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A B S T R A C T   

In recent times, the rapid advancements in technology have led to a digital revolution in urban 
areas, and new computing frameworks are emerging to address the current issues in monitoring 
and fault detection, particularly in the context of the growing renewable decentralized energy 
systems. This research proposes a novel framework for monitoring the condition of decentralized 
photovoltaic systems within a smart city infrastructure. The approach uses edge computing to 
overcome the challenges associated with costly processing through remote cloud servers. By 
processing data at the edge of the network, this concept allows for significant gains in speed and 
bandwidth consumption, making it suitable for a sustainable city environment. In the proposed 
edge-learning scheme, several machine learning models are compared to find the best suitable 
model achieving both high accuracy and low latency in detecting photovoltaic faults. Four light 
and rapid machine learning models, namely, CBLOF, LOF, KNN, ANN, are selected as best per-
formers and trained locally in decentralized edge nodes. The overall approach is deployed in a 
smart solar campus with multiple distributed PV units located in the R&D platform Green & Smart 
Building Park. Several experiments were conducted on different anomaly scenarios, and the 
models were evaluated based on their supervision method, f1-score, inference time, RAM usage, 
and model size. The paper also investigates the impact of the type of supervision and the class of 
the model on the anomaly detection performance. The findings indicated that the supervised 
artificial neural network (ANN) had superior performance compared to other models, obtaining 
an f1-score of 80 % even in the most unfavorable conditions. The findings also showed that KNN 
was the most suitable unsupervised model for the investigated experiments achieving good f1- 
scores (100 %, 95 % and 92 %) in 3 out of 4 scenarios making it a good candidate for similar 
anomaly detection tasks.   

1. Introduction 

Smart houses, smart grids and smart cities are all concepts referring to the integration of novel information and communication 
technologies (ICT) into the existing traditional infrastructures. The global crisis, climate change, huge population growth and resource 
depletion around the world are all drivers that led to the development of such perceptions [1]. Moreover, the smart city framework 
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includes a wide range of components covering buildings, transportation, electrical grids, healthcare and security. All these components 
aim to deliver modern and high-quality services to people which are considered the main valuable asset. In order to achieve this 
ultimate goal, major changes should be made to cover the increasing and complicated needs of a fast-growing community. Smarter 
management cannot be achieved without three main drivers known as the three ‘D’s namely Digitalization, Decarbonization and 
Decentralization. As a matter of fact, the most recent industrial revolutions were triggered by digitalization and the introduction of 
modern information technologies, cloud computing, big data and artificial intelligence phenomena [2,3]. With the increasing use of 
sensor networks, there has been a significant surge in the generation and real-time processing of vast quantities of data. Sensor nodes 
are ubiquitously present in various settings, ranging from architectural structures to automotive systems and electrical networks. 
Despite variations in their objectives and importance, sensors generally adhere to a common operational paradigm, which involves the 
timely capture of signals. However, sensor data may exhibit abnormalities due to sensor malfunctions or genuine anomalies in the 
environment being detected. Therefore, it is crucial to consider the timely detection of anomalies to effectively mitigate the emergence 
of catastrophic circumstances. In that regard, anomaly detection has been employed across many fields for various applications. 
Scholars have conducted investigations on many strategies pertaining to water consumption data [4,5], energy data in buildings [6], 
security in smart houses [7], and healthcare applications [8,9], among others. Some authors conducted reviews on the time-series 
anomaly detection techniques applied specifically on IoT data streams. For example, in Ref. [4], the authors conducted an evalua-
tion of the most relevant approaches for anomaly detection in time-series especially in IoT field while giving different examples from 
literature about industry 4.0, smart buildings and energy applications. They also highlighted major challenges that should be taken 
into consideration while implementing anomaly detection techniques on IoT timeseries data. The particularities, high dimensionality, 
and dynamics of IoT sensors data make the process even harder. That is why the authors underlined how crucial it is to have a 
continuous awareness of the contextual environment while analyzing this type of data. Similarly, authors in Ref. [5], investigated over 
60 published papers dealing with the anomaly detection techniques in IoT time-series highlighting the methods used, the challenges 
that need to be addressed and also giving some recommendations about the requirements needed for the implementation of such 
techniques. 

Nonetheless, due to the growing digitalization, huge volumes of data are getting transferred to centralized servers which constitutes 
a big pressure on the network. The variety, velocity, veracity and variability of data volumes makes the process more challenging [6]. 
On another hand, the volumes of data circulating within the network still need lot of processing steps in order to be used properly. They 
should be cleaned, analyzed and carefully processed to render efficient information and useful knowledge. Moreover, data from tens of 
thousands of connected devices must be processed quickly, otherwise the network would experience significant latency and break 
down. For this reason, the concept of edge computing appeared as a novel technique that may improve the processing possibilities in 
Big Data platforms. This is especially relevant in a smart city context, as solar-based distributed energy generation is one of its 
fundamental characteristics. These distributed units require constant and real-time monitoring to ensure not only their performance 
but also the stability of the entire grid. Similar to any physical system, anomalies can occur in solar plants. Detecting anomalies can be 
sometimes possible just by examining data visually especially if it is an outlier. However, a human intervention is not feasible 
especially with all the large volume of datasets and their distributed behavior. For this reason, machine learning (ML) techniques are 
widely used in this area. In fact, using the recent improvements in ML technology is essential to precisely expose the irregularities 
within photovoltaic systems, especially that preventing anomalies is the only way to advance the growth of the solar field and enable 
its massive deployment and friendly integration. Being aware of the anomalies as soon as they appear enables the operators to 
intervene quickly and conduct the necessary adjustments or repair; therefore, the performance losses are considerably reduced. Yet, 
deploying machine learning algorithms onto resource-constrained edge devices is not a straight-forward process. In fact, these devices 
are typically used for tasks such as data collection and pre-processing and are not well-suited for the computationally intensive tasks 
required for machine learning. As a result, various optimizations must be conducted to ensure that the algorithms can run effectively 
on these devices. 

