
Heliyon 9 (2023) e21475

Available online 28 October 2023
2405-8440/© 2023 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).

Towards a sustainable edge computing framework for condition
monitoring in decentralized photovoltaic systems

Ibtihal Ait Abdelmoula a,b,*, Samir Idrissi Kaitouni b, Nassim Lamrini b,
Mourad Jbene a, Abdellatif Ghennioui b, Adil Mehdary a, Mohamed El Aroussi a

a SIRC/LAGeS laboratory-EHTP Hassania School of Public Works, Casablanca, Morocco
b Green Energy Park (UM6P and IRESEN), Benguerir, Morocco

A R T I C L E I N F O

Keywords:
Digitalization
Smart grids
Anomaly detection
Edge-computing
Embedded
Online monitoring

A B S T R A C T

In recent times, the rapid advancements in technology have led to a digital revolution in urban
areas, and new computing frameworks are emerging to address the current issues in monitoring
and fault detection, particularly in the context of the growing renewable decentralized energy
systems. This research proposes a novel framework for monitoring the condition of decentralized
photovoltaic systems within a smart city infrastructure. The approach uses edge computing to
overcome the challenges associated with costly processing through remote cloud servers. By
processing data at the edge of the network, this concept allows for significant gains in speed and
bandwidth consumption, making it suitable for a sustainable city environment. In the proposed
edge-learning scheme, several machine learning models are compared to find the best suitable
model achieving both high accuracy and low latency in detecting photovoltaic faults. Four light
and rapid machine learning models, namely, CBLOF, LOF, KNN, ANN, are selected as best per
formers and trained locally in decentralized edge nodes. The overall approach is deployed in a
smart solar campus with multiple distributed PV units located in the R&D platform Green & Smart
Building Park. Several experiments were conducted on different anomaly scenarios, and the
models were evaluated based on their supervision method, f1-score, inference time, RAM usage,
and model size. The paper also investigates the impact of the type of supervision and the class of
the model on the anomaly detection performance. The findings indicated that the supervised
artificial neural network (ANN) had superior performance compared to other models, obtaining
an f1-score of 80 % even in the most unfavorable conditions. The findings also showed that KNN
was the most suitable unsupervised model for the investigated experiments achieving good f1-
scores (100 %, 95 % and 92 %) in 3 out of 4 scenarios making it a good candidate for similar
anomaly detection tasks.

1. Introduction

Smart houses, smart grids and smart cities are all concepts referring to the integration of novel information and communication
technologies (ICT) into the existing traditional infrastructures. The global crisis, climate change, huge population growth and resource
depletion around the world are all drivers that led to the development of such perceptions [1]. Moreover, the smart city framework

* Corresponding author. SIRC/LAGeS laboratory-EHTP Hassania School of Public Works, Casablanca, Morocco.
E-mail address: aitabdelmoula@greenenergypark.ma (I. Ait Abdelmoula).

Contents lists available at ScienceDirect

Heliyon

journal homepage: www.cell.com/heliyon

https://doi.org/10.1016/j.heliyon.2023.e21475
Received 22 July 2023; Received in revised form 9 October 2023; Accepted 22 October 2023

mailto:aitabdelmoula@greenenergypark.ma
www.sciencedirect.com/science/journal/24058440
https://www.cell.com/heliyon
https://doi.org/10.1016/j.heliyon.2023.e21475
https://doi.org/10.1016/j.heliyon.2023.e21475
https://doi.org/10.1016/j.heliyon.2023.e21475
http://creativecommons.org/licenses/by-nc-nd/4.0/

Heliyon 9 (2023) e21475

2

includes a wide range of components covering buildings, transportation, electrical grids, healthcare and security. All these components
aim to deliver modern and high-quality services to people which are considered the main valuable asset. In order to achieve this
ultimate goal, major changes should be made to cover the increasing and complicated needs of a fast-growing community. Smarter
management cannot be achieved without three main drivers known as the three ‘D’s namely Digitalization, Decarbonization and
Decentralization. As a matter of fact, the most recent industrial revolutions were triggered by digitalization and the introduction of
modern information technologies, cloud computing, big data and artificial intelligence phenomena [2,3]. With the increasing use of
sensor networks, there has been a significant surge in the generation and real-time processing of vast quantities of data. Sensor nodes
are ubiquitously present in various settings, ranging from architectural structures to automotive systems and electrical networks.
Despite variations in their objectives and importance, sensors generally adhere to a common operational paradigm, which involves the
timely capture of signals. However, sensor data may exhibit abnormalities due to sensor malfunctions or genuine anomalies in the
environment being detected. Therefore, it is crucial to consider the timely detection of anomalies to effectively mitigate the emergence
of catastrophic circumstances. In that regard, anomaly detection has been employed across many fields for various applications.
Scholars have conducted investigations on many strategies pertaining to water consumption data [4,5], energy data in buildings [6],
security in smart houses [7], and healthcare applications [8,9], among others. Some authors conducted reviews on the time-series
anomaly detection techniques applied specifically on IoT data streams. For example, in Ref. [4], the authors conducted an evalua
tion of the most relevant approaches for anomaly detection in time-series especially in IoT field while giving different examples from
literature about industry 4.0, smart buildings and energy applications. They also highlighted major challenges that should be taken
into consideration while implementing anomaly detection techniques on IoT timeseries data. The particularities, high dimensionality,
and dynamics of IoT sensors data make the process even harder. That is why the authors underlined how crucial it is to have a
continuous awareness of the contextual environment while analyzing this type of data. Similarly, authors in Ref. [5], investigated over
60 published papers dealing with the anomaly detection techniques in IoT time-series highlighting the methods used, the challenges
that need to be addressed and also giving some recommendations about the requirements needed for the implementation of such
techniques.

Nonetheless, due to the growing digitalization, huge volumes of data are getting transferred to centralized servers which constitutes
a big pressure on the network. The variety, velocity, veracity and variability of data volumes makes the process more challenging [6].
On another hand, the volumes of data circulating within the network still need lot of processing steps in order to be used properly. They
should be cleaned, analyzed and carefully processed to render efficient information and useful knowledge. Moreover, data from tens of
thousands of connected devices must be processed quickly, otherwise the network would experience significant latency and break
down. For this reason, the concept of edge computing appeared as a novel technique that may improve the processing possibilities in
Big Data platforms. This is especially relevant in a smart city context, as solar-based distributed energy generation is one of its
fundamental characteristics. These distributed units require constant and real-time monitoring to ensure not only their performance
but also the stability of the entire grid. Similar to any physical system, anomalies can occur in solar plants. Detecting anomalies can be
sometimes possible just by examining data visually especially if it is an outlier. However, a human intervention is not feasible
especially with all the large volume of datasets and their distributed behavior. For this reason, machine learning (ML) techniques are
widely used in this area. In fact, using the recent improvements in ML technology is essential to precisely expose the irregularities
within photovoltaic systems, especially that preventing anomalies is the only way to advance the growth of the solar field and enable
its massive deployment and friendly integration. Being aware of the anomalies as soon as they appear enables the operators to
intervene quickly and conduct the necessary adjustments or repair; therefore, the performance losses are considerably reduced. Yet,
deploying machine learning algorithms onto resource-constrained edge devices is not a straight-forward process. In fact, these devices
are typically used for tasks such as data collection and pre-processing and are not well-suited for the computationally intensive tasks
required for machine learning. As a result, various optimizations must be conducted to ensure that the algorithms can run effectively
on these devices.

