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Abstract

Grain-filling ability is one of the factors that controls grain yield in rice (Oryza sativa L.). We

developed a method for describing grain weight distribution, which is the probability density

function of single grain weight in a panicle, using 128 Japanese rice varieties. With this

method, we quantitively analyzed genotypic differences in grain-filling ability and used the

grain weight distribution parameters for genomic prediction subject to genetic improvement

in grain yield in rice. The novel description method could represent the observed grain

weight distribution with five genotype-specific parameters of a mixture of two gamma distri-

butions. The estimated genotype-specific parameters representing the proportion of filled

grains had applicability to explain the grain filling ability of genotypes comparable to that of

sink-filling rate and the conventionally measured proportion of filled grains, which suggested

the efficiency and flexibility of grain weight distribution parameters to handle several geno-

types. We revealed that perfectly filled grains have to be prioritized over partially filled grains

for the optimum allocation of the source of yield in a panicle, from the analysis for obtaining

an ideal shape of grain weight distribution. We conducted genomic prediction of grain weight

distribution considering five genotype-specific parameters of the distribution as phenotypes

relating to grain filling ability. The proportion of filled grains, average weight of filled grains,

and variance of filled grain weight, which were considered to control grain yield to a certain

degree, were predicted with accuracies of 0.30, 0.28, and 0.53, respectively. The proposed

description method of grain weight distribution facilitated not only the investigation of the

optimum allocation of nutrients in a panicle for realizing high grain-filling ability, but also

allowed genomic selection of grain weight distribution.

PLOS ONE | https://doi.org/10.1371/journal.pone.0207627 November 20, 2018 1 / 21

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Yabe S, Yoshida H, Kajiya-Kanegae H,

Yamasaki M, Iwata H, Ebana K, et al. (2018)

Description of grain weight distribution leading to

genomic selection for grain-filling characteristics in

rice. PLoS ONE 13(11): e0207627. https://doi.org/

10.1371/journal.pone.0207627

Editor: Wujun Ma, Murdoch University,

AUSTRALIA

Received: July 25, 2018

Accepted: November 2, 2018

Published: November 20, 2018

Copyright: © 2018 Yabe et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: The data have been

deposited under BioProject accession numbers

PRJDB7213 and PRJDB7217 in the DDBJ

BioProject database. The authors confirm that all

data underlying the findings are fully available

without restriction. All relevant data are within the

paper and its Supporting Information files.

Funding: This research was supported by JST,

PRESTO Grant number JPMJPR15O6, Japan. This

research was partially supported by Grant-in-Aid

for Scientific Research(A) (25252002), Grant-in-

http://orcid.org/0000-0003-3200-3348
https://doi.org/10.1371/journal.pone.0207627
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0207627&domain=pdf&date_stamp=2018-11-20
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0207627&domain=pdf&date_stamp=2018-11-20
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0207627&domain=pdf&date_stamp=2018-11-20
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0207627&domain=pdf&date_stamp=2018-11-20
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0207627&domain=pdf&date_stamp=2018-11-20
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0207627&domain=pdf&date_stamp=2018-11-20
https://doi.org/10.1371/journal.pone.0207627
https://doi.org/10.1371/journal.pone.0207627
http://creativecommons.org/licenses/by/4.0/


Introduction

The demand for an increase in food production has risen dramatically because of world popu-

lation explosion and climate change [1,2]. Genomics-based breeding may facilitate genetic

improvements leading to higher crop yields [3]. Genomic selection (GS) [4] is one of the most

promising methods to improve polygenic traits, such as crop yield [5]. In GS, a prediction

model is built based on the information from a training population with phenotypic data

(dependent variable) and genome-wide marker data (independent variables), and genotypic

values of genotyped breeding materials (i.e. test population) are predicted using the prediction

model [6]. Both simulation studies [7,8] and real breeding programs [9,10] demonstrated that

GS could increase genetic gain in crop breeding. In a conventional breeding strategy, the infor-

mation on yield-related traits is considered to be more applicable for improving crop yields

[11]. The information on yield-related traits (i.e. secondary traits) could also improve accuracy

and efficiency of GS for predicting grain yield (i.e. target trait) [10,12]. The efficient accumula-

tion of the information on the secondary traits into the GS strategy will dramatically increase

the genetic gain of complex target traits.

Rice (Oryza sativa L.) is a staple grain especially in Asia [13]. The characteristics of grain

filling (e.g., grain-filling rate, variation of grain weights in a plant, and process of single-grain

growth) partially determine the grain yield of rice. Recently developed high-yielding rice varie-

ties have been selected to show high sink capacity (total number of grains × filled grain

weight), but their grain-filling ability varies considerably [14,15]. The genetic improvement in

grain-filling characteristics and their proper integration into a selection model will increase

genetic gain in grain yield. When the available source of yield is limited for a rice plant, it is

important to efficiently partition them into grains in a panicle. The variations in the grain-fill-

ing speed and nutrient partitioning among grains cause dispersion in grain weights, and they

are genotype- and environment-dependent [16,17,18,19]. Thus, in this study, we developed a

novel method to use grain-filling characteristics (i.e. the degree of dispersion in grain weights)

as a secondary trait when the main target trait was grain yield of rice in GS.

Grain weight distribution can simultaneously represent the degree of dispersion in grain

weights and the percentage of filled grains. Grain weight distribution generally shows a

bimodal distribution composed of the peak of unfilled/partially filled grains and the peak of

filled grains [19]. In the present study, we developed a method to describe the grain weight dis-

tribution to quantitatively represent this trait. The previously proposed methods (Gini coeffi-

cient and coefficient of variation [20]) are not suitable for describing the entire shape of a

grain weight distribution because they do not consider the bimodal distribution. Although

Miyagawa (1980) introduced a method to describe grain weight distribution in soybean (Gly-
cine max (L.) Merr.), considering the mixture of exponential distribution and Gaussian distri-

bution [21], this method was not suitable when the number of samples (i.e. genotypes) was

large because of the need for counting 0-mg values (i.e. degenerated organ or sterile flowers).

