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Abstract: The twist–bend nematic (NTB) phase is a recently

discovered liquid-crystalline phase that exhibits macro-
scopic chirality even when formed from achiral materials,

and as such presents a unique testbed for studies con-
cerning the spontaneous breaking of mirror symmetry in

soft matter. It is primarily exhibited by materials for which

the molecular structure is composed of two rigid aromatic
units (such as biphenyl connected by a flexible spacer).

The local structure of the NTB phase is nematic-like—with
molecules having an average orientational order but no

positional order—with a nanoscale helix in which the
pitch (i.e. , the repeat distance of the helix) is of the order
of several nanometres. A helix is chiral, and so the bulk

NTB phase—in the absence of a biasing chiral environ-
ment—spontaneously separates into macroscopic do-

mains of opposite handedness. After discussing the struc-
ture of this mesophase and its elucidation, this concept

article presents the molecular factors that determine its in-
cidence. The apparent dependency primarily on molecular

shape and bend angle rather than particular functional

group combinations manifests in this mesophase being
exhibited on length scales far beyond those of simple

liquid-crystalline dimers, not only in oligomers and poly-
mers, but also in aqueous suspensions of micron sized

helical particles.

Introduction

The twist–bend nematic phase (NTB, also referred to as twist–
bend phase or TB) presents perhaps one of the most well-un-

derstood examples of spontaneous breaking of mirror symme-
try in soft matter. In the NTB phase there exists a local helical

structure of very short pitch of about 10 nm.[1] In the NTB phase

the molecules are tilted with respect to the helix axis, but lack
positional ordering and thus the mesophase is “nematic”.[2]

Similarly, other modulated nematic-like mesophases have been
predicted to occur (splay–bend nematic (NSB),[3, 4] and screw
nematic (NS*)[5, 6] to give two examples.) The pitch length of
the NTB helix (PTB) has been directly measured by freeze–frac-

ture transmission electron microscopy,[1, 7, 8] by resonant carbon
K-edge small-angle X-ray scattering[9] and by resonant seleni-
um small-angle X-ray scattering.[10] All three methods give

a qualitative measurement of the pitch length, which is of the

order of several nanometers. Deuterium NMR spectroscopy
conducted in situ on samples doped with a suitable spin

probe has also been interpreted as supporting the presence of
a local helix with a nanoscale pitch (i.e. , several molecular
lengths),[11] although other models have been used to interpret
these results.[12, 13] Examples of FFTEM, RoSAXS and 2H NMR

data are given in Figure 1. These methods have proved invalu-
able in the study of the NTB phase, providing the strongest evi-
dence yet for the presently accepted model of this phase, and

it is to be expected that they will find great utility in the study
of other modulated nematic and smectic mesophases as they
arise. For example, in addition to the NTB and NSB mesophases
already mentioned, an extension of Landau–de Gennes theory

of nematics has been used to predict the existence of two as
yet experimentally undiscovered polar nematic phases with

transverse (NTP) and longitudinal (NLP) polarisation.[14]

A helix is inherently chiral and so the helical NTB phase spon-
taneously separates into macroscale domains of opposite

handedness when formed from an achiral material. Due to
their flexibility liquid crystal (LC) dimers can adopt a range of

conformations, some of which—for example a single gauche in
the alkyl chain—will be chiral. In the absence of a biasing

chiral environment, such conformers are expected to occur in

pairs that are separated by a mirror plane (Figure 2 b) with
equal probability, thus the conformationally averaged structure

is achiral. The + /@ gauche conformers of CB5CB (1,w-bis(4-cya-
nobiphenyl-4’-yl)pentane) are higher in energy than the trans

conformers by about 1.8 kJ mol@1 at the B3LYP/6-31G(d) level
of DFT with a rotational barrier of about 14.4 kJ mol@1 (Fig-

ure 2 c), which implies that there is rapid interconversion be-

tween these states within the temperature range of interest
(300–450 K for the 1,w-bis(4-cyanobiphenyl-4’-yl)alkane