In this context, a number of works in the literature studied edge computation techniques in the scope of smart grids linking it, for
the majority, with the Digital Twin concept. In Ref. [7], the authors developed a Digital Twin platform using a cloud-edge integration
framework to diagnose faults in a microgrid. The authors chose a data-driven method to detect anomalies instead of a model or
knowledge-based technique stating that the former is more adequate to a microgrid case. However, two problems faced this method;
the first was the need of high quantity of data and the second was the high computational resources. According to the authors, these
challenges were mitigated using a cloud-edge framework. In an older work [8], the authors studied anomaly detection in the form of
cyber-attacks against PV systems in a distributed framework. Simulation scenarios showed how the aggregation of sources and the
fusion of models are beneficial in detecting a large spectrum of anomalies. However, the study focused only on the simulation part
using GridLAB-D tool. Other studies approached edge computing in different fields. In Ref. [9], the authors developed a workflow to
detect anomalies in machinery log files leveraging both cloud and edge computing capabilities. In Ref. [10], the authors evaluated five
different algorithms (LR, SVM, DT, RF, ANN) for anomaly detection in IoT traffic nodes and implemented them on a Raspberry to
compare results with a laptop performance and execution time. In the greenhouse environment, the authors in Ref. [11] propose the
implementation of ML algorithms on two types of Edge devices (Arduino and Raspberry). The overall performance is measured using
accuracy, consumption and execution time. A metric has been offered to take into account both the speed and electrical consumption
and thus guide the choice of the best compromise between software and hardware integration. These related works reveal the
importance of combining anomaly detection with edge computing capabilities in Smart Grid applications which motivates their
adoption in solar PV condition monitoring.

Furthermore, several studies have discussed photovoltaic fault detection in smart grids using a wide range of machine learning
techniques. The study in Ref. [12] was conducted on Modelica software and dealt with both prediction and anomaly detection of a

I. Ait Abdelmoula et al.

Heliyon 9 (2023) e21475

3

photovoltaic system. The solution coupled the physical and digital models in different ways and aimed at finding the models that
achieved the best accuracy. In the same scope, the authors in Ref. [13] presented a platform developed as a Digital Twin for PV systems
aiming at predicting and detecting anomalies. A broad spectrum of artificial intelligence (AI) algorithms are available on the Cloud
platform for the PV plant monitoring and diagnosis. The work in Ref. [14] also studied ML algorithms for the anomaly detection task in
PV plants. In the article, a comparison is made between unsupervised anomaly detection algorithms on several datasets of PV data over
a period of 4 months. The authors looked for uncommon anomalies that are difficult to identify with little data. Therefore, an ag
gregation of 70 PV systems was investigated and the performance of algorithms was evaluated on each distinct anomaly. Anomalies in

Table 1
Sub-keywords used in the systematic review.

Category I Category II Category III

• edge
• edge computing
• edge artificial intelligence
• edge AI

• Anomaly detection
• Fault detection

• PV
• Photovoltaic
• Solar

Table 2
Overview of the relevant works related to anomaly detection and edge computing in photovoltaic systems.

Ref ML algorithms used Anomalies detected Edge devices used Number of PV systems used

[18] Random under-sampling boosting
(RUSBoost)

line-to-line (LL) fault, open circuit (OC)
fault, partial shading (PS) fault, and
degradation (DF) fault

No One PV system of nominal power
4.8 kWp

[19] Stacked gated recurrent unit (GRU)
neural network.

The open circuit, short circuit,
degradation, Partial shading, Soiling, PID
and the average reduction in power
output.

No 23 configurations of the PV
system

[20] Graph neural network Open and short circuit fault, degradation,
Partial shading, Soiling, PID

No 6 PV systems

[21] Artificial neural network (ANN),
Recurrent Neural Networks (RNN) and
Bidirectional LSTM

Line to line, Line to ground fault,
Connectivity fault and Bypass Diode fault

No 3 PV systems each one has a
nominal power of 4 kWp

[22] AlexNet CNN with 2-D scalograms Partial shading Adafruit PyBadge MCU One PV system of 1.7 kWp
[23] Ensemble learning of Semi-supervised

Self-Training (ELSST): K-nearest
neighbors (KNN), Decision tree (DT) and
Support vector machine (SVM) classifier

Line-to-Line and Arc fault, partial shading,
open-circuit and power tracker unit fault.

No One PV system

Artificial neural network (ANN) for fault
detection and Multi-stacking ensemble
learning of Random forest (RF),
AdaBoost, CatBoost, and XGBoost for
fault classification.

Dust accumulation, partial shading, open
circuit diode with dust accumulation and
shunted diode with shading.

No One PV system

[24] Random forest (RF) and Artificial neural
network (ANN)

Connector fault, PID, Partial shading and
building shading condition, Failing bypass
diode/short circuit (SC) soiling
accumulation and Glass breakage.

Health-Helio (HH)
sensors by SmartHelio

One PV system of nominal power
2.94 kWp

[25] Extreme gradient boosting (XGBoost)
classifier for fault classification

Line to line fault, partial shading Edge node implementing
eXplainable Fault
Detection Systems
(XFDS)

Two photovoltaic panels:
monocrystalline (STM5-40/36)
and polycrystalline (Solartech
SPM-020P–R)

[26] Siamese-twin neural networks for
anomaly detection kNN, SVM, XGBoost,
Random Forest and Neural Network for
Fault classification

Shading Raspberry PI, Nvidia
Nano and Google Coral

IV tracing prototype composed of
two panels

[27] Neural network processing for anomaly
detection, combined with the
convolutional neural network for
anomaly classification

Silicon wafer defect rk3399 pro version _

[28] Image convolution by Gaussian Filter
Coefficient

Defective cells _ _

[29] deep conventional neural networks
(DCNNs) for fault detection and diagnosis
and fault classifications

partial shading effect, dust deposit on PV
modules surface, short-circuited PV
module and bypass diode
failure

Raspberry Pi 4 PV modules

[30] Artificial neural network is developed to
detect faults and an effective stacking
ensemble learning algorithm is developed
to classify the nature of the fault

dust deposit, partial shading, open
circuited diode and dust accumulation,
partial shading and dust accumulation,
and shunted diode in a shaded PV module

Raspberry Pi 4 PV string of 3 modules

I. Ait Abdelmoula et al.

Heliyon 9 (2023) e21475

4

PV systems can also rise as a result of malware intrusions. In Ref. [15], a hardware experiment is performed to evaluate the perfor
mance of two intrusion detection approaches for PV inverters. Both approaches are reported in the literature, and each has its own
characteristics, however the article considers that real experimentation is lacking to really evaluate the performance of the methods in
a real test environment. Regarding anomaly detection in time series in general, the work in Ref. [16] proposes a framework to redefine
anomalies in time series and benchmark real and synthetic datasets on different algorithms to understand the capabilities of each
algorithm on the types of anomalies.

To conduct a comprehensive state of the art that captures the most important literature in our research field, we adopted a
searching methodology and applied it in this work. The methodology is called Sub-keyword Synonym Searching (SSS) [17] and its
purpose is to identify relevant papers by multiple searches with synonym sub-keywords. In this paper, Scopus is the main search engine
of the methodology, and the full list of searching keywords in Scopus is the full combination of each category of Table 1. The result of
this review of literature is summarized in Table 2.

These previous works on anomaly detection in photovoltaic systems have mostly focused on using detection, classification, or their
hybrid combination to create real-time monitoring frameworks. However, there is a lack of extensive discussion on an edge computing
framework for anomaly detection in PV systems as only 7 papers discussed the concept. Most of the papers that discussed it applied it to
small-scale systems and did not provide an architectural scheme for large-scale deployment in smart cities or grids. Nowadays, many
applications require both real-time processing and critical analysis. Therefore, edge-based processing is highly recommended. This
raises the following research question: how can we implement highly critical analytics on the edge while rationalizing computation
costs and energy needs? In this study, we aim to provide insights to answer this question by using a photovoltaic use case to investigate
anomaly detection techniques and their deployment on an edge infrastructure. To the best of our knowledge, this is the first study that
provides an edge computing architecture dedicated to smart cities deployment on the subject of PV fault detection. Unlike existing
studies that implement anomaly detection and classification on local edge devices in an isolated PV system or a small prototype, here
we focus on providing a detailed workflow for decentralized fault detection in PV systems using a campus of more than 30 houses with
solar rooftops.

The novelty of this work resides in the edge computing framework dedicated to distributed solar PV plants in an urban area. The
combined software and hardware methodology described will help increase the penetration of solar into our traditional grids. In the
following, we highlight our contributions.