Herein, we introduce a novel description method to assess grain weight distribution to carry

out GS for grain weight distribution. We treated the genotype-specific parameters estimated

for describing grain weight distribution as the target traits representing the characteristics of

grain filling.

The main purposes of this study were i) to develop a method to describe grain weight distri-

bution and ii) to evaluate the efficiency of genomic prediction for the genotype-specific param-

eters of grain weight distribution. First, to evaluate the efficiency of the description method for

assessing grain weight distribution, we analyzed genotypic differences in grain-filling ability

based on the genotype-specific parameters of grain weight distribution. Second, we evaluated

the accuracy of genomic prediction for the genotype-specific parameters of the grain weight
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distribution. Because grain weight distribution is one of the traits that can be measured in the

final growth stage, it is necessary to predict the grain weight distribution parameters (i.e. sec-

ondary traits) instead of using observed values when we assume the prediction of grain yield

(i.e. target trait) at an early stage of growth. Based on these analyses, we evaluated the efficiency

of grain weight distribution as the secondary trait of grain yield.

Materials and methods

Field experiment

In the present study, 128 Japanese rice cultivars (S1 Table) were cultivated in the Yawara

experimental field at the National Agriculture and Food Research Organization at Tsukuba-

mirai, Ibaraki, Japan (36˚000N, 140˚020E), in 2015. These cultivars’ seeds were collected as

Kobe collection in Kobe University. Twenty-two-day-old seedlings were transplanted on 14

May, one plant per hill, with a density of 22.2 (15 × 30 cm) hills per square meter. Two blocked

replications were prepared, in each of which two sub-blocks were made. Each cultivar was

planted in a row once in a replication, and the cultivars were arranged by consecutive number

in a sub-block. The position of sub-blocks within a replication and the order of cultivars within

a sub-block were reversed between replications, so that the effect of the direction on each

genotype differed between two replications. A fertilization regime of N:P2O5:K2O = 5:5:5 g/m2

was applied as a basal dressing. Sixty percent of N was applied as a controlled release fertilizer.

The cultivation was conducted using established management practices for field preparation

and the control of pest and diseases.

The heading date, on which 50% of panicles emerged in a population, was recorded for

each cultivar. After the maturity, four panicles were sampled for each cultivar (i.e. two panicles

were sampled in a replication). The number of panicle samples of Nangokusodachi (Variety

10) was three because of the lack of unbroken panicles in the paddies. In the sampling practice,

one superior panicle was sampled from a plant. The total grain number per panicle was mea-

sured and recorded. Unhulled grains were dried at 80˚C for 72 hours to enable the measure-

ment of grain weight on an absolutely dry matter basis. The total grain weight for each

genotype was measured on a dry matter basis, after which single grain weights were measured

using an automatic counting and weighing system (QWCALC, NK-Systems, Aichi, Japan),

and the resultant single grain weights were adjusted using the total grain weight to obtain the

dry matter weights. We assumed the differences in grain weight distributions were related

only to cultivar differences, because the difference in the grain weight distributions between

two replications in each cultivar was little. Thus, the following analyses were conducted after

we pooled the data from two replications for each cultivar. As the position of a grain on a pani-

cle is known to be related to the single grain weight [22,23], it is informative to link the single

grain weight to its position on a panicle. We measured the single grain weights of two grains

attached to specific positions on a panicle (i.e. superior and inferior grains). They were sam-

pled from the middle primary branch in a panicle. A superior grain was sampled from the bot-

tom from among the grains attaching directly to the primary branch, while an inferior grain

was the second grain from the top on the bottommost secondary branch on the primary

branch.

Additionally, to evaluate the relationship between the novel proposed parameters, which

we describe later, and the conventional traits related to grain-filling characteristics, we also

measured the proportion of unfilled grains in other two different ways (p.23mg and p.90%)

and the sink-filling rate. p.23mg was the probability of grains being lighter than 23 mg, which

was determined based on conventional evaluation for cultivars for grain weight. Although the

threshold of filled-grain weight might depend on the cultivars in conventional evaluation, we
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decided to use the threshold of 23 mg in order to set a single threshold for filled-grain weight.

p.90% was the probability of grains being lighter than 90% of the weight at the 95th percentile

of the grain weight distribution. The sink-filling rate was calculated as the ratio of total grain

weight to sink capacity. For the calculation of sink capacity, the value at the 95th percentile of

the observed grain weight distribution was multiplied by the number of grains for each

cultivar.

Marker genotype

Marker genotype data was available for 123 cultivars (S1 Table). DNA was extracted from one

typical individual plant from each cultivar using the CTAB method [24]. Next-generation

sequencing data was obtained using the Illumina HiSeq 2000, HiSeq 4000 and HiseqX systems

via paired-end sequencing (Illumina, Inc., San Diego, CA, USA). Data sets deposited in the

DDBJ Sequence Read Archive (DRA002219, SRA106223, DRA000158, DRA000307,

DRA000897, DRA000927, DRA004358, ERA358140) were reanalyzed. Adapters and low-qual-

ity bases were removed from paired reads using the Trimmomatic v0.36 program [25]. The

preprocessed reads were aligned on the Os-Nipponbare-Reference-IRGSP-1.0 [26] by using

the bwa-0.7.12 mem algorithm with the default options [27]. SNP calling was based on align-

ment using the Genome Analysis Toolkit (GATK, 3.7-0-gcfedb67 [28]) and Picard package

V2.5.0 (http://broadinstitute.github.io/picard). The mapped reads were realigned using Realig-

nerTargetCreator and indelRealigner of GATK software. SNPs and InDel were called at the

population level using the UnifiedGenotyper of GATK with the -glm BOTH option. We used

only biallelic non-missing sites over all cultivars with a minor allele frequency (MAF)� 0.025.