In this context, a number of works in the literature studied edge computation techniques in the scope of smart grids linking it, for 
the majority, with the Digital Twin concept. In Ref. [7], the authors developed a Digital Twin platform using a cloud-edge integration 
framework to diagnose faults in a microgrid. The authors chose a data-driven method to detect anomalies instead of a model or 
knowledge-based technique stating that the former is more adequate to a microgrid case. However, two problems faced this method; 
the first was the need of high quantity of data and the second was the high computational resources. According to the authors, these 
challenges were mitigated using a cloud-edge framework. In an older work [8], the authors studied anomaly detection in the form of 
cyber-attacks against PV systems in a distributed framework. Simulation scenarios showed how the aggregation of sources and the 
fusion of models are beneficial in detecting a large spectrum of anomalies. However, the study focused only on the simulation part 
using GridLAB-D tool. Other studies approached edge computing in different fields. In Ref. [9], the authors developed a workflow to 
detect anomalies in machinery log files leveraging both cloud and edge computing capabilities. In Ref. [10], the authors evaluated five 
different algorithms (LR, SVM, DT, RF, ANN) for anomaly detection in IoT traffic nodes and implemented them on a Raspberry to 
compare results with a laptop performance and execution time. In the greenhouse environment, the authors in Ref. [11] propose the 
implementation of ML algorithms on two types of Edge devices (Arduino and Raspberry). The overall performance is measured using 
accuracy, consumption and execution time. A metric has been offered to take into account both the speed and electrical consumption 
and thus guide the choice of the best compromise between software and hardware integration. These related works reveal the 
importance of combining anomaly detection with edge computing capabilities in Smart Grid applications which motivates their 
adoption in solar PV condition monitoring. 

Furthermore, several studies have discussed photovoltaic fault detection in smart grids using a wide range of machine learning 
techniques. The study in Ref. [12] was conducted on Modelica software and dealt with both prediction and anomaly detection of a 
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photovoltaic system. The solution coupled the physical and digital models in different ways and aimed at finding the models that 
achieved the best accuracy. In the same scope, the authors in Ref. [13] presented a platform developed as a Digital Twin for PV systems 
aiming at predicting and detecting anomalies. A broad spectrum of artificial intelligence (AI) algorithms are available on the Cloud 
platform for the PV plant monitoring and diagnosis. The work in Ref. [14] also studied ML algorithms for the anomaly detection task in 
PV plants. In the article, a comparison is made between unsupervised anomaly detection algorithms on several datasets of PV data over 
a period of 4 months. The authors looked for uncommon anomalies that are difficult to identify with little data. Therefore, an ag-
gregation of 70 PV systems was investigated and the performance of algorithms was evaluated on each distinct anomaly. Anomalies in 

Table 1 
Sub-keywords used in the systematic review.  

Category I Category II Category III  

• edge  
• edge computing  
• edge artificial intelligence  
• edge AI  

• Anomaly detection  
• Fault detection  

• PV  
• Photovoltaic  
• Solar  

Table 2 
Overview of the relevant works related to anomaly detection and edge computing in photovoltaic systems.  

Ref ML algorithms used Anomalies detected Edge devices used Number of PV systems used 

[18] Random under-sampling boosting 
(RUSBoost) 

line-to-line (LL) fault, open circuit (OC) 
fault, partial shading (PS) fault, and 
degradation (DF) fault 

No One PV system of nominal power 
4.8 kWp 

[19] Stacked gated recurrent unit (GRU) 
neural network. 

The open circuit, short circuit, 
degradation, Partial shading, Soiling, PID 
and the average reduction in power 
output. 

No 23 configurations of the PV 
system 

[20] Graph neural network Open and short circuit fault, degradation, 
Partial shading, Soiling, PID 

No 6 PV systems 

[21] Artificial neural network (ANN), 
Recurrent Neural Networks (RNN) and 
Bidirectional LSTM 

Line to line, Line to ground fault, 
Connectivity fault and Bypass Diode fault 

No 3 PV systems each one has a 
nominal power of 4 kWp 

[22] AlexNet CNN with 2-D scalograms Partial shading Adafruit PyBadge MCU One PV system of 1.7 kWp 
[23] Ensemble learning of Semi-supervised 

Self-Training (ELSST): K-nearest 
neighbors (KNN), Decision tree (DT) and 
Support vector machine (SVM) classifier 

Line-to-Line and Arc fault, partial shading, 
open-circuit and power tracker unit fault. 

No One PV system  

Artificial neural network (ANN) for fault 
detection and Multi-stacking ensemble 
learning of Random forest (RF), 
AdaBoost, CatBoost, and XGBoost for 
fault classification. 

Dust accumulation, partial shading, open 
circuit diode with dust accumulation and 
shunted diode with shading. 

No One PV system 

[24] Random forest (RF) and Artificial neural 
network (ANN) 

Connector fault, PID, Partial shading and 
building shading condition, Failing bypass 
diode/short circuit (SC) soiling 
accumulation and Glass breakage. 

Health-Helio (HH) 
sensors by SmartHelio 

One PV system of nominal power 
2.94 kWp 

[25] Extreme gradient boosting (XGBoost) 
classifier for fault classification 

Line to line fault, partial shading Edge node implementing 
eXplainable Fault 
Detection Systems 
(XFDS) 

Two photovoltaic panels: 
monocrystalline (STM5-40/36) 
and polycrystalline (Solartech 
SPM-020P–R) 

[26] Siamese-twin neural networks for 
anomaly detection kNN, SVM, XGBoost, 
Random Forest and Neural Network for 
Fault classification 

Shading Raspberry PI, Nvidia 
Nano and Google Coral 

IV tracing prototype composed of 
two panels 

[27] Neural network processing for anomaly 
detection, combined with the 
convolutional neural network for 
anomaly classification 

Silicon wafer defect rk3399 pro version _ 

[28] Image convolution by Gaussian Filter 
Coefficient 

Defective cells _ _ 

[29] deep conventional neural networks 
(DCNNs) for fault detection and diagnosis 
and fault classifications 

partial shading effect, dust deposit on PV 
modules surface, short-circuited PV 
module and bypass diode 
failure 

Raspberry Pi 4 PV modules 

[30] Artificial neural network is developed to 
detect faults and an effective stacking 
ensemble learning algorithm is developed 
to classify the nature of the fault 

dust deposit, partial shading, open 
circuited diode and dust accumulation, 
partial shading and dust accumulation, 
and shunted diode in a shaded PV module 

Raspberry Pi 4 PV string of 3 modules  
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PV systems can also rise as a result of malware intrusions. In Ref. [15], a hardware experiment is performed to evaluate the perfor-
mance of two intrusion detection approaches for PV inverters. Both approaches are reported in the literature, and each has its own 
characteristics, however the article considers that real experimentation is lacking to really evaluate the performance of the methods in 
a real test environment. Regarding anomaly detection in time series in general, the work in Ref. [16] proposes a framework to redefine 
anomalies in time series and benchmark real and synthetic datasets on different algorithms to understand the capabilities of each 
algorithm on the types of anomalies. 