(CBnCB) materials).[16, 17] In the case of a biasing chiral environ-
ment such as the presence of a chiral additive, or when the

material that exhibits the phase is itself chiral, only one hand
of the NTB helix forms.[18] It has been demonstrated that the

local chirality of the NTB phase results in a small chiral biasing

of the conformer distribution of bimesogens, but that the
spontaneous conformational chirality is not the origin of the
chirality of the NTB phase.[19]

Although initially reported only in methylene linked
dimers,[21, 22] the NTB phase has been observed in dimers with
various linking groups,[23–26] as well as in bent–core materials[8]

and presently there are about 140 dimeric materials known to
exhibit the twist–bend nematic phase.[27] A number of different
mesogenic units have been studied within the context of the

NTB phase as shown in Figure 3 a–c. In addition to the well-
studied cyanobiphenyl derivatives, the NTB phase has been ob-

served for materials with mesogenic units incorporating het-
erocycles,[28] laterally fluorinated rings,[22, 29] cyclohexyl and bicy-

clohexyl rings,[30] photoisomerisable azo-linkers,[31] and trimeric

systems formed from hydrogen-bonded dimers of benzoic acid
derivatives.[32] The largest sub-grouping within this number is

materials possessing methylene linking groups, a nonamethy-
lene spacer and two mesogenic units comprised of two rigid

cyclic units (40 in total).[33] The bias towards this subdivision is
a product of availability of chemical reagents rather than some
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advantage conferred by this particular combination of structur-

al features. We reported previously for this subdivision, and
indeed all comparable divisions that we are aware of, that
a linear relationship exists between the NTB–N and N–Iso transi-

tion temperatures (Figure 3 d).[33] This result complements earli-
er studies that found no correlation between the incidence of
this phase and molecular properties, such as polarisability or
electric dipole moment.[30, 34] Such an outcome was first noted
in a theoretical treatment by Greco et al.[35] and later Vaupotic
et al. proposed that “the internal structure of the TB nematic is

driven mainly by steric interactions.”[36] Experimental results
would appear to be in agreement with these theoretical treat-
ments; the NTB phase is driven by molecular shape and steric

interactions rather than any combination of functional groups
and so forth.[37] The twist–bend nematic phase can be ob-

served for mixtures between a dimer (or bimesogen, trimeso-
gen etc.) and a rod-like molecule. Tuchband et al. have demon-

strated that for mixtures of the dimer CB7CB with the rod-like

5CB (4-pentyl-4’-cyanobiphenyl) both the mean NTB pitch
length and distribution of pitch lengths (measured by

FFTEM[38] and carbon K-edge RoSAXS[39]) increases with increas-
ing concentration of the rod-like component. As CB7CB is

“bent” and 5CB is rod-like the increase in pitch length as a func-
tion of 5CB concentration may indicate a relationship between

the molecular bend angle and the periodicity of the NTB

helix.[39]

The odd parity of the central spacer found in all NTB dimers

confers a bent molecular shape, and theoretical treatments in-

dicate that the thermal stability of the NTB phase should display
a dependency on just how bent (or not) the molecular struc-
ture of a given material is.[42] In 2016 we reported that the
angle between the two mesogenic units is one of the prime

factors in determining the thermal stability of the twist–bend
nematic phase.[43] These investigations were undertaken, in

part, to see if theoretical predictions of a link between the
bending angle and the NTB phase would be borne out in ex-
perimental work. Bend angles were taken to be the all-trans

conformer that we found to be dominant using solution-based
1D 1H NOESY NMR spectroscopy; indeed this is also reported

to be the dominant conformer in the bulk NTB phase from
2H NMR data coupled with DFT calculations.[19] The dominance

of the all-trans conformer over other conformations has been

demonstrated for both methylene- and ether-linked dimers
using proton-enhanced local field (PELF) NMR spectroscopy on

CB7CB[19] and dielectric spectroscopy on 1’’-(2’,4-difluorobi-
phenyl-4’-yloxy)-9’’-(4-cyanobiphenyl-4’-yloxy)nonane

