at a small time step dt. The new
term, Γ, is Gaussian distributed and has the following
properties

⟨Γ + ⟩ =t( dt) 0 (36)

δ⟨Γ Γ ′ ⟩ = ′t t ck T t t t( ) ( ) 2 d ( , )B (37)

The quality of random number generators (RNG) to sample Γ
is shown in Figure S1. In this work, the aforementioned drag
coefficient, c, is estimated by Stokes law

πη=


F R v6

c

d hyd

(38)

where Fd is the frictional force. For additional information
regarding the implementation details of the Langevin dynamics
engine, please refer to the SI.
Using the above dynamics engine, sample trajectories under

various conditions can be generated. Here the permeability is
calculated via the following several methods: (1) theoretical
ISD, (2) theoretical MFPT-ISD, (3) brute forced MFPT-ISD,
(4) milestoning MFPT-ISD, (5) brute PBCP, and (6)
milestoning PBCP. Methods 1 and 2 are directly evaluated
numerically from the interpolated profiles using the relations in
the Theory section. Methods 3−6 employ brute force or
milestoning calculations to generate sample trajectories that are
postprocessed to yield the permeability coefficient. The strategy
for brute force and milestoning simulations are described
below.
Brute Force Sampling and Statistics. Brute force

attempts to sample the membrane crossing event via a single
continuous trajectory were attempted as follows: Trajectories to
sample ⟨t⟩ and ρ were initiated at one end of the membrane z =
−25 Å, the a-surface. Trajectories to sample the MFPT
employed reflecting boundary conditions at the start to prevent
the particle from diffusing away into bulk. Effectively
trajectories, which passed the reflecting boundary at the a-
surface, were placed back across the boundary and the velocity
was reversed. In contrast, the simulations to obtain ρ have an
absorbing boundary placed at z = −26 Å, corresponding to the
so-called q-surface. Trajectories that crossed the q-surface were
halted and counted as noncrossing events.
For all brute force trajectories, an absorbing boundary was

placed at z = 25 Å. Upon crossing this terminal boundary, the
simulations are halted and either the crossing time or the event
recorded for the MFTP, and ρ sampling cases, respectively. The
crossing probability was found according to

ρ =
+
n

n n
b

b q (39)

where nb and nq are the number of b- or q-surface crossing
events observed. The FPT distribution often takes the form of a
Poisson or exponential distribution. We attempt to quantify the
quality of the MFPT estimate by computing the root-mean-
square error (RMSE) of the population and confidence interval
by bootstrapping. The RMSE is defined as

∑σ = − ⟨ ⟩⟨ ⟩
=N

t t
1

( )t
i

N

i
1

2

(40)

where ti is the time that trajectory i took before touching the
absorbing boundary and N is the total number of observations.
We also report the 95% confidence intervals of both the MFPT
and the crossing probability. This is estimated by bootstrapping
using the bias-corrected and accelerated method and percentile
method for the MFPT and crossing probabilities respectively
with 10 000 resamples.37,38

Milestoning. In this section, we explain our experimental
approach and include a brief description of milestoning theory.
Milestones are spaced at 1 Å increments across the bilayer
([−25,25]), and in the case of ρ estimation, an additional
milestone was placed at z = −26 Å. Trajectories were initiated
with a position starting at each milestone, Mi, with a random
velocity sampled from the Maxwell−Boltzmann distribution.
Two stages are needed to obtain milestoning statistics.
According to formal milestoning theory, we must determine
the first hitting point distribution (FHPD) on Mi. To find the
FHPD, trajectories are started at milestone Mi and run until
they cross either another milestone (Mi+1, Mi−1) or the
originating milestone (Mi). If the trajectory is self-crossing
then the simulation is halted and statistics discarded.
Conversely, if the trajectory crosses an adjacent milestone
first then this trajectory is a member of the FHPD on milestone
Mi. Because of the microscopic time-reversibility of classical
mechanics, the reverse of this trajectory is a valid simulation of
the crossing from (Mi+1, Mi−1 → Mi). Thus, we term this stage
the “reverse” phase. Next we begin the “forward” phase where
each member of the FHPD is restarted at Mi but with the initial
velocity vectors reversed. These trajectories propagate until
they cross an adjacent milestone, Mi+1 or Mi−1. Self-crossing
events of the starting milestone Mi are ignored in the forward
phase.
The forward phase provides all the transition and incubation

time statistics that will be used in the milestoning analysis. As
the milestones are crossed, each trajectory is counted, and the
time that each trajectory took is also tracked. A transition
kernel matrix K is then generated, whose elements Kij represent
the transition probability that a system starting at milestone Mi
will transition to milestone Mj