For further analysis, genotypes were represented as -1 (Homozygous Reference), 1 (Homo-

zygous Alternate) or 0 (Heterozygous). Markers with a proportion of heterozygous loci less

than 5% were used because the phenotyped and genotyped plants were not identical, owing to

the assumption that almost all markers were well fixed in rice cultivars after several generations

of self-pollination. We selected 42,508 markers that were polymorphic and showed incomplete

linkage with other makers.

Description of grain weight distribution

We assumed that the difference in grain weight distribution among cultivars could be repre-

sented by the difference in the distribution parameters. We approximated grain weight distri-

bution using a mixture of gamma distributions. The probability density of a single seed weight

x in a cultivar was represented as:

f ðxÞ ¼ pxa1 � 1
exp � x

b1

� �

Γða1Þb1
a1
þ ð1 � pÞxa2 � 1

exp � x
b2

� �

Γða2Þb2
a2

½1�

where p was the mixing proportion, a1 and a2 were shape parameters, b1 and b2 were scale

parameters of the two gamma density functions, and Γ(.) represented a gamma function. The

first (left-side) gamma distribution represents the distribution of unfilled grains and the sec-

ond (right-side) gamma distribution the distribution of filled grains.

The distribution parameters, a1, a2, b1, and b2, were not easy to understand intuitively.

Therefore, we used feature values of the distribution (mode of left-side distribution: mode1 =
(a1−1)b1, skewness of left-side distribution: skewness1 = 2 / (b1

1/2), mean of right-side distribu-

tion:mu2 = a2b2, and variance of right-side distribution: var2 = a2b2
2) to interpret the shape of

the grain weight distributions. The parameter p could be interpreted as the percentage of

unfilled grains (i.e., the value of (1 –p) is the percentage of filled grains).
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Parameter estimation for grain weight distribution

We estimated the distribution parameters using the expectation-maximization (EM) algorithm

[29]. For the estimation of gamma distribution parameters, we used the method developed by

Minka (2000; 2002) [30,31]. The initial value of p was set to 0.5. For the initial values of a1, a2,

b1, and b2,

a0 ¼
x02

VarianceðxÞ
½2�

b0 ¼
VarianceðxÞ

x0
½3�

were used. We sampled two single grains and used their weight as x0; the lighter one was used

for the initial values of a1 and b1, and the heavier one was used for the initial values of a2 and

b2. Variance(x) was the variance of the weights of grains in a cultivar. We used the EM algo-

rithm 100 times with different initial values of a1, a2, b1, and b2 and different samples for x0 in
each cultivar. The single parameter set with the highest log-likelihood was defined as compris-

ing cultivar-specific parameters. The analysis was conducted using R [32].

Genomic prediction

To build a model that predicted grain weight distribution parameters (i.e., p, a1, a2, b1, and b2)
based on the genome-wide markers mentioned above, we applied two methods: genomic best

linear unbiased prediction (GBLUP) and partial least squares (PLS) regression. For GBLUP,

we built a model for each distribution parameters, generating five prediction models for one

prediction trial. To build the model, we used the function ‘kinship.BLUP’ in the ‘rrBLUP’

package [33] in R. For PLS regression, the model could predict multiple parameters simulta-

neously [34]. We assumed three types of PLS regression models. For the first type (1 parame-

ter-group PLS), we built a single PLS regression model to predict the set of grain weight

distribution parameters, so that all five grain weight distribution parameters were predicted

simultaneously. For the second type (3 parameter-group PLS), we built three PLS regression

models–the first for the parameter p, the second for the parameters a1 and b1, representing the

left-side distribution, and the third for the parameters a2 and b2, representing the right-side

distribution, because it was expected that the left-side and right-side distributions and their

mixing coefficient could be controlled in different manners. For the third type (each-parame-

ter PLS), we built five PLS regression models to predict the five distribution parameters sepa-

rately. To determine the number of PLS components, we conducted leave-one-out cross

validation. The PLS components with the highest accuracy (i.e., Q2 explained below) were

used. The maximum number of PLS components was set to 30. To build the model, we used

the function ‘plsr’ in the ‘pls’ package [35].

To evaluate the potential effectiveness of the model for genomic prediction, model accuracy

was assessed. Prediction ability was evaluated using leave-one-out cross validation. For the dis-

tribution parameters, accuracy was calculated using Pearson’s correlation coefficient between

observed and fitted/predicted values.

In addition to the accuracy of the distribution parameters, we evaluated the accuracy of the

“shapes” of distributions. The predicted residual error sum of square (PRESS) for the mixture

of gamma distributions (i.e., the grain weight distribution) was calculated by summing the
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squared prediction error of grain weight distribution over the cultivars, thus:

PRESS ¼
X

l

(Z 1

0

½flðxÞ � dflðxÞ�
2dx

)

¼
X

l

(

p2
l gðal1; bl1Þ þ ð1 � plÞ

2gðal2; bl2Þ þ bp2
l gðbal1;bbl1Þ

þð1 � bplÞ
2gðbal2;bbl2Þ þ plð1 � plÞhðal1; al2; bl1; bl2Þ

� plbplhðal1;bal1; bl1;bbl1Þ � plð1 � bplÞhðal1;bal2; bl1;bbl2Þ

� ð1 � plÞbplhðal2;bal1; bl2;bbl1Þ � ð1 � plÞð1 � bplÞhðal2;bal2; bl2;bbl2Þ

� bplð1 � bplÞhðbal1;bal2;bbl1;bbl2Þ

)