(FFO9OCB), respectively.[44] In reality the use of a single confor-
mer to describe the bend angle is insufficient for flexible mole-

Figure 1. The twist–bend nematic phase: a) Cartoon depiction of a bent, U-shaped dimers with a bend angle of &1108 forming a NTB phase whose pitch (PTB)
is about 3.5 times the dimer length. b) Resonant small-angle X-ray scattering at the carbon K-edge (E = 283.5 eV) of the dimer CB9CB at various temperatures
in the NTB and classical nematic mesophases on a silicon nitride surface, reprinted from reference [9] , copyright 2016 by the American Physical Society.
c) Comparison of the freeze–fracture TEM image of CB7CB in the nematic phase quenched at 105 8C (A) and the NTB phase quenched at 95 8C (B, labelled as
NX)—in both mesophases the scale bar corresponds to 100 nm (reproduced from reference [7], used with permission of the National Academy of Sciences of
the United States of America, copyright 2013).[7] d) 1H NMR spectra of [D2]8CB dissolved in CB7CB and recorded in the nematic (106 8C, 46.0 MHz) and twist–
bend nematic (75 8C, 61.4 MHz), adapted with permission from reference [15] , copyright American Chemical Society 2012.[15]
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cules, such as LC dimers, and so we opted to study a new set

of materials computationally, obtaining a library of conformers
from which we can then obtain the full distribution of bend

angles as well as a weighted average molecular bend.[45]

Table 1 shows the transition temperatures of some cyanobi-
phenyl dimers with varying linking group and spacer composi-

tion. Some values were obtained from a survey of the literature
(compounds 3,[17] 6,[46] 7,[31] 8[43]), whilst novel compounds were

synthesised (compounds 1, 2, 4, 5).[45]

Both materials bearing two alkyne linking groups (1 and 2)
were non mesogenic, with 2 decomposing upon heating. Pa-
terson et al. reported 1-(4-cyanobiphenyl-4’-yloxy)-6-(4-cyano-

biphenyl-4’-yl)hexane (CB6OCB—compound 6 in this work),
finding that replacing one of the two methylene groups adja-
cent to the 4-cyanobiphenyl mesogenic unit in CB7CB confers
a modest increase in the NTB–N transition temperature, TNTB–

N.[46] Positioning a single ether link in the centre of CB7CB (to

give an isomer of 6/CB6OCB) lead to the finding that TNTB-N

drops dramatically relative to both parent materials. Increasing

the rigidity of the central spacer of 6 by incorporating an

alkyne unit (5) reduces both the clearing point and NTB–N tran-
sition temperatures. When two ether-linking units are used (7/

CBO5OCB) there is a prominent reduction in TNTB–N relative to
both compounds 3 and 6. The use of two ketones as linking

units (8) led to a large increase in both TNTB–N and TN–Iso relative
to the parent compound 3.[43]

Performing relaxed scans using the AM1 semi empirical

method to obtain a library of conformers for compounds 3–8
(Figure 4 a) allows a Boltzmann weighted average bend angle

to be obtained (Figure 4 b) and also the ratio between hairpin
and bent conformers (bend angle <608 and bend angle +608,

<1508 respectively) to be determined (Figure 4 c). As with pre-

vious work, this demonstrates the importance of the bend
angle and the intimate relationship that exists between this
and the thermal stability of the NTB mesophase (i.e. , the onset
temperature),[43] and reaffirms the conclusion that materials
lacking an overall bent shape (i.e. , even parity homologues)
cannot exhibit the NTB phase as it is presently understood. It is

also apparent that the clearing point does not appear to dis-
play such a strong dependence on the bend angle.