1) We create four synthetic datasets representing four different anomaly scenarios by varying the percentage of power magnitude.
This technique is useful when dealing with the lack of labelled datasets. After that, we compare several unsupervised and super
vised anomaly detection approaches to detect power drops in photovoltaic datasets and investigate the learning type’s impact on
the model performance.

2) We propose a framework to detect anomalies in decentralized PV plants by embedding the most performant models into edge nodes
taking into account their prediction time, accuracy, Random Access Memory (RAM) usage and model complexity. This approach
takes advantage of the hybridization between edge, fog and cloud layers.

Table 3
Technical characteristics of the Data Acquisition system.

Corresponding
layer

Hardware device Description Technical characteristics

Perception Photovoltaic DC
datalogger
TR16-RS485

Measurement device for PV strings currents and voltage. Can measure up
to 16 current signals and 1 DC voltage

Voltage measurement margin:
30–1000 V
Voltage error: 1 % FS
Current error: ±0.5 % FS
Communication protocol: Modbus
RTU

Current sensor
M/TR-25 Acc x 4

Hall effect transformer to connect with the PV datalogger for DC currents
measurements

Maximum current: 25A
Number of internal current
circuits: 4

Irradiance sensor
Kipp&Zonen CMP21

Solar irradiance measurement pyranometer (GHI and DHI) Irradiance range: 0–4000 W/m2

Accuracy: ±2 %
Irradiance sensor
Kipp&Zonen CHP1

Solar irradiance measurement pyrheliometer (DNI) Irradiance range: 0–4000 W/m2

Accuracy: ±1 %
Master gateway
EDS Energy Manager

Connects to multiple slave devices through serial RS-485 communication
bus and store data in a web server

Communication protocol: HTTP/
Modbus RTU

Meteorological
datalogger
Campbell scientific
CR1000

Multi-purpose datalogger used in monitoring and control applications Analog inputs: 16
Communication protocol: Modbus
TCP

Communication Ethernet switch
devices
FL SWITCH SFN 4TX/
FX

Ethernet switch with 4 RJ45 10/100 Mbps Supply voltage: 24 V DC

Application Monitoring server Linux server

I. Ait Abdelmoula et al.

Heliyon 9 (2023) e21475

5

The paper is organized in the following way: in Section 2, we present the experimental setup and the methodology of the work.
Section 3 summarizes the results of the paper and provides concluding remarks.

2. Experimental setup and methodology

2.1. Experimental setup

The present study is conducted in a solar campus spread over 1 ha, comprising many residential houses equipped with solar
rooftops utilized for both R&D and accommodation activities. The campus is located in the Green and Smart Building Park in Benguerir
[31], Morocco. Photovoltaic arrays are interconnected with on-grid inverters within each individual house, facilitating the conversion
of direct current (DC) power to alternating current (AC) power. Furthermore, the monitoring of DC power is carried out through the
use of a photovoltaic datalogger. The frequency of data gathering is 15 min. The dataloggers employ a pre-sampling technique to
collect data, and the supervisory system retrieves the average value during a 15-min interval. Table 3 presents the data obtained from
each source independently. Additionally, Fig. 1 provides a comprehensive overview of the architectural layout of the campus, with a
closer examination on one of the houses.

A systematic methodology is employed to gather data from the campus houses. Despite the absence of a standardized communi
cation and data architecture for smart grids, a recent study [5] has proposed a comprehensive layered framework consisting of four
stages (perception, connection, analytics, and security). This framework aims to support the development of an Internet of Things
(IoT)-enabled smart grid. In this particular scenario, the perception layer consists of measurement nodes that are strategically posi
tioned in the field. These nodes are responsible for capturing information related to the photovoltaic system, including solar irradiance,
ambient temperature, string current, and string voltage. The connectivity layer assumes the role of facilitating the transmission of data
between the perception layer and the monitoring system. This layer is composed of the wired Ethernet network and the switch devices,
which serve as the means of establishing and maintaining the connection. The application layer encompasses various analytical and

Fig. 1. Overview of the campus communication architecture.

Fig. 2. Solar systems located in the solar village as part of the case study.

I. Ait Abdelmoula et al.

Heliyon 9 (2023) e21475

6

processing tasks that need to be executed on the gathered data. These jobs include but are not limited to forecasting, anomaly
detection, performance analysis, and condition monitoring. The security layer, while not addressed in this study, is a subject of ongoing
research and an essential consideration in the design of smart grids. In the framework of this paper, the case study is part of a living lab
"solar village of solar decathlon Africa", in which more than 30 zero energy buildings are equipped with different solar PV technologies.
The latter have different characteristics in terms of installed capacities, orientations, inclinations, energy yield and performance ratio
providing a unique groundwork to identify the key factors that impact the performance of solar systems with respect to the local

Fig. 3. The processing methodology applied to raw data.

Fig. 4. A sample of the dataset retrieved for the case study

I. Ait Abdelmoula et al.

Heliyon 9 (2023) e21475

7

semi-arid climate. Fig. 2 presents the attributes of 5 solar systems located in the solar village.
Data collected from the testbed was cleaned using a structured framework inspired by international standards and recommen

dations for photovoltaic systems monitoring. The cleaning process involves a set of filters to remove erroneous and invalid records as
well as performance metrics calculation such as the daily performance ratio of the PV system under study. First, we resampled the data
and made sure the data sources were synchronized. We then performed several processing techniques such as: dropping repetitive and
duplicate values, filtering out the night values, checking that the recorded values are among certain threshold (Current >0 and <
1.5*Isc, Voltage>0 and < 1.2*Ns*Voc such as Isc is the short circuit current, Voc the open circuit voltage found in the datasheet and Ns
is the number of modules per string). We then applied the R2 correlation filter to remove days with R2 inferior to 0.8 since irradiance
should be highly correlated with the output power. After that, we applied the performance ratio (PR) filter to remove days with PR <
0.8. Fig. 3 shows the processing methodology applied to the raw dataset illustrated in Fig. 4 while the input features used in the study
are described in Table 4 and their corresponding correlation matrix in Fig. 5. The DJI Mavic 2 Enterprise drone is utilized at regular
intervals to perform inspection missions within the platform premises. Its primary objective is to identify any faults or issues and
afterwards notify operators of the necessary maintenance measures, including cleaning.

2.2. Methodology

We will start by conducting a benchmark of the methods used for unsupervised anomaly detection and use the PyOd library [32] to
rapidly scan 11 algorithms using their default parameters and evaluate their accuracy on the same anomalous datasets. The algorithms
used in this work are classified into statistical, distance-based, machine learning, ensemble and artificial neural network methods.
After that, the best selected algorithms will be further investigated based on the complexity, rapidity and prediction time. Finally, an
edge computing framework and its constituting layers is proposed and described in detail.

Since our purpose is to evaluate anomaly detection in an edge computing framework, we will conduct experiments using different
scenarios to understand the impact of model selection and the anomaly type on the accuracy of the solution [33]. Anomaly detection

Table 4
The input features used in the study.

Variable name Type of variable Description Unit

DC Current (Idc) Measured DC current of the monitored string [A]
DC Voltage (Vdc) Measured DC voltage of the monitored string [V]
DC Power (Pdc) Calculated DC power of the monitored string [W]
Global Horizontal Irradiance (GHI) Measured Global horizontal irradiance retrieved from meteorological station [W/m2]
Plane of Array Irradiance (POA) Calculated Plane of array irradiance calculated using isotropic model [W/m2]
Air temperature Measured Air temperature retrieved from meteorological station [◦C]

Fig. 5. Correlation matrix of the features.

I. Ait Abdelmoula et al.

Heliyon 9 (2023) e21475

8

can be a tedious task especially when data is not labelled and when it is hard to separate anomalous events from normal ones. For this
purpose, synthetic datasets can be used to better understand the anomaly behavior and map each case with its adapted model. Another
parameter to observe for our case study is the lightness of the model since our goal is to transfer the model to the edge device for a
real-time monitoring of the PV system. The work in Ref. [34] followed the same approach of synthetic datasets and simulated
anomalies to develop a Digital Twin on the cloud, however, they used only daily averaged data and didn’t evaluate the models on an
edge setting. In our case, there is a need to go further and study the model-anomaly duality under a more constrained edge

Fig. 6. Overview of the anomaly scenarios.