½4�

where

gða; bÞ ¼
21� 2a

ð2a � 1Þb

1

Bða; aÞ
½5�

hða1; a2; b1; b2Þ ¼
2b

a2 � 1

1
b
a1 � 1

2

ða1 þ a2 � 1Þðb1 þ b2Þ
a1þa2 � 1

1

Bða1; a2Þ
½6�

In theabove equation, fl(x) represents the observed probability density function in the cultivar l

(l = 1, . . ., 99), dflðxÞ is the probability density function predicted by a prediction model, and B
(., .) is the beta function. pl, al1, al2, bl1, and bl2 are observed distribution parameters in the cul-

tivar l, and bal1; bal2; bbl1, and bbl2 are the predicted parameters. The accuracy of the predicted

shape of grain weight distribution for a cultivar population was measured as:

Q2 ¼ 1 �
PRESS

P
lf
R1

0
½flðxÞ � flðxÞ�

2dxg
½7�

where
P

lf
R1

0
½flðxÞ � flðxÞ�

2 dxÞ could be calculated by substituting bal1; bal2; bbl1, and bbl2 in Eq

4 with al1; al2; bl1, and bl2 (i.e., the observed means of parameters over all cultivars),

respectively.

Results

Description of grain weight distribution

The description for grain weight distribution (Eq 1) could estimate the variation of grain

weight in each cultivar (Fig 1 and S1 Fig). When the parameter estimation trials with different

initial values were conducted 100 times, the same estimates were obtained, suggesting that our

estimation found the global solution for each cultivar. A jagged histogram of observed grain

weight might be due to the small data size for each cultivar. The estimated distributions

matched with the observed ones. The estimated distribution parameters showed variation

among 128 cultivars (Fig 2). There were two cultivars (Variety 37 and Variety97) for which

more than half of the grains were classified into the unfilled grain distribution (i.e. the esti-

mated p was larger than 0.5 in these cultivars) (Fig 2A). The grains of Variety 97 were not

clearly separated into two gamma distributions (S1 Fig).
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Days to heading positively correlated with var2 and the number of grains per panicle (Fig 3;

p-value < 0.01 in the correlation test). A significant negative correlation (p< 0.001) was

observed betweenmode1 and skewness1, in which the combination of largemode1 and small

skewness1 showed a symmetric left-side gamma distribution (i.e. unfilled grain distribution),

and the combination of smallmode1 and large skewness1 showed the right-skewed left-side

gamma distribution. For the traits used in conventional breeding, the sink-filling rate showed

Fig 1. Histogram and estimated probability density function (red line) of grain weight in six cultivars. Blue and

green points represent the weight of inferior and superior grain derived from the center primary branch on each

panicle. The parameter ‘p’ indicates (a) mean (0.175), (b)< 5% (0.081), (c) 25% (0.110), (d) 50% (0.155), (e) 75%

(0.210), and (f) 95% (0.347) for all cultivars.

https://doi.org/10.1371/journal.pone.0207627.g001
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a significant negative correlation with p, var2, number of grains per panicle, days to heading,

p.23mg, and p.90%. The p.90%, which showed a significant negative correlation with sink-fill-

ing rate, showed a significant positive correlation with traits that correlated with sink-filling

rate, except for the number of grains per panicle. A negative correlation between the sink-fill-

ing rate and the days to heading was observed especially in cultivars that required more than

100 days from germination to heading (the fourth column from the right on the bottom row

in Fig 3). The p.23mg showed a significant negative correlation withmu2. Although significant

positive correlations (p< 0.001) between days to heading and the number of grains and var2
were observed, the correlation between the number of grains and var2 was not significant.

To evaluate the distinguishability of the left-side and right-side gamma distributions in the

grain weight distribution, we calculated the probability around the boundary of the two gamma

distributions from the estimated grain weight distribution. The point with the lowest density

between the peaks of the left-side and right-side gamma distributions was defined as the bound-

ary point. Grain weight at the boundary point positively correlated with the parametermu2
(r = 0.68) (S2 Fig). The probability around the boundary point (± 0.1mg; boundary probability)

positively correlated with the parameter p (r = 0.77), p.23mg (r = 0.34), and p.90% (r = 0.56) (Fig

4A–4C). The boundary probability negatively correlated with the sink-filling rate (r = -0.60)

(Fig 4D). The ratio of the boundary probability to the probability around the mode of the right-

side gamma distribution, which represents the distinguishability of the left-side and right-side

Fig 2. Histogram of estimated grain weight distribution parameters. (a) p, (b) a1, (c) b1, (d) a2, and (e) b2 in Eq 1 are

shown.

https://doi.org/10.1371/journal.pone.0207627.g002
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gamma distributions more intuitively than the boundary probability, showed a more significant

correlation with p (r = 0.80), p.90% (r = 0.64), p (r = -0.74). The results showed that the cultivars

with more filled grains had a more clearly distinguishable boundary between filled and unfilled

grain distributions. The grouping of cultivars based on the distribution parameters (i.e. p, a1, b1,

Fig 3. Relations among feature values of grain weight distribution and panicle traits in examined cultivars. The diagonal panel shows histograms of each

trait. Lower and upper triangle panels show the scatter plot and correlation coefficient between the two traits. Black and red asterisks show the significance at 1%

and 0.1%, respectively, in correlation test. nGrain: average number of grains per panicle, HD: days from sowing to heading, p.23mg: probability of grains that

were lighter than 23mg, p.90%: probability of grains that were lighter than 90% weight of the weight at 95% point of the grain weight distribution,

SinkFillingRate: sink-filling rate using the weight at 95% point of the grain weight distribution in each cultivar as the sink capacity of one grain.

https://doi.org/10.1371/journal.pone.0207627.g003
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a2, and b2) corresponded to the sink-filling rate (Part A in S3 Fig). The group showing a high

sink-filling rate also had a sharp filled grain distribution and a clearly distinguishable boundary

between filled and unfilled grain distributions (Part B in S3 Fig).