=
∑
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= →
K

n

n
ij

i j

k
N

i k1 (41)

where ni→j represents the total number of trajectories that cross
from milestone i to milestone j, where N is the index of the final
milestone. Similarly, a lifetime or incubation time vector τ is
also generated, whose elements τi represent the average time
that a system spends in milestone i

τ =
∑ = t

ni
l
n

l

i

1
i

(42)

where tl is the time that trajectory l takes to reach an adjacent
milestone, and ni is the total number of trajectories starting
from milestone i.
Using K and τ, we can compute thermodynamic quantities

such as the stationary flux (qstat) and the stationary probability
(pstat), as well as the MFPT (⟨t⟩), a kinetic quantity. First, we
compute the stationary probability using the following
eigenvalue equation
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=Kq qstat stat (43)

Note that before solving eq 43, we typically have to modify K
to have the correct boundary conditions. For our membrane
system, because the two terminal milestones at each end of the
membrane have no additional milestones beyond them, it does
not make sense to simulate from them. We can fill in
reasonable transition probabilities and lifetimes using the
following scheme: Because each terminal milestone only has
one adjacent milestone, we can set the transition probability to
transition to the singular neighbor or the other side of the
membrane with equal probability. These are periodic boundary
conditions. That is, for a set of milestones M = M1, M2, ..., MN

=
=
=

≠

⎧
⎨⎪
⎩⎪

K
i
i N

i N

0.5 if 2
0.5 if
0 if 2,

i1

(44)

and

=
= −

=
≠ −

⎧
⎨⎪
⎩⎪

K
i N

i
i N

0.5 if 1
0.5 if 1
0 if 1, 1

Ni

(45)

where N is the index of the last milestone and i is a milestone
index. Splitting the transition probabilities equally makes sense
because these milestones are in the bulk solvent, where the
PMF is flat. For the lagtime vector τ, given that the terminal
milestones are in bulk solvent, the lagtime is defined as follows

τ τ= = Δx
D2N0

2

(46)

where Δx is the Cartesian distance to the adjacent milestone,
and D is the diffusivity coefficient in bulk. With these changes,
we can estimate the stationary probability according to

τ= ·p qi i istat, stat, (47)

where we take the element-wise product over all milestone
indeces i.

The stationary probability distribution, pstat, can be used to
obtain an estimate of the underlying PMF, Wi, at milestone i
accordingly

β= − −
⎛
⎝
⎜⎜

⎞
⎠
⎟⎟W

p

p
logi

i1 stat,

stat,1 (48)

We use this calculated PMF to estimate the integral in eq 21 by
performing a numerical integration.
To find the MFPT needed to estimate the permeability in eq

21, we must modify the transition kernel K once again. This
time, we must make milestone MN a “draining” state by setting
all KN,k = 0, ∀k. We also must modify transitions at milestone
M1 to transition only to its neighbor, milestone M2:

=
=
≠

⎧⎨⎩K
i
i

1 if 2
0 if 2i1

(49)

To get the MFPT, we then solve the following equation

τ⟨ ⟩ = − −t p I K( )0
1

(50)

where p0 is a starting distribution of probabilities along the
milestone. We choose p0,i to be 1 if i = 1 and choose p0,i to be 0
otherwise.
Finally, we obtain the crossing probability ρ for eq 30 by

further modifying the transition kernel K. Recalling that the
computation of ρ requires an additional milestone at q-surface,
which we assign index i = 0, we simulate starting from the other
interior milestones. The first and last milestones become “sink”
states that capture probability and never let it escape; thus no
simulations start from sink states, they only end on them. Sink
states are defined by setting

= =⎧⎨⎩K
i1 if 1

0 otherwisei0
(51)

and

= =⎧⎨⎩K
i N1 if

0 otherwiseNi
(52)