Fig. 7. Work methodology.

I. Ait Abdelmoula et al.

Heliyon 9 (2023) e21475

9

environment necessitating a real-time cost-effective deployment [35].
Furthermore, we describe the scenarios that were tested on the real dataset. In the first scenario, we injected a reduced magnitude

of the power output by different percentages ranging from 20 % to 90 % as illustrated in Fig. 6. In the second scenario, we varied the
supervision type along with the ML models used to detect the anomalies. Two techniques were experimented: supervised learning
represented by MLP and unsupervised learning represented by CBLOF, LOF and KNN. In the unsupervised techniques, it was necessary
to conduct experiments on the contamination rate to choose the best value. Finally, the methodology of the work is summarized in
Fig. 7.

2.3. Algorithms

2.3.1•. Local outlier factor (LOF)
Local outlier factor as defined by Ref. [36] is an unsupervised technique that relies on neighborhood density to detect anomalies. It

is computed by dividing the density of the point by the densities of its k closest neighbors. Because the density of the neighborhood
constitutes the basis of this method, LOF works well on datasets that are imbalanced. For each point, the algorithm calculates a
parameter called k-distance that defines the distance between the point of interest and its farthest neighbor, then, the local outlier
factor is computed. The points presenting high outlier factor and therefore low density are considered anomalies.

2.3.2•. K-nearest neighbors (KNN)
kNN is initially a supervised ML algorithm proposed by Ramaswamy [37]. However, the model can also be transformed into an

unsupervised learning technique in anomaly detection use cases since anomalies are regarded as rare events that are hard to label. kNN
belongs to the proximity-based clustering techniques meaning that it relies on the distance of a data point to its kth neighbor to
determine whether it is an anomaly or not. The farthest a data point is from its closest cluster, the higher its probability of being
anomalous. In practice, it is necessary to find the optimal value for the hyperparameter k representing the number of neighbors in the
model. The k-NN algorithm has 2 main parameters: the distance measure and the number k of nearest neighbors to use in the
calculations.

2.3.3•. Cluster-Based Local Outlier Factor (CBLOF)
Cluster-Based Local Outlier Factor (CBLOF) is an unsupervised method that belongs to the family of clustering-based algorithms. It

has been introduced in Ref. [38] by Zengyou and was aiming to address some drawbacks of the existing clustering methods at the time.
The method was effectively proven to be competitive compared to other clustering techniques and to the individual Local Outlier
Factor (LOF) method. In order to spot outliers, CBLOF use both the notions of size and distances. In fact, a data point can belong to a
cluster and still be considered an outlier because of the size of this cluster.

2.3.4•. Multi-layer perceptron (MLP)
The multilayer perceptron (MLP) is a feed-forward neural network inspired from the human brain functioning. It is constituted

from an input layer, a hidden layer, and an output layer. The input layer comprises the feature vector. The hidden layers are made of
multiple neurons and are positioned between the input layer and the output layer. The output layer is responsible for delivering the
result of the classification. A multilayer perceptron (MLP) operates in a manner that is analogous to that of a feed forward network.
Data travels from input to output layer in the forward direction. MLPs are used to resolve non-linear problems due to their design
enabling them to approximate any continuous function [39].

3. Results and discussion

3.1. The proposed edge framework

The photovoltaic systems installed on campus are interconnected together in a traditional setup. The dataloggers send their raw
data to a centralized supervisory server, which is responsible for processing and analyzing the data. However, in a smart decentralized
configuration, the hazards of network congestion and delayed alarm generation make it infeasible to send raw data to a central Cloud
server for decision making purposes [40]. Therefore, we propose a novel edge framework aiming to solve this issue in a more sus
tainable and intelligent way. The concept of edge computing has arisen as a solution to address the challenges associated with network
congestion caused by the transfer of extensive datasets to distant servers, particularly in the context of big data and smart cities [41].
Utilizing the capabilities of the edge yields the subsequent benefits: (1) Reduced latency: The latency in data processing is minimized
as a result of conducting analytics in close proximity to the data source. The reduced distance that data needs to traverse leads to
enhanced response times. The significance of this is particularly pronounced in the context of applications that necessitate the pro
cessing of data in real-time, such as IoT sensors and distributed energy systems, (2) Reduced bandwidth: The process of developing a
communication architecture requires a comprehensive comprehension of the bandwidth needs associated with each utilized
communication protocol. The transmission of data from one location (point A) to another (point B) necessitates the utilization of
network connectivity, resulting in the consumption of a portion of the available capacity or bandwidth. Currently, there is an
anticipation that smart grids would impose significant demands on forthcoming communication networks [41]. The reduction of
bandwidth is therefore an imperative research direction in this domain, which can be effectively accomplished through the imple
mentation of edge computing. (3) Reduced costs: The expenses related to communication in smart networks are directly associated

I. Ait Abdelmoula et al.

Heliyon 9 (2023) e21475

10

with the provision of data storage and analytics services on cloud platforms. These services impose substantial fees that could be
mitigated by transmitting only relevant information to the central cloud rather than the entire raw datasets. Despite the numerous
advantages and opportunities it presents, edge computing, like any other technological concept, is not without limitations that pose
challenges to its widespread implementation. The limitations are associated with the inherent characteristics of edge computing and
can be succinctly described as follows: (1) The susceptibility to cyber-attacks: due to the distributed nature of edge nodes, which often
involves deployment in remote and isolated areas, cyber-attacks can be heightened and easier to perform. The vulnerability of these
nodes is due to its constrained resources forcing them to implement only constricted defense measures and security protocols. (2) The
implementation of edge computing necessitates a multitude of adaptations in order to enhance the reliability and consistency of its
operation. In addition to the hardware configuration, the deployment of a trustworthy edge node entails software improvements such
as task offloading, and in-memory computing [41]. (3) Limited computation: The limited processing capabilities available in edge
nodes create considerable constraints, hence creating issues when it comes to building intricate machine learning or deep learning
models. Hence, it is imperative to conduct a thorough investigation for lightweight models [42] and find a balance between
computational efficiency and precision. Fig. 8 summarizes all the above aspects related to edge computing.

The framework is illustrated in Fig. 9. It consists of 4 main layers.

- The thing layer represents the devices that generate raw data at the source. In our case study, it represents the photovoltaic
dataloggers that measure dc voltage and current within PV systems, in addition to the weather sensors that measure solar irradiance
and temperature, the PV inverters that convert DC current to alternating current (AC) and the drones that perform thermal in
spection of the PV modules periodically.

- The edge layer describes the edge nodes that will handle the processing and analysis of incoming data flows before sending the
results to the cloud. It consists of a cluster of Raspberry-PIs deployed within each of the decentralized PV systems. The edge layer is
positioned as a middle-layer between the thing and fog layers. It is used to enhance the efficiency of the monitoring system by
reducing the processing time and bringing AI capabilities close to the devices.

- The fog layer depicts the intermediate layer between the edge and the cloud. It consists of servers that centralize the information
from a group of edge nodes placed in the houses and performs additional computation and data aggregation from the same location
(eg neighborhood).

- The cloud layer represents the ultimate layer where additional analysis and decision-support systems can be deployed. Many of
the tasks that used to be conducted at this level are being transferred to the edge nodes thanks to this architecture. The cloud layer
will only be responsible for collecting the decisions, alarms, and status reports received from the local nodes, rather than getting the
entire raw datasets.

To deploy the framework within the campus, two procedures are executed: (1) Offline mode: This mode is comprised of historical
data acquisition from the thing devices, data processing, and the benchmark of the available supervised and unsupervised models. The
training of the best models is then conducted and evaluated. (2) Online mode: The intended approach involves conducting real-time
monitoring to promptly identify errors, utilizing the most effective model chosen based on the benchmark outcomes. Upon the
detection of a malfunction, a signal will be transmitted to the classification module with the purpose of ascertaining the precise
category of the anomaly. The field validation is then conducted with drone imagery. Fig. 10 depicts these two methods in an

Fig. 8. Advantages, disadvantages and opportunities in edge computing paradigm.