To conduct a comprehensive state of the art that captures the most important literature in our research field, we adopted a 
searching methodology and applied it in this work. The methodology is called Sub-keyword Synonym Searching (SSS) [17] and its 
purpose is to identify relevant papers by multiple searches with synonym sub-keywords. In this paper, Scopus is the main search engine 
of the methodology, and the full list of searching keywords in Scopus is the full combination of each category of Table 1. The result of 
this review of literature is summarized in Table 2. 

These previous works on anomaly detection in photovoltaic systems have mostly focused on using detection, classification, or their 
hybrid combination to create real-time monitoring frameworks. However, there is a lack of extensive discussion on an edge computing 
framework for anomaly detection in PV systems as only 7 papers discussed the concept. Most of the papers that discussed it applied it to 
small-scale systems and did not provide an architectural scheme for large-scale deployment in smart cities or grids. Nowadays, many 
applications require both real-time processing and critical analysis. Therefore, edge-based processing is highly recommended. This 
raises the following research question: how can we implement highly critical analytics on the edge while rationalizing computation 
costs and energy needs? In this study, we aim to provide insights to answer this question by using a photovoltaic use case to investigate 
anomaly detection techniques and their deployment on an edge infrastructure. To the best of our knowledge, this is the first study that 
provides an edge computing architecture dedicated to smart cities deployment on the subject of PV fault detection. Unlike existing 
studies that implement anomaly detection and classification on local edge devices in an isolated PV system or a small prototype, here 
we focus on providing a detailed workflow for decentralized fault detection in PV systems using a campus of more than 30 houses with 
solar rooftops. 

The novelty of this work resides in the edge computing framework dedicated to distributed solar PV plants in an urban area. The 
combined software and hardware methodology described will help increase the penetration of solar into our traditional grids. In the 
following, we highlight our contributions.  

1) We create four synthetic datasets representing four different anomaly scenarios by varying the percentage of power magnitude. 
This technique is useful when dealing with the lack of labelled datasets. After that, we compare several unsupervised and super-
vised anomaly detection approaches to detect power drops in photovoltaic datasets and investigate the learning type’s impact on 
the model performance.  

2) We propose a framework to detect anomalies in decentralized PV plants by embedding the most performant models into edge nodes 
taking into account their prediction time, accuracy, Random Access Memory (RAM) usage and model complexity. This approach 
takes advantage of the hybridization between edge, fog and cloud layers. 

Table 3 
Technical characteristics of the Data Acquisition system.  

Corresponding 
layer 

Hardware device Description Technical characteristics 

Perception Photovoltaic DC 
datalogger 
TR16-RS485 

Measurement device for PV strings currents and voltage. Can measure up 
to 16 current signals and 1 DC voltage 

Voltage measurement margin: 
30–1000 V 
Voltage error: 1 % FS 
Current error: ±0.5 % FS 
Communication protocol: Modbus 
RTU 

Current sensor 
M/TR-25 Acc x 4 

Hall effect transformer to connect with the PV datalogger for DC currents 
measurements 

Maximum current: 25A 
Number of internal current 
circuits: 4 

Irradiance sensor 
Kipp&Zonen CMP21 

Solar irradiance measurement pyranometer (GHI and DHI) Irradiance range: 0–4000 W/m2 

Accuracy: ±2 % 
Irradiance sensor 
Kipp&Zonen CHP1 

Solar irradiance measurement pyrheliometer (DNI) Irradiance range: 0–4000 W/m2 

Accuracy: ±1 % 
Master gateway 
EDS Energy Manager 

Connects to multiple slave devices through serial RS-485 communication 
bus and store data in a web server 

Communication protocol: HTTP/ 
Modbus RTU 

Meteorological 
datalogger 
Campbell scientific 
CR1000 

Multi-purpose datalogger used in monitoring and control applications Analog inputs: 16 
Communication protocol: Modbus 
TCP 

Communication Ethernet switch 
devices 
FL SWITCH SFN 4TX/ 
FX 

Ethernet switch with 4 RJ45 10/100 Mbps Supply voltage: 24 V DC 

Application Monitoring server Linux server   
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The paper is organized in the following way: in Section 2, we present the experimental setup and the methodology of the work. 
Section 3 summarizes the results of the paper and provides concluding remarks. 

2. Experimental setup and methodology 

2.1. Experimental setup 

The present study is conducted in a solar campus spread over 1 ha, comprising many residential houses equipped with solar 
rooftops utilized for both R&D and accommodation activities. The campus is located in the Green and Smart Building Park in Benguerir 
[31], Morocco. Photovoltaic arrays are interconnected with on-grid inverters within each individual house, facilitating the conversion 
of direct current (DC) power to alternating current (AC) power. Furthermore, the monitoring of DC power is carried out through the 
use of a photovoltaic datalogger. The frequency of data gathering is 15 min. The dataloggers employ a pre-sampling technique to 
collect data, and the supervisory system retrieves the average value during a 15-min interval. Table 3 presents the data obtained from 
each source independently. Additionally, Fig. 1 provides a comprehensive overview of the architectural layout of the campus, with a 
closer examination on one of the houses. 

A systematic methodology is employed to gather data from the campus houses. Despite the absence of a standardized communi-
cation and data architecture for smart grids, a recent study [5] has proposed a comprehensive layered framework consisting of four 
stages (perception, connection, analytics, and security). This framework aims to support the development of an Internet of Things 
(IoT)-enabled smart grid. In this particular scenario, the perception layer consists of measurement nodes that are strategically posi-
tioned in the field. These nodes are responsible for capturing information related to the photovoltaic system, including solar irradiance, 
ambient temperature, string current, and string voltage. The connectivity layer assumes the role of facilitating the transmission of data 
between the perception layer and the monitoring system. This layer is composed of the wired Ethernet network and the switch devices, 
which serve as the means of establishing and maintaining the connection. The application layer encompasses various analytical and 

Fig. 1. Overview of the campus communication architecture.  