The twist–bend nematic phase as exhibited by liquid-crystal-

line dimers is seemingly fairly well understood in terms of the
molecular factors that govern the incidence of this phase, and

so our attention now turns to oligomeric materials that exhibit
this mesophase. Jansze et al. reported in 2014 on a novel hy-

drogen-bonded liquid-crystalline trimer that also exhibited the

twist–bend nematic phase (Figure 5 a).[32] This material, known
as 4-[6-(4’-cyanobiphenyl-4-yl)hexyloxy]benzoic acid (CB6OBA),

has an odd-parity spacer unit—the homologous even-parity
material (CB5OBA) does not exhibit the NTB phase, mirroring

trends seen for dimers and bimesogens. Shortly after this
Wang et al. reported a hybrid calamitic/bent–core trimer that

Figure 2. Spontaneous breaking of mirror symmetry and chiral conformational isomerism: a) Cartoon depictions of the local molecular organisation present in
the achiral uniaxial nematic phase and the spontaneously chiral twist–bend nematic phase exhibited by rod-like (calamitic), bent core and dimeric liquid crys-
tals. b) Demonstration of rotation about the first -CH2-CH2- dihedral in a cyanobiphenyl dimer with a pentamethylene spacer (CB5CB, transitions:
Cr 150 NTB 92 N 97 Iso) leading to @gauche (Figure 2 c @60 8) and + gauche (Figure 2 c + 60 8) conformers, which are non-superimposable. c) Plots of energy
(kJ mol@1) versus this torsional angle as obtained for an isolated molecule of CB5CB using relaxed scans (36 V 108 steps) at the B3LYP/6-31G(d) level of DFT in
the Gaussian 09 suite of programs.[20] The solid red line is a fit to guide the eye.
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exhibited the NTB phase.[47] This material, shown in Figure 5 b,
with two cyanobiphenyl mesogenic units appended to a central

resorcinol derived bent–core type mesogenic unit. In 2016

a methylene-linked tetramer (T49 or RM1697, Figure 5 d) was
reported by us; this material exhibits enantiotropic nematic

and twist–bend nematic mesophases,[48] as does the related
linear trimer T39 (RM1698, Figure 5 c).[49] Both T39 and T49 can

be prepared in the same manner; an intermediate with one
complete mesogenic unit and one half-complete mesogenic
unit bearing a phenol is esterified with an appropriate dicar-

boxylic acid to yield a trimer/tetramer.
It had been hypothesised that higher oligomers should ex-

hibit the twist–bend nematic phase,[48, 49] and whereas dimers,
trimers and tetramers are readily accessible the synthesis of

higher methylene-linked oligomers has not been reported. We
therefore devised a synthetic approach (Figure 6) to these ma-

terials that relies on an intermediate containing two half-com-
plete mesogenic units (4-hydroxyphenyl and benzyl 4-carboxy-
phenyl benzoate) separated by a spacer, in this case hepta-

methylene.[50] Esterification of the free phenol with a suitable
carboxylic acid followed by debenzylation by means of hydro-

genolysis yields another carboxylic acid; this is then free to be
esterified with another portion of the phenol/masked-acid in-

termediate, extending the length of the molecule in a stepwise

manner, providing essentially monodisperse oligomeric materi-
als. To date we have used this approach to prepare a linear

tetramer (O47) and a linear hexamer (O67), both of which ex-
hibit the twist–bend nematic mesophase (Figure 6). Assuming

threefold rotation—a simplification in itself—about each meth-
ylene unit the number of conformers of each oligomer is large

Figure 3. Molecular structure and the twist–bend nematic phase: a) core
structures incorporating terminal nitrile units ;[21, 28, 34] b) core structures incor-
porating fluoro groups or hydrogen bonds;[22–24, 29, 32] c) core structures incor-
porating terminal alkyl chains, saturated ring systems and azo groups.[30, 40, 41]

d) Plot of the NTB–N transition temperature versus the N–Iso transition tem-
perature for dimers and bimesogens with a nonamethylene spacer, methyl-
ene linking groups and mesogenic units consisting of two aromatic or ali-
phatic rings. Similar plots can be constructed for oligomers, polymers,
dimers containing various aspect ratios or spacer lengths and so forth, re-
sulting in linear fits with differing slopes. The fit takes the form TNTB–

N = 0.766 TN–Iso + 5.74 with R2>0.97. Tabulated data was taken from refer-
ence [27].