I. Ait Abdelmoula et al.

Heliyon 9 (2023) e21475

11

organizational diagram.
In edge computing, the term System on chip (SoC) is used to describe the embedded technology used to perform computations at

the edge of a network. It is generally composed of a central processor unit (CPU), memory (RAM), and input/output (I/O) interfaces
[43]. The main goals of edge computing research is to boost the computing and processing efficiency on both hardware and software
technologies. Several efforts have been deployed to increase computational capabilities of embedded processors while optimizing their
size and energy consumption [44]. In this context, many giant providers of SoCs (such as NVIDIA and Google) have put in place a
considerable amount of solutions and development boards dedicated to real-time edge processing. Table 5 describes some of the
common entry-level SoCs used in research and prototyping. Since our goal is to embed machine learning models for monitoring a
time-series signal, a low-cost board is sufficient as we don’t require high graphical processing requirements. The board chosen to
conduct the evaluation in this paper is the Raspberry Pi4 due to its affordability and availability in the market.

Fig. 9. The proposed edge framework.

I. Ait Abdelmoula et al.

Heliyon 9 (2023) e21475

12

3.2. Performance metrics

Performance evaluation is the most important part of the machine learning experiment. Depending on the problem to be solved,
different metrics can be used in order to assess the goodness of the model. In a classification problem, like in our case, the most popular
metrics are precision, recall and f1-score. Precision is a metric that computes the model’s accuracy in classifying the positive class. The
precision is highest when we have more correct positive classifications than incorrect ones. The recall, on the other hand, is more
focused on the sensitivity of the classification. This means that the best recall is achieved when all positive instances are correctly
labelled as positive. The f1-score is an average metric between precision and recall that gives a better conclusion on the performance of
the model. An ideal classification task will achieve 100 % score in all three metrics. However, this is far from reality. A score is
therefore judged by its closeness to the 100 % ideal situation. In a binary classification task, meaning that we have 2 classes: normal
class labelled as 0 and anomaly class labelled as 1, we can encounter 4 different situations. The first two situations called “True Positive
(TP)” and “True Negative (TN)” mean that both the predictions and ground truth labels are equal. The distinction is related to the class

Fig. 10. Implementation procedure of the edge framework.

Table 5
Benchmark of the common SoCs used in research.

Features Raspberry PI 4 Jetson Orin Nano 8 GB Google Coral

Architecture ARM ARM ARM
CPU Broadcom BCM2711 quad-core Cortex-A72 64-

bit
Arm Cortex-A78AE 64-bit CPU Quad Cortex-A53, Cortex-M4F)

Memory 8 GB LPDDR4 8 GB 128-bit LPDDR5 4 GB LPDDR4
GPU Broadcom VideoCore 1024-core NVIDIA GPU with 32 tensor

cores
Integrated GC7000 Lite
Graphics

Supported frameworks for
ML

TensorFlow Lite TensorFlow Lite TensorFlow Lite

Cost (USD) ~100 ~375 ~170

I. Ait Abdelmoula et al.

Heliyon 9 (2023) e21475

13

type. In ‘TP’ case, the target is the positive class whereas the ‘TN’ case represents the negative class. Generally, in an anomaly clas
sification task, the positive class (or the class of interest) is the one with anomalous instances and the negative class represents the one
with normal data points. The other situations are called “False Positive (FP)” and “False Negative (FN)”. They refer to the incorrect
classification of normal instances as anomalous ones (FP) and anomalous instances as normal ones (FN). It is therefore important to
specify the target class when calculating each metric [45]. In order to compute these metrics, we can either use the classification report
to have a neat visual representation of the results or use the precision_recall_fscore_support function in sklearn. Table 6 below

Table 6
Definition of the metrics used in the evaluation.

Precision Recall F1-Score Support

Negative class (0) TN/(TN + FN) TN/(TN + FP) 2 ∗ Recall0 ∗ Precision0/(Recall0 + Precision0) Count of 0 occurences
Positive class (1) TP/(TP + FP) TP/(TP + FN) 2 ∗ Recall1 ∗ Precision1/(Recall1 + Precision1) Count of 1 occurences
Accuracy (TP + TN)/(TP + TN + FP + FN) Count of all occurences
Macro average (Metric0 + Metric1)/2
Weighted average (Metric0 ∗ Support0 + Metric1 ∗ Support1)/ (Support0 + Support1)

Table 7
Performance results of ML models on a computer desktop.

Model Best parameters F1_Score Training/Fitting time Prediction Time

Scenario 1 CBLOF n_clusters = 10 1.00 1.54 0.04
LOF n_neighbors = 10 1.00 0.015 0.045
KNN n_neighbors = 10 1.00 0.01 0.06
ANN hidden_layer_sizes’: (10, 30)

max_iter = 500, alpha = 0.001, learning_rate = ’adaptive’
1.00 0.09 0.01

Scenario 2 CBLOF n_clusters = 10 0.95 2.61 0.07
LOF n_neighbors = 40 0.95 0.008 0.006
KNN n_neighbors = 10 0.95 0.01 0.09
ANN hidden_layer_sizes’: (50, 100)

max_iter = 500, alpha = 0.001, learning_rate = ’adaptive’
0.97 0.13 0.01

Scenario 3 CBLOF n_clusters = 10 0.90 2.27 0.07
LOF n_neighbors = 40 0.84 0.014 0.004
KNN n_neighbors = 10 0.92 0.02 0.10
ANN hidden_layer_sizes’: (100,30) 0.94 0.14 0.008

Scenario 4 CBLOF n_clusters = 10 0.49 2.17 s 0.06 s
LOF n_neighbors = 40 0.54 0.01 s 0.01 s
KNN n_neighbors = 10 0.59 0.01 s 0.05 s
ANN hidden_layer_sizes’: (100, 30)

max_iter = 500, alpha = 0.001, learning_rate = ’adaptive’
0.79 0.34 s 0.01 s

Fig. 11. F1-score for each ML model across the different scenarios evaluated.

I. Ait Abdelmoula et al.

Heliyon9(2023)e21475

14

Fig. 12. Training and classification time for each ML model across the different scenarios evaluated: (a) Overview of time performance during the training phase (b) Overview of time performance
during the prediction time (c) Overview of total time performance considering training and prediction phases.

I. A
it A

bdelm
oula et al.

Heliyon 9 (2023) e21475

15

represents the structure of the classification report with the equations describing each of the metrics. To have a fair idea about the
goodness of the model, we use the macro average technique that takes into account both classes without weighing them. This is highly
important when the dataset is imbalanced. In our case, choosing a weighted average will always return a score close to 1 since the
normal class outweighs the anomalous one. In addition, the normal class is correctly classified by all the models that we experimented.
Therefore, relying on the weighted average will lead to biaised and false interpretations. To have a correct interpretation, we used the
macro average technique applied to the f1-score considering that this metric gives a more balanced indication compared to precision
and recall [46].

Since our aim is to implement the models on an embedded configuration, it is important to consider additional metrics as well,
mainly inference time, ram usage and model size. The inference time refers to the time spent by the model on the test set prediction. It
is calculated using the time library in Python. The model size refers to the amount of space used to store the pretrained model. For this
task, we use the pickle library, also in Python. RAM usage was calculated using the memory profiler library in Python.

3.3. Performance evaluation on a central server

The algorithms were trained and tested on a central server running an 11th Gen Intel Core (TM) i7-1165G7 CPU, 8 GB DDR4-3200
SDRAM, 512 GB NVMe SSD and NVIDIA GeForce MX450 GPU. The station is running Windows 11 and the machine learning algo
rithms are implemented using Python3. Table 7 describes the performance results of the selected ML models (CBLOF, LOF, KNN and
ANN) when evaluated on the server side. The metrics that we highlight in this scenario are f1-score, training time (for supervised
models), fitting time (for unsupervised ones) and the prediction time. The best parameters found for each model are also described in
the table. In order to search for the best parameters, we used the grid search library, especially for ANN (MLP) model that has many
parameters needing considerable effort in tunning. The grid search process was not computed in the training time column.