Table 2. Computed MFPT and Permeability Coefficients According to Each Methoda

flat small barrier urea codeine

theoretical MFPT (s) 9.19 × 10−9 1.11 × 10−8 1.99 × 10−3 2.89 × 10−7

brute forced MFPT (s) 9 ± 7 × 10−9 (5100) 1.1 ± 1.0 × 10−8 (2500) 3 ± 3 × 10−4 (1694) 10 ± 9 × 10−7 (1600)
milestoning MFPT (s) 1.15 ± 0.05 × 10−8 1.35 ± 0.04 × 10−8 1.9 ± 0.3 × 10−3 4.0 ± 0.3 × 10−7

crossing probability (ρ)
brute force 2.7 ± 0.8 × 10−2 (1722) 1.0 ± 0.4 × 10−2 (2500) N/A (1627)b 7 ± 1 × 10−2 (1340)
milestoning 1.7 ± 0.1 × 10−2 9.8 ± 0.5 × 10−3 3.1 ± 0.4 × 10−8 2.2 ± 0.3 × 10−2

permeability log(cm/s)
(1) ISD 1.43 1.14 −4.33 1.44
(2) MFPT-ISD 1.43 1.14 −4.33 1.44
(3) brute force MFPT-ISD 1.43 ± 0.01 1.14 ± 0.01 −3.49 ± 0.02 0.91 ± 0.02
(4) milestoning MFPT-ISD 1.33 ± 0.03 1.06 ± 0.02 −4.3 ± 0.09 1.35 ± 0.06
(5) brute force PBCP 1.6 ± 0.1 1.1 ± 0.2 2.04 ± 0.09
(6) milestoning PBCP 1.37 ± 0.03 1.13 ± 0.02 −4.13 ± 0.06 1.54 ± 0.04

aReported error bars for the MFPT corresponds to the RMSE while the error for the crossing probability is from bootstrapping. Error in the brute
force log permeability is estimated by the mean log(P) difference of the high and low confidence intervals. bWe observed no brute force crossing
transitions for the urea system. The values in parentheses represent the number of forward-phase trajectories sampled in each case.
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Figure 4. Shown here are the distributions of the brute force MFPTs for systems (a) flat, (b) small-barrier, (c) urea, and (d) codeine. Because of
presence of large barriers in the urea and codeine cases, the sampling is limited. The red points and error bars indicate the mean and boostrapped
95% confidence intervals of the MFPT.

Figure 5. PMF profiles of each system: (a) flat, (b) small-barrier, (c) urea, and (d) codeine as estimated by milestoning, dotted red. The actual PMF
is shown in black.
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Once again solving eq 43 we obtain a stationary flux vector,
qstat, which represents the proportion of systems that would
have partitioned between the sink states at the ends of the
membrane. The elements of the vector qstat, must be
normalized such that all its elements sum to one for this
calculation, however, because K is a Markov matrix, the
eigenvector should already be normalized. Because milestone
MN represents the a-surface, ρ in eq 30 can be extracted from
the last value in qstat

ρ = q Nstat, (53)

The error is sampled according to the scheme found in ref
39. For all milestoning error values, we resample 1000 times
and report the standard deviation of each measurable.

■ RESULTS AND DISCUSSION
Below we report the computed permeability coefficients and
MFPTs according to the six methods: (1) the ISD, (2) ISD
from MFPT, (3) ISD with brute forced MFPT, (4) milestoning
estimated ⟨t⟩ in ISD, (5) brute force with no assumptions, and
(6) milestoning with no assumptions in Table 2. Note again
that the brute-forced MFPT is performed with a reflecting
boundary condition at the starting position while no such
condition is applied for the brute force crossing probabilities.
This explains why we observed no crossings in the brute force
MFPT urea system.
The distribution of the mean first passage times is shown in

Figure 4. Because of the highly tailed nature of the MFPT, it is
difficult to estimate it from brute force simulations. Milestoning
greatly aids in the computation of the first passage times by
reducing the total distance between points of interest. Using
clever statistics, milestoning theory is capable of reconstructing
the MFPT from many short simulations. For all cases, we
obtain MFPTs in good agreement with the theoretical results.
Deviations in both the brute force and milestoning cases are
likely caused by insufficient sampling. Sampling convergence
for the milestoning can be visualized by deviations in the
milestoning-derived PMF from the actual PMF.
Reconstructed PMF profiles from milestoning are shown in

Figure 5. Here we see that the estimated potentials of mean
force are relatively converged. Discrepancies are more prevalent
along −18 < z < 18 where the membrane exists. We suspect
that the increased viscosity leads to additional self-crossing
events during the reverse phase thus hindering the overall
sampling. The total amount of collected statistics per milestone
for each system is shown in Figure S2. With milestoning, we
can easily adaptively sample regions of poor convergence.
By comparing and utilizing the two equations derived, eqs 21

and 30, the difference in the derivations must be considered for
proper analysis and application. Equation 21 was derived using
the Smoluchowski equation, which assumes that the underlying
system dynamics is overdamped. This assumption is also used
in the widely employed ISD, eq 2. Our relation of the MFPT to
the permeability does not require the estimation of a position
dependent diffusion tensor. While there are many methods for
calculation of the local diffusivity, these methods suffer largely
from convergence issues.34,40 The theory of milestoning does
not compute diffusion coefficient directly, but rather estimates
rates of passage, probability, and flux. Using eq 21, the MFPT
from milestoning can be used to compute permeability
coefficients along with the stationary probability. To the best
of our knowledge, this formulation of the ISD using the MFPT
has not been shown previously.