Fig. 2. Solar systems located in the solar village as part of the case study.  
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processing tasks that need to be executed on the gathered data. These jobs include but are not limited to forecasting, anomaly 
detection, performance analysis, and condition monitoring. The security layer, while not addressed in this study, is a subject of ongoing 
research and an essential consideration in the design of smart grids. In the framework of this paper, the case study is part of a living lab 
"solar village of solar decathlon Africa", in which more than 30 zero energy buildings are equipped with different solar PV technologies. 
The latter have different characteristics in terms of installed capacities, orientations, inclinations, energy yield and performance ratio 
providing a unique groundwork to identify the key factors that impact the performance of solar systems with respect to the local 

Fig. 3. The processing methodology applied to raw data.  

Fig. 4. A sample of the dataset retrieved for the case study  
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semi-arid climate. Fig. 2 presents the attributes of 5 solar systems located in the solar village. 
Data collected from the testbed was cleaned using a structured framework inspired by international standards and recommen-

dations for photovoltaic systems monitoring. The cleaning process involves a set of filters to remove erroneous and invalid records as 
well as performance metrics calculation such as the daily performance ratio of the PV system under study. First, we resampled the data 
and made sure the data sources were synchronized. We then performed several processing techniques such as: dropping repetitive and 
duplicate values, filtering out the night values, checking that the recorded values are among certain threshold (Current >0 and <
1.5*Isc, Voltage>0 and < 1.2*Ns*Voc such as Isc is the short circuit current, Voc the open circuit voltage found in the datasheet and Ns 
is the number of modules per string). We then applied the R2 correlation filter to remove days with R2 inferior to 0.8 since irradiance 
should be highly correlated with the output power. After that, we applied the performance ratio (PR) filter to remove days with PR <
0.8. Fig. 3 shows the processing methodology applied to the raw dataset illustrated in Fig. 4 while the input features used in the study 
are described in Table 4 and their corresponding correlation matrix in Fig. 5. The DJI Mavic 2 Enterprise drone is utilized at regular 
intervals to perform inspection missions within the platform premises. Its primary objective is to identify any faults or issues and 
afterwards notify operators of the necessary maintenance measures, including cleaning. 

2.2. Methodology 

We will start by conducting a benchmark of the methods used for unsupervised anomaly detection and use the PyOd library [32] to 
rapidly scan 11 algorithms using their default parameters and evaluate their accuracy on the same anomalous datasets. The algorithms 
used in this work are classified into statistical, distance-based, machine learning, ensemble and artificial neural network methods. 
After that, the best selected algorithms will be further investigated based on the complexity, rapidity and prediction time. Finally, an 
edge computing framework and its constituting layers is proposed and described in detail. 

Since our purpose is to evaluate anomaly detection in an edge computing framework, we will conduct experiments using different 
scenarios to understand the impact of model selection and the anomaly type on the accuracy of the solution [33]. Anomaly detection 

Table 4 
The input features used in the study.  

Variable name Type of variable Description Unit 

DC Current (Idc) Measured DC current of the monitored string [A] 
DC Voltage (Vdc) Measured DC voltage of the monitored string [V] 
DC Power (Pdc) Calculated DC power of the monitored string [W] 
Global Horizontal Irradiance (GHI) Measured Global horizontal irradiance retrieved from meteorological station [W/m2] 
Plane of Array Irradiance (POA) Calculated Plane of array irradiance calculated using isotropic model [W/m2] 
Air temperature Measured Air temperature retrieved from meteorological station [◦C]  

Fig. 5. Correlation matrix of the features.  
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can be a tedious task especially when data is not labelled and when it is hard to separate anomalous events from normal ones. For this 
purpose, synthetic datasets can be used to better understand the anomaly behavior and map each case with its adapted model. Another 
parameter to observe for our case study is the lightness of the model since our goal is to transfer the model to the edge device for a 
real-time monitoring of the PV system. The work in Ref. [34] followed the same approach of synthetic datasets and simulated 
anomalies to develop a Digital Twin on the cloud, however, they used only daily averaged data and didn’t evaluate the models on an 
edge setting. In our case, there is a need to go further and study the model-anomaly duality under a more constrained edge 

Fig. 6. Overview of the anomaly scenarios.  

Fig. 7. Work methodology.  
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environment necessitating a real-time cost-effective deployment [35]. 
Furthermore, we describe the scenarios that were tested on the real dataset. In the first scenario, we injected a reduced magnitude 

of the power output by different percentages ranging from 20 % to 90 % as illustrated in Fig. 6. In the second scenario, we varied the 
supervision type along with the ML models used to detect the anomalies. Two techniques were experimented: supervised learning 
represented by MLP and unsupervised learning represented by CBLOF, LOF and KNN. In the unsupervised techniques, it was necessary 
to conduct experiments on the contamination rate to choose the best value. Finally, the methodology of the work is summarized in 
Fig. 7. 

2.3. Algorithms 

2.3.1•. Local outlier factor (LOF) 
Local outlier factor as defined by Ref. [36] is an unsupervised technique that relies on neighborhood density to detect anomalies. It 

is computed by dividing the density of the point by the densities of its k closest neighbors. Because the density of the neighborhood 
constitutes the basis of this method, LOF works well on datasets that are imbalanced. For each point, the algorithm calculates a 
parameter called k-distance that defines the distance between the point of interest and its farthest neighbor, then, the local outlier 
factor is computed. The points presenting high outlier factor and therefore low density are considered anomalies. 

2.3.2•. K-nearest neighbors (KNN) 
kNN is initially a supervised ML algorithm proposed by Ramaswamy [37]. However, the model can also be transformed into an 

unsupervised learning technique in anomaly detection use cases since anomalies are regarded as rare events that are hard to label. kNN 
belongs to the proximity-based clustering techniques meaning that it relies on the distance of a data point to its kth neighbor to 
determine whether it is an anomaly or not. The farthest a data point is from its closest cluster, the higher its probability of being 
anomalous. In practice, it is necessary to find the optimal value for the hyperparameter k representing the number of neighbors in the 
model. The k-NN algorithm has 2 main parameters: the distance measure and the number k of nearest neighbors to use in the 
calculations. 

2.3.3•. Cluster-Based Local Outlier Factor (CBLOF) 
Cluster-Based Local Outlier Factor (CBLOF) is an unsupervised method that belongs to the family of clustering-based algorithms. It 

has been introduced in Ref. [38] by Zengyou and was aiming to address some drawbacks of the existing clustering methods at the time. 
The method was effectively proven to be competitive compared to other clustering techniques and to the individual Local Outlier 
Factor (LOF) method. In order to spot outliers, CBLOF use both the notions of size and distances. In fact, a data point can belong to a 
cluster and still be considered an outlier because of the size of this cluster. 