For a better visualization of the results, we plot in Fig. 11 the f-score values for each model across the different scenarios. Analyzing
the results, we can observe that ANN achieve the highest classification score in all scenarios, followed by KNN. In the first and second
scenarios, all models achieve excellent f1-score (100 % in first scenario and above 95 % in second one where we notice a slight
distinction for ANN). However, in the two other scenarios, the distinction starts to be increasingly visible in favor of ANN, especially in
the last scenario where ANN achieves 79 % in the f1-score metric, whereas all other models do not exceed 59 %.

In order to evaluate the computational footprint of the models, we calculate the training and prediction times required in each
scenario. The results, summarized in Fig. 12, show that CBLOF takes the longest time in the training phase followed by ANN. However,
the training times of LOF and KNN are hardly noticeable in the chart. In the prediction phase, KNN takes the longest time to predict
new samples, followed by CBLOF, ANN and LOF. In conclusion, the model that takes the shortest time in both training and prediction is
LOF, followed by KNN, ANN and CBLOF.

3.4. Performance evaluation on an edge device

As an edge device, we use a Raspberry-Pi with the characteristics described in Table 5. Due to the fact that the edge device is a low
computational resource environment, additional metrics should be involved in the evaluation. Therefore, in Table 8, we describe the
performance of the ML models on the edge device and report prediction time, RAM usage and model size.

On the Raspberry-Pi, CBLOF takes the longest time to predict, followed by KNN, LOF and ANN. Generally, cluster-based methods
(CBLOF) are computationally lighter than nearest-neighbor (KNN and LOF), however the distinction is only visible in very large
datasets which is not our case [47]. Regarding memory, we observe that CBLOF is the model having high RAM requirement, as opposed
to KNN, ANN and LOF that have close memory footprint, as it can be seen in Fig. 13.

The first conclusion to draw from the results is regarding the supervision type. It is essential to emphasize that supervised and

Table 8
Performance results of ML models on an edge device.

Model F1_Score Prediction Time (after dump) RAM (memory profiler) Model size (Bytes)

CBLOF 1.00 4.50 25.1 MiB 25329
LOF 1.00 0.021 1.3 MiB 425425
KNN 1.00 0.18 0.4 MiB 116065
ANN 1.00 0.0047 0.5 MiB 17192
CBLOF 0.95 4.52 25.2 MiB 25329
LOF 0.95 0.021 1.3 MiB 425425
KNN 0.95 0.18 0.4 MiB 116065
ANN 0.97 0.0087 1.6 MiB 96552
CBLOF 0.90 4.55 24.9 MiB 25297
LOF 0.84 0.021 1.3 MiB 425425
KNN 0.92 0.18 0.4 MiB 116065
ANN 0.94 0.008 1.4 MiB 97016
CBLOF 0.49 4.55 25.2 MiB 25297
LOF 0.54 0.021 1.3 MiB 425425
KNN 0.59 0.18 0.4 MiB 116065
ANN 0.80 0.008 1.6 MiB 97096

I. Ait Abdelmoula et al.

Heliyon9(2023)e21475

16

Fig. 13. Classification time, RAM usage and model size performance for each ML model across the different scenarios evaluated (a) Overview of time performance during the prediction phase (b)
Overview of model size performance across the evaluated scenarios (c) Overview of RAM usage across the evaluated scenarios.

I. A
it A

bdelm
oula et al.

Heliyon 9 (2023) e21475

17

unsupervised techniques are different and hardly comparable tasks [46]. In fact, unsupervised models, even with no prior training
achieved better performances than the supervised ones. Moreover, the supervised models had access to labelled data as opposed to
unsupervised ones. According to the results, and despite being considered the hardest task, unsupervised models were the best per
formers. In fact, in all the scenarios above, the supervised model ANN was superior in only the last scenario, which clearly needed more
training to be able to detect this type of anomaly considered the hardest among the four scenarios.

The second conclusion is related to the suitable model to be deployed in the edge architecture. As highlighted in the results, ANN
was the best model in terms of accuracy followed by KNN. Considering that KNN is an unsupervised model that scored similar to ANN
in 3 out of 4 scenarios without prior training while achieving the least RAM allocation, we can conclude that KNN is the most suitable
unsupervised model.

4. Limitations and perspectives of the study

In this study, an architectural framework has been devised for the purpose of monitoring the state of decentralized photovoltaic
(PV) installations. The case study focuses specifically on a solar campus. One of the limitations inherent in the study pertained to the
unaddressed concerns of security and privacy. The implementation of edge devices throughout the smart city presents additional
difficulties with regard to susceptibility to cyber-attacks. Hence, the primary aim of our future work is to increase the reliability of the
edge devices by the incorporation of an additional level of privacy utilizing the federated learning methodology. This particular
strategy will be further elaborated in our future research.

5. Conclusions

The goal of this paper is to present a framework for condition monitoring in decentralized photovoltaic systems using an edge
computing framework and extending it to a smart city environment. An experimental evaluation has been conducted using a dataset
collected from a Smart Campus where multiple PV systems are used to generate clean energy for laboratory R&D purposes.

The key results of this study are summarized below.

• A comparative evaluation has been performed on multiple machine learning models from various families and supervision types.
The models underwent evaluation using a genuine dataset containing synthetic anomalies. The evaluation of the performance
involved the utilization of commonly used measures, along with additional ones that are particularly relevant in the context of edge
computing. The K-nearest neighbors (KNN) model was determined to be the most effective in the unsupervised scenario, whereas
the artificial neural network (ANN) demonstrated superior performance in the supervised scenario. This finding demonstrates that
unsupervised models can be effectively utilized in certain anomaly circumstances without the need for pre-training, resulting
therefore in efficient and rapid detection.

• An edge-based framework specifically designed for smart cities was presented and demonstrated within the context of a smart
campus. The framework presents a novel approach that integrates edge, fog, and cloud layers, as well as online and offline con
figurations, to identify anomalies effectively and rapidly. The framework elucidates the benefits of edge computing in the context of
condition monitoring in smart cities, specifically emphasizing the reduced latency, decreased bandwidth requirements, and low
ered costs.

Finally, future work will be dedicated to the hardware implementation of the models on an embedded system connected in real-
time with the PV testbed to physically assess the complexity of each of the candidate models on other configurations and types of
anomalies.

Data availability statement

The data that has been used is confidential.

CRediT authorship contribution statement

Ibtihal Ait Abdelmoula: Writing – original draft, Methodology, Data curation, Conceptualization. Samir Idrissi Kaitouni:
Writing – original draft, Methodology, Investigation, Formal analysis, Conceptualization. Nassim Lamrini: Writing – original draft,
Methodology, Formal analysis, Data curation. Mourad Jbene: Investigation, Data curation. Abdellatif Ghennioui: Validation, Su
pervision, Investigation. Adil Mehdary: Writing – review & editing, Validation, Supervision, Methodology. Mohamed El Aroussi:
Writing – review & editing, Validation, Project administration, Methodology, Investigation.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to
influence the work reported in this paper.

I. Ait Abdelmoula et al.

Heliyon 9 (2023) e21475

18

References

[1] M. Farsi, A. Daneshkhah, A. Hosseinian-Far, et H. Jahankhani, « Internet of Things Digital Twin Technologies and Smart Cities ». [En ligne]. Disponible sur:
http://www.springer.com/series/11636.

[2] M.L. Di Silvestre, S. Favuzza, E. Riva Sanseverino, G. Zizzo, How Decarbonization, Digitalization and Decentralization are changing key power infrastructures,
Renew. Sustain. Energy Rev. 93 (February) (2018) 483–498, https://doi.org/10.1016/j.rser.2018.05.068.

[3] W. Serrano, Digital systems in smart city and infrastructure: digital as a service, Smart Cities 1 (1) (2018) 134–154, https://doi.org/10.3390/
smartcities1010008.