Table 1. Transition temperatures [8C] for compounds 1–7, with the trivial
names of 3 and 6 also given. Values were taken from.[17, 43, 45, 46] *.

X Y Y’ Cr NTB N Iso

1 -CH2- * 160.5 – – – – *

2 -O- * >225 – – – – *

3
(CB7CB)

-CH2- * 103.1 * 106.5 * 118.9 *

4 -O- * 100.5 (* 46.0) * 68.0 *

5 -CH2- * 132.8 (* 97.0) * 145.2 *

6
(CB6OCB)

-CH2- * 100.4 * 109.2 * 153.3 *

7
(CBO5OCB)

-CH2- * 139 * 79[a]
* 187 *

8 -CH2- * 158.1 (* 145.1) * 189.4 *

[a] Values from CBO5OCB were obtained by extrapolation and are taken
from reference [31] .

Figure 4. How the conformational landscape influences the twist–bend nem-
atic mesophase: a) Top: the AM1 minimised all-trans form of compound 7
with arrows showing the bonds allowed to undergo threefold rotation
during the conformer search (total of 36 conformers). Bottom: histogram
plot of the probability of a given bend angle as determined using relaxed
scans with the AM1 semi-empirical method for compounds 3–8. b) Plot of
the NTB–N and N–Iso transition temperatures versus the Boltzmann weighted
average bend angle for compounds 3–8. c) Plot of the NTB–N and N–Iso tran-
sition temperatures versus the ratio of hairpin (defined arbitrarily as a bend
angle <60 8) to bent (defined arbitrarily as a bend angle +60 8, <1508) con-
formers.[45]
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enough to make study of the conformational landscape of
these materials in their entirety (as opposed to truncated

forms) challenging. While an abundance of liquid-crystalline

trimers and tetramers are known in the literature, higher oligo-
mers are something of a rarity. It is believed that with refine-

ment (and possibly automation) of the stepwise “n + 1” ap-
proach we can prepare linear “oligomeric” materials of almost

any length with a polydispersity approaching unity. However,
as with polymers, there will exist some length scale at which

globular shapes dominate over linear forms, and beyond this

point the NTB phase may not be observed.
Liquid-crystalline dimers and oligomers have long been con-

sidered as effective model compounds for semi-flexible main-
chain liquid-crystal polymers.[51] It is therefore logical to postu-

late as to the existence of polymeric materials that exhibit the
twist–bend nematic, as well as other modulated nematic

phases exhibited by low-molecular-weight dimers. Long before
the twist–bend nematic phase was topical, a series of methyl-
ene-linked main-chain polymers (Figure 7 a) were found to ex-
hibit a nematic-to-nematic phase transition.[52] After some
speculation,[1] subsequent reinvestigation of these materials in-

dicates that the lower temperature nematic phase, denoted as
N2 in the original paper, is in fact the twist–bend nematic

phase.[53]

Barry et al. reported a first-order phase transition driven by
entropy in suspensions of helical flagella from an isotropic

liquid into a liquid-crystalline state with novel chiral symmetry
(Figure 7).[54] It was also demonstrated that achiral rods (in this

case non-helical flagella) do not show this phase, but rather
exhibit a simple nematic. The optical textures are shown in

Figure 7 and consist of a striped pattern with alternating light
and dark regions, these correspond to differing director orien-

tations. As shown in Figure 7 c, fluorescent labelling of flagella

reveals that they are always in phase with one another and de-
spite the lack of positional order there is long-range “phase”

ordering.[54] It was proposed that the formation of this conical
phase—as opposed to a simple nematic or chiral nematic-

phase—is driven by simple packing (steric) constraints; the ex-
cluded volume between two helices being significantly larger
when they are out-of-phase with respect to one another (Fig-

ure 7 e, left) than when they are in phase (Figure 7 e, right) and
so minimisation of the excluded volume dictates a preference
for in-phase packing leading to the emergence of the conical
mesophase. Parallels exist between this lyotropic phase and

the NTB phase not only in terms of their shape-driven origins,
but also their properties. Helical flagella were observed to dif-

fuse along the helical axis in a manner akin to a “nut on
a bolt” with diffusion being significantly faster parallel to this
axis with respect to perpendicular diffusion. Recent 2H NMR

diffusiometry experiments have demonstrated similar aniso-
tropic diffusion in the twist–bend nematic phase of CB7CB.[55]