2.3.4•. Multi-layer perceptron (MLP) 
The multilayer perceptron (MLP) is a feed-forward neural network inspired from the human brain functioning. It is constituted 

from an input layer, a hidden layer, and an output layer. The input layer comprises the feature vector. The hidden layers are made of 
multiple neurons and are positioned between the input layer and the output layer. The output layer is responsible for delivering the 
result of the classification. A multilayer perceptron (MLP) operates in a manner that is analogous to that of a feed forward network. 
Data travels from input to output layer in the forward direction. MLPs are used to resolve non-linear problems due to their design 
enabling them to approximate any continuous function [39]. 

3. Results and discussion 

3.1. The proposed edge framework 

The photovoltaic systems installed on campus are interconnected together in a traditional setup. The dataloggers send their raw 
data to a centralized supervisory server, which is responsible for processing and analyzing the data. However, in a smart decentralized 
configuration, the hazards of network congestion and delayed alarm generation make it infeasible to send raw data to a central Cloud 
server for decision making purposes [40]. Therefore, we propose a novel edge framework aiming to solve this issue in a more sus-
tainable and intelligent way. The concept of edge computing has arisen as a solution to address the challenges associated with network 
congestion caused by the transfer of extensive datasets to distant servers, particularly in the context of big data and smart cities [41]. 
Utilizing the capabilities of the edge yields the subsequent benefits: (1) Reduced latency: The latency in data processing is minimized 
as a result of conducting analytics in close proximity to the data source. The reduced distance that data needs to traverse leads to 
enhanced response times. The significance of this is particularly pronounced in the context of applications that necessitate the pro-
cessing of data in real-time, such as IoT sensors and distributed energy systems, (2) Reduced bandwidth: The process of developing a 
communication architecture requires a comprehensive comprehension of the bandwidth needs associated with each utilized 
communication protocol. The transmission of data from one location (point A) to another (point B) necessitates the utilization of 
network connectivity, resulting in the consumption of a portion of the available capacity or bandwidth. Currently, there is an 
anticipation that smart grids would impose significant demands on forthcoming communication networks [41]. The reduction of 
bandwidth is therefore an imperative research direction in this domain, which can be effectively accomplished through the imple-
mentation of edge computing. (3) Reduced costs: The expenses related to communication in smart networks are directly associated 
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with the provision of data storage and analytics services on cloud platforms. These services impose substantial fees that could be 
mitigated by transmitting only relevant information to the central cloud rather than the entire raw datasets. Despite the numerous 
advantages and opportunities it presents, edge computing, like any other technological concept, is not without limitations that pose 
challenges to its widespread implementation. The limitations are associated with the inherent characteristics of edge computing and 
can be succinctly described as follows: (1) The susceptibility to cyber-attacks: due to the distributed nature of edge nodes, which often 
involves deployment in remote and isolated areas, cyber-attacks can be heightened and easier to perform. The vulnerability of these 
nodes is due to its constrained resources forcing them to implement only constricted defense measures and security protocols. (2) The 
implementation of edge computing necessitates a multitude of adaptations in order to enhance the reliability and consistency of its 
operation. In addition to the hardware configuration, the deployment of a trustworthy edge node entails software improvements such 
as task offloading, and in-memory computing [41]. (3) Limited computation: The limited processing capabilities available in edge 
nodes create considerable constraints, hence creating issues when it comes to building intricate machine learning or deep learning 
models. Hence, it is imperative to conduct a thorough investigation for lightweight models [42] and find a balance between 
computational efficiency and precision. Fig. 8 summarizes all the above aspects related to edge computing. 

The framework is illustrated in Fig. 9. It consists of 4 main layers.  

- The thing layer represents the devices that generate raw data at the source. In our case study, it represents the photovoltaic 
dataloggers that measure dc voltage and current within PV systems, in addition to the weather sensors that measure solar irradiance 
and temperature, the PV inverters that convert DC current to alternating current (AC) and the drones that perform thermal in-
spection of the PV modules periodically.  

- The edge layer describes the edge nodes that will handle the processing and analysis of incoming data flows before sending the 
results to the cloud. It consists of a cluster of Raspberry-PIs deployed within each of the decentralized PV systems. The edge layer is 
positioned as a middle-layer between the thing and fog layers. It is used to enhance the efficiency of the monitoring system by 
reducing the processing time and bringing AI capabilities close to the devices.  

- The fog layer depicts the intermediate layer between the edge and the cloud. It consists of servers that centralize the information 
from a group of edge nodes placed in the houses and performs additional computation and data aggregation from the same location 
(eg neighborhood).  

- The cloud layer represents the ultimate layer where additional analysis and decision-support systems can be deployed. Many of 
the tasks that used to be conducted at this level are being transferred to the edge nodes thanks to this architecture. The cloud layer 
will only be responsible for collecting the decisions, alarms, and status reports received from the local nodes, rather than getting the 
entire raw datasets. 

To deploy the framework within the campus, two procedures are executed: (1) Offline mode: This mode is comprised of historical 
data acquisition from the thing devices, data processing, and the benchmark of the available supervised and unsupervised models. The 
training of the best models is then conducted and evaluated. (2) Online mode: The intended approach involves conducting real-time 
monitoring to promptly identify errors, utilizing the most effective model chosen based on the benchmark outcomes. Upon the 
detection of a malfunction, a signal will be transmitted to the classification module with the purpose of ascertaining the precise 
category of the anomaly. The field validation is then conducted with drone imagery. Fig. 10 depicts these two methods in an 

Fig. 8. Advantages, disadvantages and opportunities in edge computing paradigm.  
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organizational diagram. 
In edge computing, the term System on chip (SoC) is used to describe the embedded technology used to perform computations at 

the edge of a network. It is generally composed of a central processor unit (CPU), memory (RAM), and input/output (I/O) interfaces 
[43]. The main goals of edge computing research is to boost the computing and processing efficiency on both hardware and software 
technologies. Several efforts have been deployed to increase computational capabilities of embedded processors while optimizing their 
size and energy consumption [44]. In this context, many giant providers of SoCs (such as NVIDIA and Google) have put in place a 
considerable amount of solutions and development boards dedicated to real-time edge processing. Table 5 describes some of the 
common entry-level SoCs used in research and prototyping. Since our goal is to embed machine learning models for monitoring a 
time-series signal, a low-cost board is sufficient as we don’t require high graphical processing requirements. The board chosen to 
conduct the evaluation in this paper is the Raspberry Pi4 due to its affordability and availability in the market. 