[4] A.A. Cook, G. Misirli, Z. Fan, Anomaly detection for IoT time-series data: a survey, IEEE Internet Things J. 7 (7) (2020) 6481–6494, https://doi.org/10.1109/
JIOT.2019.2958185.

[5] A. Sgueglia, A. Di Sorbo, C.A. Visaggio, G. Canfora, A systematic literature review of IoT time series anomaly detection solutions, Future Generat. Comput. Syst.
134 (2022) 170–186, https://doi.org/10.1016/j.future.2022.04.005.

[6] L. Erhan, et al., Smart anomaly detection in sensor systems: a multi-perspective review, Inf. Fusion 67 (2021) 64–79, https://doi.org/10.1016/j.
inffus.2020.10.001, mars.

[7] Z. Chen, L. Wu, S. Cheng, P. Lin, Y. Wu, W. Lin, Intelligent fault diagnosis of photovoltaic arrays based on optimized kernel extreme learning machine and I-V
characteristics, Appl. Energy 204 (2017) 912–931, https://doi.org/10.1016/j.apenergy.2017.05.034.

[8] D.M. Shila, K.G. Lore, T. Wei, T. Lovetty, Y. Cheng, « Catching anomalous distributed photovoltaics: an edge-based multi-modal anomaly detection », CoRR abs/
1709 (2017), 08830 [En ligne]. Disponible sur: http://arxiv.org/abs/1709.08830.

[9] Z. Wang, J. Tian, H. Fang, L. Chen, J. Qin, LightLog: a lightweight temporal convolutional network for log anomaly detection on the edge, Comput. Network.
203 (2022), 108616, https://doi.org/10.1016/j.comnet.2021.108616.

[10] A. Huč, J. Šalej, M. Trebar, Analysis of machine learning algorithms for anomaly detection on edge devices, Sensors 21 (14) (2021), https://doi.org/10.3390/
s21144946.

[11] M.F. Alati, G. Fortino, J. Morales, J.M. Cecilia, P. Manzoni, Time series analysis for temperature forecasting using TinyML, in: 2022 IEEE 19th Annual Consumer
Communications & Networking Conference, CCNC), 2022, pp. 691–694, https://doi.org/10.1109/CCNC49033.2022.9700573.

[12] F. Delussu, D. Manzione, R. Meo, G. Ottino, M. Asare, Experiments and comparison of digital twinning of photovoltaic panels by machine learning models and a
cyber-physical model in modelica, IEEE Trans. Ind. Inf. 18 (6) (2022) 4018–4028, https://doi.org/10.1109/TII.2021.3108688.

[13] A. Livera et al., « Intelligent Cloud-Based Monitoring and Control Digital Twin for Photovoltaic Power Plants », p. 9.
[14] S. Hempelmann, et al., Evaluation of unsupervised anomaly detection approaches on photovoltaic monitoring data, in: Conference Record of the IEEE

Photovoltaic Specialists Conference, 2020-June, 2020, pp. 2671–2674, https://doi.org/10.1109/PVSC45281.2020.9300481.
[15] C.B. Jones, A.R. Chavez, R. Darbali-Zamora, S. Hossain-McKenzie, Implementation of intrusion detection methods for distributed photovoltaic inverters at the

grid-edge, in: 2020 IEEE Power & Energy Society Innovative Smart Grid Technologies Conference, ISGT), 2020, pp. 1–5, https://doi.org/10.1109/
ISGT45199.2020.9087756.

[16] K.-H. Lai, D. Zha, J. Xu, Y. Zhao, G. Wang, X. Hu, Revisiting time series outlier detection: definitions and benchmarks, in: Thirty-fifth Conference on Neural
Information Processing Systems Datasets and Benchmarks Track (Round 1), 2021 [En ligne]. Disponible sur: https://openreview.net/forum?id=r8IvOsnHchr.

[17] L. Zhang, et al., A review of machine learning in building load prediction, Appl. Energy 285 (2021), 116452, https://doi.org/10.1016/j.apenergy.2021.116452
mars.

[18] D. Adhya, S. Chatterjee, A.K. Chakraborty, Diagnosis of PV array faults using RUSBoost, J Control Autom Electr Syst 34 (1) (2023) 157–165, https://doi.org/
10.1007/s40313-022-00947-6.

[19] J. Van Gompel, D. Spina, C. Develder, Satellite based fault diagnosis of photovoltaic systems using recurrent neural networks, Appl. Energy 305 (2022), 117874,
https://doi.org/10.1016/j.apenergy.2021.117874.

[20] J. Van Gompel, D. Spina, C. Develder, Cost-effective fault diagnosis of nearby photovoltaic systems using graph neural networks, Energy 266 (2023), 126444,
https://doi.org/10.1016/j.energy.2022.126444.

[21] M. Hajji, Z. Yahyaoui, M. Mansouri, H. Nounou, M. Nounou, Fault detection and diagnosis in grid-connected PV systems under irradiance variations, Energy
Rep. 9 (2023) 4005–4017, https://doi.org/10.1016/j.egyr.2023.03.033.

[22] A. Latoui, M.E.H. Daachi, Real-time monitoring of partial shading in large PV plants using Convolutional Neural Network, Sol. Energy 253 (2023) 428–438,
https://doi.org/10.1016/j.solener.2023.02.041.

[23] M.M. Badr, et al., Intelligent fault identification strategy of photovoltaic array based on ensemble self-training learning, Sol. Energy 249 (2023) 122–138,
https://doi.org/10.1016/j.solener.2022.11.017.

[24] M. Hojabri, S. Kellerhals, G. Upadhyay, B. Bowler, IoT-based PV array fault detection and classification using embedded supervised learning methods, Energies
15 (6) (2022) 2097, https://doi.org/10.3390/en15062097.

[25] S. Sairam, S. Seshadhri, G. Marafioti, S. Srinivasan, G. Mathisen, K. Bekiroglu, Edge-based explainable fault detection systems for photovoltaic panels on edge
nodes, Renew. Energy 185 (2022) 1425–1440, https://doi.org/10.1016/j.renene.2021.10.063.

[26] A.R. Sajun, S. Shapsough, I. Zualkernan, R. Dhaouadi, « Edge-Based Individualized Anomaly Detection in Large-Scale Distributed Solar Farms », ICT Express,
2022 https://doi.org/10.1016/j.icte.2021.12.011.

[27] M. Dong, J. Zhao, D. Li, B. Zhu, S. An, Z. Liu, ISEE: industrial Internet of Things perception in solar cell detection based on edge computing, Int. J. Distributed
Sens. Netw. 17 (11) (2021), 15501477211050552, https://doi.org/10.1177/15501477211050552.

[28] K.V.G. Raghavendra, N.T.U. Kumar, W. Kazim, An efficient optical inspection of photovoltaic modules deploying edge detectors and ancillary techniques, Int. J.
Electr. Comput. Eng. 12 (5) (2022) 4772.

[29] A. Mellit, An embedded solution for fault detection and diagnosis of photovoltaic modules using thermographic images and deep convolutional neural networks,
Eng. Appl. Artif. Intell. 116 (2022), 105459, https://doi.org/10.1016/j.engappai.2022.105459.

[30] A. Mellit, M. Benghanem, S. Kalogirou, A. Massi Pavan, An embedded system for remote monitoring and fault diagnosis of photovoltaic arrays using machine
learning and the internet of things, Renew. Energy 208 (2023) 399–408, https://doi.org/10.1016/j.renene.2023.03.096.

[31] « Green Energy Park », Consulté le: 8 janvier, https://www.greenenergypark.ma/, 2023.
[32] Y. Zhao, Z. Nasrullah, Z.P. Li, « A python Toolbox for Scalable Outlier Detection, 2019 arXiv 2019 », arXiv preprint arXiv:1901.01588.
[33] K.-H. Lai, D. Zha, J. Xu, Y. Zhao, G. Wang, X. Hu, Revisiting time series outlier detection: definitions and benchmarks, in: présenté à Thirty-fifth Conference on

Neural Information Processing Systems Datasets and Benchmarks Track (Round 1), 2022. Consulté le: 11 octobre 2022. [En ligne]. Disponible sur: https://
openreview.net/forum?id=r8IvOsnHchr.