Summary and Outlook

In an achiral material the spontaneous breaking of mirror sym-
metry leads to domains of the NTB phase of opposite handed-

ness. By adding a small percentage of a chiral agent (<wt %)
macroscopic (>200 mm2) domains of single handedness can be

obtained, and these could be exploited through templating to
give three-dimensional nanostructured materials.[56, 57] When

Figure 5. Oligomeric twist–bend nematogens known in the literature as of late 2016: a) the hydrogen bonded trimer CB6OCB;[32] b) Wang’s timer, note that
a melting point was not reported;[47] c) the trimer T39 ;[49] d) the tetramer T49.[48]
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used as a reaction solvent the twist–bend nematic phase may
also present a more efficient method of chirality transfer than
that afforded by conventional chiral liquid-crystalline phases

due to the short helical pitch, manifesting as a long chiral cor-
relation length. Relative to dimers, there are relatively few ex-
amples of oligomeric materials known to exhibit the twist–
bend nematic phase and this appears to be a logical direction

for future research. Lastly we speculate, as others have done,[1]

that the entropy-driven first-order “conical nematic” phase ex-

hibited by flagella may be a lyotropic analogue of the twist–
bend nematic phase.

The molecular factors underpinning the twist–bend nematic

phase in liquid-crystalline dimers and bimesogens are now
largely understood. The discovery of a linear relationship be-

tween TNTB–N and TN–Iso taken in conjunction with experimental
demonstration of the importance of bend angle demonstrates

that this mesophase is driven by gross shape, the minimisation

of free or excluded volume and entropy. It may be possible to
exploit the NTB phase in display devices—provided that the dif-

ficulty in obtaining suitable alignment is overcome—and there
are reports of fast electrooptic response for some materials,

which occur near to the N!NTB phase transition.[29] Twist–
bend nematic materials have been demonstrated to exhibit

switchable reflection of light and this may find some applica-
tions.[58, 59] Manipulation of the striped optical texture of the

planar aligned NTB phase has been demonstrated to be possi-

ble using applied AC fields, and this may find use in spatial
light modulation.[60]
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Figure 6. Oligomeric twist–bend nematogens: a) truncated synthetic route to O47 and O67, with the transition temperatures of related dimer given alongside
the two oligomers;[50] b) comparison of the all-trans geometries and end-to-end lengths obtained at B3LYP/6-31G(d) for O27 (ca. 4 nm), O47 (ca. 8 nm) and
O67 (ca. 12 nm); c) POM image of the nematic phase of O47 at 184 8C; d) the same region cooled into the NTB phase of O47 at 169 8C; e) POM image of the
schlieren texture of the nematic phase of O67 at 174 8C; f) approximately the same region of O67 cooled into the NTB phase at 156 8C showing the blocky tex-
ture.[50]
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[4] K. Trojanowski, M. Cieśla, L. Longa, Liq. Cryst. 2016, 44, 273 – 283.
[5] H. B. Kolli, E. Frezza, G. Cinacchi, A. Ferrarini, A. Giacometti, T. S. Hudson,

C. De Michele, F. Sciortino, Soft Matter 2014, 10, 8171 – 8187.
[6] H. B. Kolli, E. Frezza, G. Cinacchi, A. Ferrarini, A. Giacometti, T. S. Hudson,

J. Chem. Phys. 2014, 140.
[7] D. Chen, J. H. Porada, J. B. Hooper, A. Klittnick, Y. Shen, M. R. Tuchband,

E. Korblova, D. Bedrov, D. M. Walba, M. A. Glaser, J. E. Maclennan, N. A.
Clark, Proc. Natl. Acad. Sci. USA 2013, 110, 15931 – 15936.