In most cultivars, superior grains were more heavy than inferior grains (S1 Fig). Among all

examined cultivars, 91.7% of superior grains and 72.3% of inferior grains sampled from middle

primary branches were classified into right-side gamma distribution (i.e. filled grains). The

correlations between the grain weight distribution parameter p and the average number of

grains per panicle classified into unfilled grains were 0.41 and 0.35 for superior and inferior

grains, respectively.

Genomic prediction

In the 1 parameter-group PLS, the number of PLS components required to represent the larg-

est Q2 among all tested number of components in the leave-one-out cross validation was

Fig 4. Relation between the distinguishability of left-side and right-side gamma distributions of grain weight

distribution and the distribution parameter p (a), the probability of grains that were lighter than 23 mg (b), the

probability of grains that were lighter than 90% weight of the weight at the 95% point of the grain weight distribution

(c), and the sink-filling rate using the weight at the 95% point of the grain weight distribution for each cultivar

considering the sink capacity of one grain (d). Black points represent the probability around the boundary point ±0.1

mg in the grain weight distribution. Green points represent the ratio of the probability around the boundary point ±0.1

mg to the probability around the mode of the right-side gamma distribution ±0.1 mg.

https://doi.org/10.1371/journal.pone.0207627.g004
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determined to be 3. In the 3 parameter-group PLS, the number of PLS components was 1, 3,

and 3 for the model of p, a1 and b1, a2 and b2, respectively. In the each-parameter PLS, the

number of PLS components was 3, 4, 3, 1, and 1 for the model of p, a1, b1, a2, and b2,

respectively.

The shape of grain weight distribution was predicted using four methods (Fig 5 and S4 Fig).

The prediction accuracy in all cultivars (Q2) was higher in PLS than in GBLUP, and did not

differ considerably among the three PLS regression models (Table 1). The direction of the gap

between observed and predicted distribution was dependent on prediction method even for

one variety in some cases, e.g., Variety1 and Variety40 (S4 Fig). In all prediction methods, the

prediction accuracy in a1 and b1 was quite low, while the prediction accuracy in a2 and b2 was

more than 0.3, except for that in a2 by each-parameter PLS (Table 2). For p, the each-parame-

ter PLS attained the highest prediction accuracy among all methods, but the accuracy was just

Fig 5. Examples of the observed probability density function (red line) of the grain weight compared with fitted (green) and predicted (blue) ones that

result from genomic prediction for weight distribution parameters. The predicted squared residual error of each distribution was (a-d) minimum, (e-h)

mean, and (i-l) maximum in GBLUP (a, e, and i), PLS using 1 parameter-group (b, f, and j), PLS using 3 parameter-group (c, g, and k), and PLS using each-

parameter group (d, h, and l).

https://doi.org/10.1371/journal.pone.0207627.g005
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0.3. In GBLUP, predicted values shrank to the mean value for all distribution parameters.

Although the fitted accuracy of all distribution parameters was greater than 0.5 in GBLUP,

their prediction accuracy decreased drastically, especially for the parameters representing left-

side distribution (i.e. a1 and b1). In the 1 parameter-group PLS and 3 parameter-group PLS,

the predicted values shrank to the mean value for p, a1, and b1. These two PLS methods pre-

dicted a similar shape of the right-side distribution (i.e. the values of a2 and b2) (S4 Fig); thus,

the accuracies of these parameters in the 1 parameter-group PLS and the 3 parameter-group

PLS were same (Table 2). The each-parameter PLS showed the least shrinkage to the mean

value for all distribution parameters. The prediction accuracy of the feature values of grain

weight distribution (i.e.mode1, skewness1,mu2, and var2) showed that all prediction methods

could well predict the variance of the right-side distribution (i.e. var2), except for the each-

parameter PLS, but they could not predict the shape of the left-side distribution (i.e.mode1
and skewness1). By GBLUP, the prediction accuracy of the feature values did not change

largely when the predicted values were calculated using predicted distribution parameters (i.e.

Table 1. PRESS and prediction accuracy (Q2) for the grain weight distribution in genomic prediction.

Fitting Prediction

GBLUP PLS

(1 group)

PLS

(3 groups)

PLS

(each)

GBLUP PLS

(1 group)

PLS

(3 groups)

PLS

(each)

PRESS 2.448 2.616 2.594 2.259 3.007 2.697 2.666 2.553

Q2 0.366 0.323 0.329 0.415 0.222 0.302 0.310 0.339

https://doi.org/10.1371/journal.pone.0207627.t001

Table 2. Accuracy (correlation coefficient between observed and fitted/predicted values) for the parameters of grain weight distribution in genomic prediction.

The predicted values of feature values of distribution and the conventional traits was calculated using the predicted distribution parameters. The accuracy in parentheses is

that from the prediction conducted for the trait itself.