Fig. 9. The proposed edge framework.  
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3.2. Performance metrics 

Performance evaluation is the most important part of the machine learning experiment. Depending on the problem to be solved, 
different metrics can be used in order to assess the goodness of the model. In a classification problem, like in our case, the most popular 
metrics are precision, recall and f1-score. Precision is a metric that computes the model’s accuracy in classifying the positive class. The 
precision is highest when we have more correct positive classifications than incorrect ones. The recall, on the other hand, is more 
focused on the sensitivity of the classification. This means that the best recall is achieved when all positive instances are correctly 
labelled as positive. The f1-score is an average metric between precision and recall that gives a better conclusion on the performance of 
the model. An ideal classification task will achieve 100 % score in all three metrics. However, this is far from reality. A score is 
therefore judged by its closeness to the 100 % ideal situation. In a binary classification task, meaning that we have 2 classes: normal 
class labelled as 0 and anomaly class labelled as 1, we can encounter 4 different situations. The first two situations called “True Positive 
(TP)” and “True Negative (TN)” mean that both the predictions and ground truth labels are equal. The distinction is related to the class 

Fig. 10. Implementation procedure of the edge framework.  

Table 5 
Benchmark of the common SoCs used in research.  

Features Raspberry PI 4 Jetson Orin Nano 8 GB Google Coral 

Architecture ARM ARM ARM 
CPU Broadcom BCM2711 quad-core Cortex-A72 64- 

bit 
Arm Cortex-A78AE 64-bit CPU Quad Cortex-A53, Cortex-M4F) 

Memory 8 GB LPDDR4 8 GB 128-bit LPDDR5 4 GB LPDDR4 
GPU Broadcom VideoCore 1024-core NVIDIA GPU with 32 tensor 

cores 
Integrated GC7000 Lite 
Graphics 

Supported frameworks for 
ML 

TensorFlow Lite TensorFlow Lite TensorFlow Lite 

Cost (USD) ~100 ~375 ~170  
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type. In ‘TP’ case, the target is the positive class whereas the ‘TN’ case represents the negative class. Generally, in an anomaly clas-
sification task, the positive class (or the class of interest) is the one with anomalous instances and the negative class represents the one 
with normal data points. The other situations are called “False Positive (FP)” and “False Negative (FN)”. They refer to the incorrect 
classification of normal instances as anomalous ones (FP) and anomalous instances as normal ones (FN). It is therefore important to 
specify the target class when calculating each metric [45]. In order to compute these metrics, we can either use the classification report 
to have a neat visual representation of the results or use the precision_recall_fscore_support function in sklearn. Table 6 below 

Table 6 
Definition of the metrics used in the evaluation.   

Precision Recall F1-Score Support 

Negative class (0) TN/(TN + FN) TN/(TN + FP) 2 ∗ Recall0 ∗ Precision0/(Recall0 + Precision0) Count of 0 occurences 
Positive class (1) TP/(TP + FP) TP/(TP + FN) 2 ∗ Recall1 ∗ Precision1/(Recall1 + Precision1) Count of 1 occurences 
Accuracy (TP + TN)/(TP + TN + FP + FN) Count of all occurences 
Macro average (Metric0 + Metric1)/2 
Weighted average (Metric0 ∗ Support0 + Metric1 ∗ Support1)/ (Support0 + Support1)

Table 7 
Performance results of ML models on a computer desktop.   

Model Best parameters F1_Score Training/Fitting time Prediction Time 

Scenario 1 CBLOF n_clusters = 10 1.00 1.54 0.04 
LOF n_neighbors = 10 1.00 0.015 0.045 
KNN n_neighbors = 10 1.00 0.01 0.06 
ANN hidden_layer_sizes’: (10, 30) 

max_iter = 500, alpha = 0.001, learning_rate = ’adaptive’ 
1.00 0.09 0.01 

Scenario 2 CBLOF n_clusters = 10 0.95 2.61 0.07 
LOF n_neighbors = 40 0.95 0.008 0.006 
KNN n_neighbors = 10 0.95 0.01 0.09 
ANN hidden_layer_sizes’: (50, 100) 

max_iter = 500, alpha = 0.001, learning_rate = ’adaptive’ 
0.97 0.13 0.01 

Scenario 3 CBLOF n_clusters = 10 0.90 2.27 0.07 
LOF n_neighbors = 40 0.84 0.014 0.004 
KNN n_neighbors = 10 0.92 0.02 0.10 
ANN hidden_layer_sizes’: (100,30) 0.94 0.14 0.008 

Scenario 4 CBLOF n_clusters = 10 0.49 2.17 s 0.06 s 
LOF n_neighbors = 40 0.54 0.01 s 0.01 s 
KNN n_neighbors = 10 0.59 0.01 s 0.05 s 
ANN hidden_layer_sizes’: (100, 30) 

max_iter = 500, alpha = 0.001, learning_rate = ’adaptive’ 
0.79 0.34 s 0.01 s  

Fig. 11. F1-score for each ML model across the different scenarios evaluated.  
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Fig. 12. Training and classification time for each ML model across the different scenarios evaluated: (a) Overview of time performance during the training phase (b) Overview of time performance 
during the prediction time (c) Overview of total time performance considering training and prediction phases. 
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represents the structure of the classification report with the equations describing each of the metrics. To have a fair idea about the 
goodness of the model, we use the macro average technique that takes into account both classes without weighing them. This is highly 
important when the dataset is imbalanced. In our case, choosing a weighted average will always return a score close to 1 since the 
normal class outweighs the anomalous one. In addition, the normal class is correctly classified by all the models that we experimented. 
Therefore, relying on the weighted average will lead to biaised and false interpretations. To have a correct interpretation, we used the 
macro average technique applied to the f1-score considering that this metric gives a more balanced indication compared to precision 
and recall [46]. 

Since our aim is to implement the models on an embedded configuration, it is important to consider additional metrics as well, 
mainly inference time, ram usage and model size. The inference time refers to the time spent by the model on the test set prediction. It 
is calculated using the time library in Python. The model size refers to the amount of space used to store the pretrained model. For this 
task, we use the pickle library, also in Python. RAM usage was calculated using the memory profiler library in Python. 