[34] A. Livera et al., « Intelligent Cloud-Based Monitoring and Control Digital Twin for Photovoltaic Power Plants », p. 9.
[35] C.U. Carmona, F.-X. Aubet, V. Flunkert, J. Gasthaus, « Neural Contextual Anomaly Detection for Time Series », arXiv, 2021 https://doi.org/10.48550/

ARXIV.2107.07702.
[36] M.M. Breunig, H.-P. Kriegel, R.T. Ng, J. Sander, LOF: identifying density-based local outliers, SIGMOD Rec 29 (2) (2000) 93–104, https://doi.org/10.1145/

335191.335388.
[37] S. Ramaswamy, R. Rastogi, K. Shim, Efficient algorithms for mining outliers from large data sets, SIGMOD Rec 29 (2) (2000) 427–438, https://doi.org/10.1145/

335191.335437.
[38] Z. He, X. Xu, S. Deng, Discovering cluster-based local outliers, Pattern Recogn. Lett. 24 (9) (2003) 1641–1650, https://doi.org/10.1016/S0167-8655(03)00003-

5.
[39] M.W. Gardner, S.R. Dorling, Artificial neural networks (the multilayer perceptron)—a review of applications in the atmospheric sciences, Atmos. Environ. 32

(14) (1998) 2627–2636, https://doi.org/10.1016/S1352-2310(97)00447-0.

I. Ait Abdelmoula et al.

http://www.springer.com/series/11636
https://doi.org/10.1016/j.rser.2018.05.068
https://doi.org/10.3390/smartcities1010008
https://doi.org/10.3390/smartcities1010008
https://doi.org/10.1109/JIOT.2019.2958185
https://doi.org/10.1109/JIOT.2019.2958185
https://doi.org/10.1016/j.future.2022.04.005
https://doi.org/10.1016/j.inffus.2020.10.001
https://doi.org/10.1016/j.inffus.2020.10.001
https://doi.org/10.1016/j.apenergy.2017.05.034
http://arxiv.org/abs/1709.08830
https://doi.org/10.1016/j.comnet.2021.108616
https://doi.org/10.3390/s21144946
https://doi.org/10.3390/s21144946
https://doi.org/10.1109/CCNC49033.2022.9700573
https://doi.org/10.1109/TII.2021.3108688
https://doi.org/10.1109/PVSC45281.2020.9300481
https://doi.org/10.1109/ISGT45199.2020.9087756
https://doi.org/10.1109/ISGT45199.2020.9087756
https://openreview.net/forum?id=r8IvOsnHchr
https://doi.org/10.1016/j.apenergy.2021.116452
https://doi.org/10.1007/s40313-022-00947-6
https://doi.org/10.1007/s40313-022-00947-6
https://doi.org/10.1016/j.apenergy.2021.117874
https://doi.org/10.1016/j.energy.2022.126444
https://doi.org/10.1016/j.egyr.2023.03.033
https://doi.org/10.1016/j.solener.2023.02.041
https://doi.org/10.1016/j.solener.2022.11.017
https://doi.org/10.3390/en15062097
https://doi.org/10.1016/j.renene.2021.10.063
https://doi.org/10.1016/j.icte.2021.12.011
https://doi.org/10.1177/15501477211050552
http://refhub.elsevier.com/S2405-8440(23)08683-8/sref28
http://refhub.elsevier.com/S2405-8440(23)08683-8/sref28
https://doi.org/10.1016/j.engappai.2022.105459
https://doi.org/10.1016/j.renene.2023.03.096
https://www.greenenergypark.ma/
http://refhub.elsevier.com/S2405-8440(23)08683-8/sref32
https://openreview.net/forum?id=r8IvOsnHchr
https://openreview.net/forum?id=r8IvOsnHchr
https://doi.org/10.48550/ARXIV.2107.07702
https://doi.org/10.48550/ARXIV.2107.07702
https://doi.org/10.1145/335191.335388
https://doi.org/10.1145/335191.335388
https://doi.org/10.1145/335191.335437
https://doi.org/10.1145/335191.335437
https://doi.org/10.1016/S0167-8655(03)00003-5
https://doi.org/10.1016/S0167-8655(03)00003-5
https://doi.org/10.1016/S1352-2310(97)00447-0

Heliyon 9 (2023) e21475

19

[40] Q.N. Minh, V.-H. Nguyen, V.K. Quy, L.A. Ngoc, A. Chehri, G. Jeon, Edge computing for IoT-Enabled smart grid: the future of energy, Energies 15 (17) (2022),
https://doi.org/10.3390/en15176140.

[41] C. Feng, Y. Wang, Q. Chen, Y. Ding, G. Strbac, C. Kang, Smart grid encounters edge computing: opportunities and applications, Advances in Applied Energy 1
(2021), 100006, https://doi.org/10.1016/j.adapen.2020.100006.

[42] C. Feng, Y. Wang, Q. Chen, Y. Ding, G. Strbac, C. Kang, Smart grid encounters edge computing: opportunities and applications, Advances in Applied Energy 1
(2021), 100006, https://doi.org/10.1016/j.adapen.2020.100006.

[43] F. Samie, L. Bauer, J. Henkel, Edge computing for smart grid: an overview on architectures and solutions, in: K. Siozios, D. Anagnostos, D. Soudris, et
E. Kosmatopoulos (Eds.), IoT for Smart Grids: Design Challenges and Paradigms, Springer International Publishing, Cham, 2019, pp. 21–42, https://doi.org/
10.1007/978-3-030-03640-9_2.

[44] H.A. Imran, U. Mujahid, S. Wazir, U. Latif, K. Mehmood, « Embedded development boards for edge-AI: a comprehensive report », CoRR abs/2009 (2020), 00803
[En ligne]. Disponible sur: https://arxiv.org/abs/2009.00803.

[45] A. Bakumenko, A. Elragal, Detecting anomalies in financial data using machine learning algorithms, Systems 10 (5) (2022) 130, https://doi.org/10.3390/
systems10050130.

[46] F. Cavallin, R. Mayer, Anomaly detection from distributed data sources via federated learning, in: L. Barolli, F. Hussain, et T. Enokido (Eds.), Advanced
Information Networking and Applications, Springer International Publishing, Cham, 2022, pp. 317–328.

[47] M. Amer et M. Goldstein, « Nearest-Neighbor and Clustering Based Anomaly Detection Algorithms for RapidMiner ».

I. Ait Abdelmoula et al.

https://doi.org/10.3390/en15176140
https://doi.org/10.1016/j.adapen.2020.100006
https://doi.org/10.1016/j.adapen.2020.100006
https://doi.org/10.1007/978-3-030-03640-9_2
https://doi.org/10.1007/978-3-030-03640-9_2
https://arxiv.org/abs/2009.00803
https://doi.org/10.3390/systems10050130
https://doi.org/10.3390/systems10050130
http://refhub.elsevier.com/S2405-8440(23)08683-8/sref46
http://refhub.elsevier.com/S2405-8440(23)08683-8/sref46

	Towards a sustainable edge computing framework for condition monitoring in decentralized photovoltaic systems
	1 Introduction
	2 Experimental setup and methodology
	2.1 Experimental setup
	2.2 Methodology
	2.3 Algorithms
	2.3.1• Local outlier factor (LOF)
	2.3.2• K-nearest neighbors (KNN)
	2.3.3• Cluster-Based Local Outlier Factor (CBLOF)
	2.3.4• Multi-layer perceptron (MLP)

	3 Results and discussion
	3.1 The proposed edge framework
	3.2 Performance metrics
	3.3 Performance evaluation on a central server
	3.4 Performance evaluation on an edge device

	4 Limitations and perspectives of the study
	5 Conclusions
	Data availability statement
	CRediT authorship contribution statement
	Declaration of competing interest
	References