Fitting accuracy Prediction accuracy

GBLUP PLS

(1 group)

PLS

(3 groups)

PLS

(each)

GBLUP PLS

(1 group)

PLS

(3 groups)

PLS

(each)

p 0.727 0.330 0.326 0.777 0.217 0.181 0.174 0.300

a1 0.555 0.139 0.463 0.821 -0.055 0.004 0.141 0.133

b1 0.637 0.052 0.788 0.789 -0.266 -0.307 0.130 0.128

a2 0.703 0.727 0.727 0.483 0.337 0.371 0.371 0.243

b2 0.842 0.732 0.732 0.646 0.463 0.422 0.422 0.358

mode1 0.435

(0.372)

0.085 0.132 0.624 -0.146

(-0.520)

0.004 0.050 -0.019

skewness1 0.534

(0.597)

0.132 0.498 0.769 -0.074

(-0.041)

-0.011 0.161 0.140

mu2 0.337

(0.773)

0.110 0.110 0.309 0.280

(0.257)

-0.002 -0.002 0.215

var2 0.876

(0.888)

0.668 0.668 0.573 0.533

(0.530)

0.466 0.466 0.260

boundary point 0.042

(0.577)

0.155 0.247 0.014 0.006

(0.137)

0.092 0.099 -0.156

boundary probability 0.318

(0.479)

0.249 0.273 0.220 -0.116

(-0.766)

-0.004 -0.006 0.163

p.23mg 0.222

(0.682)

-0.057 -0.043 0.296 0.163

(0.154)

-0.051 -0.045 0.144

p.90% 0.579

(0.641)

0.565 0.582 0.087 0.264

(0.193)

0.268 0.271 -0.079

sink-filling rate (0.812) - - - (0.406) - - -

https://doi.org/10.1371/journal.pone.0207627.t002
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p, a1, b1, a2, and b2) from when the prediction model was built for each feature value. We

found that all methods could not predict new distribution-related traits (i.e. boundary point

and boundary probability between unfilled and filled grain distribution). The prediction

model built to predict the rank of boundary probability among varieties was not successful (r =

-0.36 in GBLUP). The ratio of boundary probability to the mode of the right-side distribution

and its rank could not be predicted accurately (r = 0.05 and 0.15, respectively). Genomic pre-

diction was not suitable for the prediction of distinguishability between unfilled and filled

grain distribution. For the conventionally measured traits (i.e. p.23mg, p.90%, and sink-filling

rate), prediction of p.23mg was possible by GBLUP and each-parameter PLS, but the accuracy

was still low, and prediction of p.90% was possible in GBLUP, 1 parameter-group PLS, and 3

parameter-group PLS (from 0.264 to 0.271). The prediction accuracy of sink-filling rate that

was conducted directly by GBLUP (r = 0.406) was higher than that of other conventional

traits.

The predicted squared residual error in each cultivar varied among the examined cultivars

(top left of Fig 6). The prediction success for genotypes was not dependent on genomic

Fig 6. Relation between predicted squared residual error in each cultivar and observed parameter of grain weight

distribution, mu2. The diagonal panel shows histograms of each variable. The lower and upper triangle panels show

the scatter plot and correlation coefficient between two variables. ResidualError.GBLUP, ResidualError.PLS1g,

ResidualError.PLS3g, and ResidualError.PLSet represent the predicted squared residual errors in GBLUP, PLS using 1

parameter-group, PLS using 3 parameter-groups, and PLS using each-parameter group, respectively.

https://doi.org/10.1371/journal.pone.0207627.g006
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prediction method (4 × 4 boxes of right bottom in Fig 6). Cultivars with smallmu2 (i.e. mean

weight in filled grains) showed a tendency to show large prediction error.

Discussion

The method of the description of grain weight distribution could depict the observed grain

weight distribution in a rice population (Fig 1 and S1 Fig). Although the sudden convex and

concave patterns could not be caught by the description method (e.g., Fig 1A and 1E), our

description method is more reliable and balanced than conventional histograms because the

sudden ruggedness in histograms owing to small sample sizes would disturb the subsequent

analyses. In our description methods, we assumed that the rice grain weight distribution is

bimodal. However, the bimodality of the distribution for Variety 48 and Variety 97 was not

clear (S1 Fig). It is possible that some genotypes might result in unimodal or flat grain weight

distribution in both favorable and unfavorable environments [18]. Although our description

method was suitable for our current data, it is necessary to deal with both unimodal and

bimodal distributions in multi-environmental experiments (especially when extreme environ-

ments are included). We can solve this problem by additionally visually or statistically (likeli-

hood) comparing the fitness of the estimated probability density function to the measured

histogram between bimodal and unimodal distribution.

Each estimated parameter of grain weight distribution varied among genotypes (Fig 2) and

represented various shapes of grain weight distribution (Fig 1 and S1 Fig). We supposed that

these parameters could be treated as quantitative traits. The use of feature values of the distri-

bution (i.e.mode1, skewness1,mu2, and var2) also helped us to understand the shape of the

distribution. To evaluate the efficiency of the genotype-specific parameters relating to grain

weight distribution in rice breeding, we checked the relationship between the distribution

parameters and traits that are used in conventional breeding. p.23mg, which had been consid-

ered to be compatible with the distribution parameter p, showed only moderate correlation

with the distribution parameter p because p.23mg depended on the grain size (i.e.mu2), while

p.90% and sink-filling rate showed high correlation with p (Fig 3). The boundary point of left-

side and right-side distribution also showed a significant positive correlation withmu2 (S2

Fig). These results suggest that it is difficult to define an identical threshold of filled grain

weight for a large number of cultivars, and that the genotype-specific parameter p could serve

as a flexible indicator of grain-filling ability when handling a large number of genotypes.

In almost all cultivars, there were some unfilled grains on a panicle (Fig 2A). Although we

could not determine why more than half of the grains were assigned to the left-side distribu-

tion in the two cultivars (Variety 37 and 97), it is possible that a giant-embryo mutation, which

was introduced by chance in Variety 97 in this season, resulted in the high percentage of

unfilled grains. Fig 4 suggests that the cultivars with poor grain-filling ability produced more

half-filled grains, i.e. the distinguishability of the boundary between the left-side and right-side

distributions was poor (S3 Fig). The cultivars that can produce more ‘completely filled’ grains

without producing partially filled grains are preferred even if they produce some percentage of

almost-empty husks, when the source of yield is limited. We may assume that the cultivars

with poor grain-filling ability might also be poor at partitioning their limited source among

grains. The method for describing grain weight distribution revealed that the optimal grain

weight distribution shape with limited source was one in which the right-side distribution was

sharp and the boundary probability was low.