3.3. Performance evaluation on a central server 

The algorithms were trained and tested on a central server running an 11th Gen Intel Core (TM) i7-1165G7 CPU, 8 GB DDR4-3200 
SDRAM, 512 GB NVMe SSD and NVIDIA GeForce MX450 GPU. The station is running Windows 11 and the machine learning algo-
rithms are implemented using Python3. Table 7 describes the performance results of the selected ML models (CBLOF, LOF, KNN and 
ANN) when evaluated on the server side. The metrics that we highlight in this scenario are f1-score, training time (for supervised 
models), fitting time (for unsupervised ones) and the prediction time. The best parameters found for each model are also described in 
the table. In order to search for the best parameters, we used the grid search library, especially for ANN (MLP) model that has many 
parameters needing considerable effort in tunning. The grid search process was not computed in the training time column. 

For a better visualization of the results, we plot in Fig. 11 the f-score values for each model across the different scenarios. Analyzing 
the results, we can observe that ANN achieve the highest classification score in all scenarios, followed by KNN. In the first and second 
scenarios, all models achieve excellent f1-score (100 % in first scenario and above 95 % in second one where we notice a slight 
distinction for ANN). However, in the two other scenarios, the distinction starts to be increasingly visible in favor of ANN, especially in 
the last scenario where ANN achieves 79 % in the f1-score metric, whereas all other models do not exceed 59 %. 

In order to evaluate the computational footprint of the models, we calculate the training and prediction times required in each 
scenario. The results, summarized in Fig. 12, show that CBLOF takes the longest time in the training phase followed by ANN. However, 
the training times of LOF and KNN are hardly noticeable in the chart. In the prediction phase, KNN takes the longest time to predict 
new samples, followed by CBLOF, ANN and LOF. In conclusion, the model that takes the shortest time in both training and prediction is 
LOF, followed by KNN, ANN and CBLOF. 

3.4. Performance evaluation on an edge device 

As an edge device, we use a Raspberry-Pi with the characteristics described in Table 5. Due to the fact that the edge device is a low 
computational resource environment, additional metrics should be involved in the evaluation. Therefore, in Table 8, we describe the 
performance of the ML models on the edge device and report prediction time, RAM usage and model size. 

On the Raspberry-Pi, CBLOF takes the longest time to predict, followed by KNN, LOF and ANN. Generally, cluster-based methods 
(CBLOF) are computationally lighter than nearest-neighbor (KNN and LOF), however the distinction is only visible in very large 
datasets which is not our case [47]. Regarding memory, we observe that CBLOF is the model having high RAM requirement, as opposed 
to KNN, ANN and LOF that have close memory footprint, as it can be seen in Fig. 13. 

The first conclusion to draw from the results is regarding the supervision type. It is essential to emphasize that supervised and 

Table 8 
Performance results of ML models on an edge device.  

Model F1_Score Prediction Time (after dump) RAM (memory profiler) Model size (Bytes) 

CBLOF 1.00 4.50 25.1 MiB 25329 
LOF 1.00 0.021 1.3 MiB 425425 
KNN 1.00 0.18 0.4 MiB 116065 
ANN 1.00 0.0047 0.5 MiB 17192 
CBLOF 0.95 4.52 25.2 MiB 25329 
LOF 0.95 0.021 1.3 MiB 425425 
KNN 0.95 0.18 0.4 MiB 116065 
ANN 0.97 0.0087 1.6 MiB 96552 
CBLOF 0.90 4.55 24.9 MiB 25297 
LOF 0.84 0.021 1.3 MiB 425425 
KNN 0.92 0.18 0.4 MiB 116065 
ANN 0.94 0.008 1.4 MiB 97016 
CBLOF 0.49 4.55 25.2 MiB 25297 
LOF 0.54 0.021 1.3 MiB 425425 
KNN 0.59 0.18 0.4 MiB 116065 
ANN 0.80 0.008 1.6 MiB 97096  
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Fig. 13. Classification time, RAM usage and model size performance for each ML model across the different scenarios evaluated (a) Overview of time performance during the prediction phase (b) 
Overview of model size performance across the evaluated scenarios (c) Overview of RAM usage across the evaluated scenarios. 
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unsupervised techniques are different and hardly comparable tasks [46]. In fact, unsupervised models, even with no prior training 
achieved better performances than the supervised ones. Moreover, the supervised models had access to labelled data as opposed to 
unsupervised ones. According to the results, and despite being considered the hardest task, unsupervised models were the best per-
formers. In fact, in all the scenarios above, the supervised model ANN was superior in only the last scenario, which clearly needed more 
training to be able to detect this type of anomaly considered the hardest among the four scenarios. 

The second conclusion is related to the suitable model to be deployed in the edge architecture. As highlighted in the results, ANN 
was the best model in terms of accuracy followed by KNN. Considering that KNN is an unsupervised model that scored similar to ANN 
in 3 out of 4 scenarios without prior training while achieving the least RAM allocation, we can conclude that KNN is the most suitable 
unsupervised model. 

4. Limitations and perspectives of the study 

In this study, an architectural framework has been devised for the purpose of monitoring the state of decentralized photovoltaic 
(PV) installations. The case study focuses specifically on a solar campus. One of the limitations inherent in the study pertained to the 
unaddressed concerns of security and privacy. The implementation of edge devices throughout the smart city presents additional 
difficulties with regard to susceptibility to cyber-attacks. Hence, the primary aim of our future work is to increase the reliability of the 
edge devices by the incorporation of an additional level of privacy utilizing the federated learning methodology. This particular 
strategy will be further elaborated in our future research. 

5. Conclusions 

The goal of this paper is to present a framework for condition monitoring in decentralized photovoltaic systems using an edge 
computing framework and extending it to a smart city environment. An experimental evaluation has been conducted using a dataset 
collected from a Smart Campus where multiple PV systems are used to generate clean energy for laboratory R&D purposes. 

The key results of this study are summarized below.  

• A comparative evaluation has been performed on multiple machine learning models from various families and supervision types. 
The models underwent evaluation using a genuine dataset containing synthetic anomalies. The evaluation of the performance 
involved the utilization of commonly used measures, along with additional ones that are particularly relevant in the context of edge 
computing. The K-nearest neighbors (KNN) model was determined to be the most effective in the unsupervised scenario, whereas 
the artificial neural network (ANN) demonstrated superior performance in the supervised scenario. This finding demonstrates that 
unsupervised models can be effectively utilized in certain anomaly circumstances without the need for pre-training, resulting 
therefore in efficient and rapid detection.  