As aforementioned, the assumption that the dynamics inside
of the bilayer are overdamped is largely untested. Several
instances of anomalous diffusion have been observed in
crowded environments among many others.23,41−44 Similarly,
the dynamics of water near hydrophobic surfaces is often
complicated.45 Thus, we present a formula relating the
permeability to the crossing probabilities, ρ, which makes no
assumptions about the dampedness. While the Smoluchowski
equation is used in the derivation of eq 30, it was only used in
the regions containing bulk solvent. Remaining transport
properties are encapsulated by the probability ρ, which, when
calculated from milestoning, makes no assumptions about the
dynamics.
Our scheme is similar to that proposed by Cardenas et al.28,29

excepting that we obviate the need to compute the stationary
flux across the first milestone by Langevin dynamics
simulations. In eq 30, the flux across the first milestone is
captured by our system of two Smoluchowski equations.
Therefore, we eliminate a potentially cumbersome, albeit
inexpensive, step in the estimation of the permeability
coefficient.
We also demonstrated the utility and accuracy of both of the

derived equations using a 1D Langevin dynamics model with
various PMF and diffusion profiles. In the case of the flat
profile, the results of the simulations, both brute-force and
milestoning, can be directly compared with theoretically
derived results. For all cases, the theoretical ISD and MFPT-
ISD were the same. This is not suprising, given that both are
derived from equivalent expressions. Comparing the brute
forced MFPT-ISD to the theoretical for the flat profile, we see
that they are also comparable within error. In contrast, the flat
milestoning PBCP yields a permeability coefficient that was
smaller than predicted by the ISD. This discrepancy could be
an example of how dampedness plays a role in the difference
between the true and predicted permeability coefficients.
Because the molecule simulated was not perfectly overdamped,
there may be artifacts from conservation of momentum in
Langevin dynamics, the formula using ρ may have captured the
influence of that effect. Considering that an overdamped
integrator would likely have yielded permeabilities that were
more consistent between the two equations, one may question
why we used the more general Langevin integrator in our test
simulations. While an overdamped simulation integrator would
have allowed us to apply eq 21 more accurately, we wanted to
closely reproduce the situation that would be encountered in
practical application of these equations, for instance, during an
all-atom MD simulation with milestones across a bilayer, where
an assumption of overdamped diffusion would not necessarily
hold. For this reason, we also wanted to observe how different
the predicted permeabilities would be for the same trajectories
using the two different formulas. We anticipate that additional
investigations of various permeabilities using all-atom molecular
dynamics with milestoning may yield helpful insight about the
structural characteristics of the bilayer by comparing the
permeabilities estimated using eqs 21 and 30.
The two druglike molecules that we simulated, urea and

codeine, provide insight about the potential usefulness of using
milestoning to approach practical permeability problems. We
obtain quantitatively accurate results for both urea and codeine.
Unfortunately, no crossing events for urea were observed by
brute force despite substantial efforts. The effect of increased
sampling on transition probabilities is explored using boot-
strapping in Figure S3. Because of the presence of large
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transition barriers, the brute force calculation of permeability is
intractable, excepting for potentially the use of hyperspecialized
hardware such as Anton.46 Milestoning theory provides a
framework for the estimation of membrane permeability using
the MFPT in combination with transition probabilities via
either the MFPT-ISD or the PBCP.

■ CONCLUSIONS

We have derived two useful new relations for the calculation of
permeability: first, a relation of the ISD to the MFPT assuming
overdamped dynamics; second, we derive the PBCP, which is
agnostic to the underlying diffusional dynamics. Using
simulations of our toy systems, we have demonstrated the
utility and validity of each method. By comparing results
obtained by the two methods, one can gain insight into the
deviations of the permeability coefficient when the overdamped
assumption is not valid. We anticipate that both approaches will
be useful to the computational biophysical community when
estimating permeability coefficients across membranes, partic-
ularly in the case when milestoning is being used in
combination with molecular simulation to determine perme-
abilities.
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