Homogeneity in grain weight is one of the important traits, i.e., a small value of var2, is pre-

ferred. In our data, the average weight of filled grains (i.e.mu2) did not showed significant cor-

relation with the proportion of filled grains nor the sink-filling rate, suggesting that the

Description and genomic selection for grain weight distribution

PLOS ONE | https://doi.org/10.1371/journal.pone.0207627 November 20, 2018 14 / 21

https://doi.org/10.1371/journal.pone.0207627


average of filled grain weight were not affected by the ability of allocation of the source in a

panicle in a single environment. The cultivars that required more days from germination to

heading had a tendency to show larger variation among the weights of grains in the right-side

distribution (i.e. var2) and lower sink-filling rate, especially for cultivars whose heading dates

were after late August (Fig 3). One of the reasons might be the lower temperature in September

and October (21.6˚C and 17.0˚C on average, respectively) (The Agro- Meteorological Grid

Square Data [36]). We thought that a delayed heading date (long vegetative stage) would

increase the value of parameter var2 owing to the production of a large number of grains in a

panicle. However, the Pearson’s correlation between number of grains and var2 was not signif-

icant (Fig 3), and the partial correlation between number of grains and var2 given heading

date was quite low (ρ = 0.02), suggesting that the number of grains did not affect the dispersion

of grain weight, so that the ability of allocation of the source in a panicle did not depend on the

number of grains. In the present study, we also showed that the grains that bloomed later (i.e.

inferior grains) were lighter than those that bloomed earlier (i.e. superior grains) even in one

primary branch in a panicle (S1 Fig). It is known that the variation in flowering date among

spikelets in a panicle results in variation in the grain weight in a panicle for a cultivar [22,16],

and that the speed of blooming among grains in a panicle is genotype-dependent [37]. It is

possible that single grain weight varied largely in cultivars whose blooming timing varied, but

the relationship between the weight of inferior/superior grains and the speed of blooming

should be evaluated in more detail to verify their causal relationship.

In the present study, we conducted a genomic prediction for grain weight distribution

treating the genotype-specific parameters of grain weight distribution as phenotypes. The dis-

tribution related genotype-specific parameters, p, a2, and b2 (hence, the feature parameters

mu2 and var2) could be predicted by the GBLUP and each-parameter PLS methods (Table 2).

In rice breeding, the important traits that related to grain weight distribution are the propor-

tion of filled grains and the characteristics of filled grains, which are represented by p,mu2,

and var2. Our results showed the possibility of genomic prediction for traits representing

grain-filling ability.

GBLUP showed the highest prediction accuracy ofmu2 and var2 among the four methods

and the second highest accuracy in predicting p (Table 2). However, in the previous studies,

the effectiveness of the multiple-trait genomic prediction model especially for highly correlated

traits has been demonstrated [38,39]. Our results contrast those previously reported despite

the high correlation between our target traits (correlation coefficient between p and a1 was

0.34, between a1 and b1 was -0.53, and between a2 and b2 was -0.83; Fig 3). The previous study

demonstrated the efficiency of multiple-trait GBLUP, which explicitly involved the correlation

between traits in the model structure, and showed that GBLUP worked well for predicting

traits with low heritability when the other traits had high heritability [38]. We used PLS regres-

sion for multiple-trait genomic prediction, which did not involve phenotypic correlation

explicitly in the model structure but considered PLS score to explain all traits. Thus, results

similar to multiple-trait GBLUP were expected for PLS regression. However, in our study,

because each group of distribution parameters with high phenotypic correlation consisted of

parameters with similar prediction accuracy, the multiple-trait prediction model did not

improve prediction accuracy.

Each-parameter PLS showed highest prediction accuracy of the total shape of grain weight

distribution, whereas all PLS methods showed similar accuracy (Table 1). The result suggests

that the PLS method was useful for predicting the shape of grain weight distribution using

multiple parameters. Here, the 1 parameter-group PLS and 3 parameter-group PLS predicted

the same value for the parameters describing the right-side gamma distribution (i.e. a2 and b2)

(Fig 5 and S4 Fig). In PLS regression, the scores were estimated to obtain high correlation
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between scores for response and explanatory variables [40]. The estimated scores and loadings

of PLS were approximately equal using these two PLS models (correlation coefficient > 0.99),

possibly because 1 parameter-group PLS attached too much importance to the prediction for

a2 and b2. The prediction method that shows the highest accuracy would depend on the situa-

tion. For example, Xu et al. (2018) reported that PLS showed the worst predictability in six pre-

diction methods they examined, which included GBLUP, for rice agronomic traits [41], while

Burstin et al. (2015) reported that PLS could performed better than other methods in some

traits [42]. Although Iwata and Jannink (2011) also showed that PLS attained lower prediction

accuracy than other prediction methods (i.e. ridge regression, Bayesian methods, and other

methods) in their simulation studies, they could find that a meta-predictor that combined PLS

regression with other methods could attained higher accuracy than the best single method in

their examined methods [43]. Their results suggested that PLS could capture additional infor-

mation of relationship between markers and phenotypes that the other methods could not cap-

ture. PLS provides the linear relationship between phenotypic values and marker genotypes,

but it explains predictor variables by small number of latent variables unlike GBLUP. Thus,