• An edge-based framework specifically designed for smart cities was presented and demonstrated within the context of a smart 
campus. The framework presents a novel approach that integrates edge, fog, and cloud layers, as well as online and offline con-
figurations, to identify anomalies effectively and rapidly. The framework elucidates the benefits of edge computing in the context of 
condition monitoring in smart cities, specifically emphasizing the reduced latency, decreased bandwidth requirements, and low-
ered costs. 

Finally, future work will be dedicated to the hardware implementation of the models on an embedded system connected in real- 
time with the PV testbed to physically assess the complexity of each of the candidate models on other configurations and types of 
anomalies. 
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[10] A. Huč, J. Šalej, M. Trebar, Analysis of machine learning algorithms for anomaly detection on edge devices, Sensors 21 (14) (2021), https://doi.org/10.3390/ 
s21144946. 

[11] M.F. Alati, G. Fortino, J. Morales, J.M. Cecilia, P. Manzoni, Time series analysis for temperature forecasting using TinyML, in: 2022 IEEE 19th Annual Consumer 
Communications & Networking Conference, CCNC), 2022, pp. 691–694, https://doi.org/10.1109/CCNC49033.2022.9700573. 

[12] F. Delussu, D. Manzione, R. Meo, G. Ottino, M. Asare, Experiments and comparison of digital twinning of photovoltaic panels by machine learning models and a 
cyber-physical model in modelica, IEEE Trans. Ind. Inf. 18 (6) (2022) 4018–4028, https://doi.org/10.1109/TII.2021.3108688. 

[13] A. Livera et al., « Intelligent Cloud-Based Monitoring and Control Digital Twin for Photovoltaic Power Plants », p. 9. 
[14] S. Hempelmann, et al., Evaluation of unsupervised anomaly detection approaches on photovoltaic monitoring data, in: Conference Record of the IEEE 

Photovoltaic Specialists Conference, 2020-June, 2020, pp. 2671–2674, https://doi.org/10.1109/PVSC45281.2020.9300481. 
[15] C.B. Jones, A.R. Chavez, R. Darbali-Zamora, S. Hossain-McKenzie, Implementation of intrusion detection methods for distributed photovoltaic inverters at the 

grid-edge, in: 2020 IEEE Power & Energy Society Innovative Smart Grid Technologies Conference, ISGT), 2020, pp. 1–5, https://doi.org/10.1109/ 
ISGT45199.2020.9087756. 

[16] K.-H. Lai, D. Zha, J. Xu, Y. Zhao, G. Wang, X. Hu, Revisiting time series outlier detection: definitions and benchmarks, in: Thirty-fifth Conference on Neural 
Information Processing Systems Datasets and Benchmarks Track (Round 1), 2021 [En ligne]. Disponible sur: https://openreview.net/forum?id=r8IvOsnHchr. 

[17] L. Zhang, et al., A review of machine learning in building load prediction, Appl. Energy 285 (2021), 116452, https://doi.org/10.1016/j.apenergy.2021.116452 
mars. 

[18] D. Adhya, S. Chatterjee, A.K. Chakraborty, Diagnosis of PV array faults using RUSBoost, J Control Autom Electr Syst 34 (1) (2023) 157–165, https://doi.org/ 
10.1007/s40313-022-00947-6. 

[19] J. Van Gompel, D. Spina, C. Develder, Satellite based fault diagnosis of photovoltaic systems using recurrent neural networks, Appl. Energy 305 (2022), 117874, 
https://doi.org/10.1016/j.apenergy.2021.117874. 

[20] J. Van Gompel, D. Spina, C. Develder, Cost-effective fault diagnosis of nearby photovoltaic systems using graph neural networks, Energy 266 (2023), 126444, 
https://doi.org/10.1016/j.energy.2022.126444. 

[21] M. Hajji, Z. Yahyaoui, M. Mansouri, H. Nounou, M. Nounou, Fault detection and diagnosis in grid-connected PV systems under irradiance variations, Energy 
Rep. 9 (2023) 4005–4017, https://doi.org/10.1016/j.egyr.2023.03.033. 

[22] A. Latoui, M.E.H. Daachi, Real-time monitoring of partial shading in large PV plants using Convolutional Neural Network, Sol. Energy 253 (2023) 428–438, 
https://doi.org/10.1016/j.solener.2023.02.041. 

[23] M.M. Badr, et al., Intelligent fault identification strategy of photovoltaic array based on ensemble self-training learning, Sol. Energy 249 (2023) 122–138, 
https://doi.org/10.1016/j.solener.2022.11.017. 

[24] M. Hojabri, S. Kellerhals, G. Upadhyay, B. Bowler, IoT-based PV array fault detection and classification using embedded supervised learning methods, Energies 
15 (6) (2022) 2097, https://doi.org/10.3390/en15062097. 

[25] S. Sairam, S. Seshadhri, G. Marafioti, S. Srinivasan, G. Mathisen, K. Bekiroglu, Edge-based explainable fault detection systems for photovoltaic panels on edge 
nodes, Renew. Energy 185 (2022) 1425–1440, https://doi.org/10.1016/j.renene.2021.10.063. 

[26] A.R. Sajun, S. Shapsough, I. Zualkernan, R. Dhaouadi, « Edge-Based Individualized Anomaly Detection in Large-Scale Distributed Solar Farms », ICT Express, 
2022 https://doi.org/10.1016/j.icte.2021.12.011. 

[27] M. Dong, J. Zhao, D. Li, B. Zhu, S. An, Z. Liu, ISEE: industrial Internet of Things perception in solar cell detection based on edge computing, Int. J. Distributed 
Sens. Netw. 17 (11) (2021), 15501477211050552, https://doi.org/10.1177/15501477211050552. 

[28] K.V.G. Raghavendra, N.T.U. Kumar, W. Kazim, An efficient optical inspection of photovoltaic modules deploying edge detectors and ancillary techniques, Int. J. 
Electr. Comput. Eng. 12 (5) (2022) 4772. 

[29] A. Mellit, An embedded solution for fault detection and diagnosis of photovoltaic modules using thermographic images and deep convolutional neural networks, 
Eng. Appl. Artif. Intell. 116 (2022), 105459, https://doi.org/10.1016/j.engappai.2022.105459. 

[30] A. Mellit, M. Benghanem, S. Kalogirou, A. Massi Pavan, An embedded system for remote monitoring and fault diagnosis of photovoltaic arrays using machine 
learning and the internet of things, Renew. Energy 208 (2023) 399–408, https://doi.org/10.1016/j.renene.2023.03.096. 
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