PLS might capture the pleiotropic effects for instance, which worked linearly but could not be

captured by GBLUP well, while the further studies will be needed to clarify what aspects of

information could be captured by PLS. In the present study, moreover, the prediction accuracy

of shape, Q2, was used for deciding the number of PLS components in the present PLS regres-

sion model. If we decided the number of PLS components based on the prediction accuracy of

each distribution parameter instead of Q2 only, the chosen number of PLS components were

different. For example, the number of PLS components that showed the highest accuracy for

predicting p was five in each-parameter PLS (r = 0.347), while we chose three PLS components

based on Q2. The PLS methods may be preferred to predict the shape of grain weight distribu-

tion when we decide the number of PLS components based on Q2. The purpose of the present

genomic prediction was to predict the genotype-specific parameters that related to grain yield;

thus p,mu2, and var2 were the main targets. However, the entire shape of grain weight distri-

bution will be highly important when we model the partitioning of the source of yield in a pan-

icle. In such cases, a high prediction accuracy of the entire shape of the distribution may be

helpful.

We have planned to use grain weight distribution as the secondary trait to model grain

yield (main trait). The prediction accuracy of the main trait in GS depends on the reliability of

secondary trait prediction [38,12]. This is also suggested by the selection index theory [44].

Therefore, improvement in the prediction accuracy of secondary traits (grain weight distribu-

tion parameters) may be desired. The predictability of the grain weight distribution varied

among cultivars (S1 Fig). Prediction for the cultivars with small grains was difficult (Fig 6)

because of the small sample size of genotypes with small grain in the training population to

accurately predict genotypes having small grains. Another possible reason might be the low

prediction ability for outlier when the predicted values largely shrink to the mean value in the

training population, especially when the accuracy is not so high [10]. It is known that the dif-

ference in the population structure between test and training populations also has an impact

on prediction accuracy [45]. However, we could not find any relationship between accuracy

and population structure in our data (S5 Fig). Our leave-one-out cross validation results sug-

gest that the population structure did not result in a bias in predictability among cultivars in

the present study. The low prediction ability, especially in left-side distribution parameters,

might be because unpollinated spikelets were not separated from unfilled/partially filled grains

and because the distribution of the weights of partially filled grains largely depends on envi-

ronmental factors [46,18], which might cause quite low heritability in the left-side distribution

parameters in our data. In fact, the narrow-sense heritabilities based on the genetic and error
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variances estimated in GBLUP were 0.146, 0.004, 0.054, 0.21, and 0.409 for p,mode1, skew-
ness1,mu2, and var2, respectively. This result shows the low heritability in left-side distribu-

tion relating traits, and thus the difficulty in the prediction of traits with low heritability. For

example, temperature [47], amount of solar radiation [46], and nitrogen supply [48] affect the

grain yield. The panicle structure also affects the grain weight distribution [49]. Thus, these

data will improve the prediction ability of grain weight distribution. Jarquin et al. (2014), Mal-

osetti et al. (2016) and Bustos et al. (2016) have proposed different types of methods to include

environmental covariates in the genomic prediction model [50,51,52]. In the next step, infor-

mation on environmental factors and growth process of rice plant would be needed to improve

the predictability in grain yield.

Conclusion

The method proposed in the present study could successfully describe grain weight distribu-

tion in rice using five genotype-specific parameters. Based on the genotype-specific parame-

ters, we could analyze the genotypic differences in grain-filling-related traits as quantitative

traits in Japanese rice cultivars. The description method enabled us to estimate the optimal

shape of grain weight distribution that could be realized in our examined population, consid-

ering the allocation of the source of yield in a panicle. These genotype-specific parameters of

grain weight distribution could contribute as target traits in GS. The important traits for rice

breeding, the proportion of filled grains, average weight of filled grains and dispersion in the

weight of filled grains could be predicted by using GBLUP. The information on grain weight

distribution-related traits can be expected to improve grain yield in rice.

Supporting information

S1 Table. Cultivars examined in the present study. Of the 128 cultivars, 123 cultivars had

marker genotype data based on their resequencing data, which were shown in the column of

‘Marker genotype’ as “O”.

(PDF)

S1 Fig. Histogram and estimated probability density function (red line) of grain weight.

Blue and green points represent the weight of inferior and superior grain derived from the cen-

ter primary branch on each panicle.

(PDF)

S2 Fig. Relation between the grain weight at the boundary point in the grain weight distri-

bution and the distribution parameter mu2.

(PDF)

S3 Fig. Principal component analysis of grain weight distribution parameters among 128

cultivars (a) and representative grain weight distribution of each cultivar group (b). Culti-

vars were grouped by the k-means method using grain weight distribution parameters. Each

color represents each cultivar group, and the same color is used for a specific cultivar group

both in (a) and (b). Point size in (a) represents the sink-filling rate in each cultivar. In (b), the

red solid line shows the distribution based on the median of each parameter among all culti-

vars. The dashed lines show the distribution using the median of each parameter in each culti-

var group.

(PDF)

S4 Fig. Probability density function (left) and cumulative probability (right) of observed

and predicted grain weight distribution. Left-side plot among two plots with the same
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Variety ID shows the result of comparison between the observed probability density function

(red line) of grain weight and predicted ones (blue). Right-side plot shows the result of com-

parison between cumulative probability of observed and predicted grain weight distribution.

These results were derived from genomic prediction for grain weight distribution parameters

by GBLUP (solid line), PLS using 1 parameter-group (dashed line), and PLS using 3 parame-

ter-group (dotted line).

(PDF)

S5 Fig. Principal component analysis using genome-wide markers among 128 cultivars. (a)

The X and Y-axes show the scores of PC1 and PC2, respectively. (b) The X and Y-axes show

the scores of PC1 and PC3, respectively. The size of the points represents the predicted residual

error in the prediction by GBLUP for each cultivar.

(PDF)
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