[8] D. Chen, M. Nakata, R. Shao, M. R. Tuchband, M. Shuai, U. Baumeister,
W. Weissflog, D. M. Walba, M. A. Glaser, J. E. Maclennan, N. A. Clark,
Phys. Rev. E 2014, 89, 022506.

[9] C. Zhu, M. R. Tuchband, A. Young, M. Shuai, A. Scarbrough, D. M. Walba,
J. E. Maclennan, C. Wang, A. Hexemer, N. A. Clark, Phys. Rev. Lett. 2016,
116, 147803.

[10] W. D. Stevenson, Z. Ahmed, X. B. Zeng, C. Welch, G. Ungar, G. H. Mehl,
arXiv : 1612.01180 [cond-mat.soft] , 2016.

[11] L. Beguin, J. W. Emsley, M. Lelli, A. Lesage, G. R. Luckhurst, B. A. Timimi,
H. Zimmermann, J. Phys. Chem. B 2012, 116, 10407 – 10407.

[12] E. Gorecka, M. Salamonczyk, A. Zep, D. Pociecha, C. Welch, Z. Ahmed,
G. H. Mehl, Liq. Cryst. 2015, 42, 1 – 7.

[13] A. Hoffmann, A. G. Vanakaras, A. Kohlmeier, G. H. Mehl, D. J. Photinos,
Soft Matter 2015, 11, 850 – 855.

[14] L. Longa, G. Pajak, Phys. Rev. E 2016, 93, 040701.
[15] L. Beguin, J. W. Emsley, M. Lelli, A. Lesage, G. R. Luckhurst, B. A. Timimi,

H. Zimmermann, J. Phys. Chem. B 2012, 116, 7940 – 7951.
[16] R. J. Mandle, E. J. Davis, C. T. Archbold, S. J. Cowling, J. W. Goodby, J.

Mater. Chem. C 2014, 2, 556 – 566.
[17] Z. P. Zhang, V. P. Panov, M. Nagaraj, R. J. Mandle, J. W. Goodby, G. R.

Luckhurst, J. C. Jones, H. F. Gleeson, J. Mater. Chem. C 2015, 3, 10007 –
10016.

[18] C. T. Archbold, E. J. Davis, R. J. Mandle, S. J. Cowling, J. W. Goodby, Soft
Matter 2015, 11, 7547 – 7557.

[19] J. W. Emsley, M. Lelli, A. Lesage, G. R. Luckhurst, J. Phys. Chem. B 2013,
117, 6547 – 6557.

[20] Gaussian 09, Revision e01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E.
Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Men-
nucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian,
A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara,
K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O.
Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr. , J. E. Peralta, F. Ogliaro,
M. J. Bearpark, J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, R.
Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S.
Iyengar, J. Tomasi, M. Cossi, N. Rega, N. J. Millam, M. Klene, J. E. Knox,
J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Strat-
mann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L.
Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dan-
nenberg, S. Dapprich, A. D. Daniels, :. Farkas, J. B. Foresman, J. V. Ortiz,
J. Cioslowski, D. J. Fox, Gaussian, Inc. , Wallingford CT, 2009.

[21] M. Cestari, S. Diez-Berart, D. A. Dunmur, A. Ferrarini, M. R. de la Fuente,
D. J. Jackson, D. O. Lopez, G. R. Luckhurst, M. A. Perez-Jubindo, R. M. Ri-
chardson, J. Salud, B. A. Timimi, H. Zimmermann, Phys. Rev. E 2011, 84,
031704.

[22] V. P. Panov, M. Nagaraj, J. K. Vij, Y. P. Panarin, A. Kohlmeier, M. G. Tamba,
R. A. Lewis, G. H. Mehl, Phys. Rev. Lett. 2010, 105, 167801.

[23] R. J. Mandle, E. J. Davis, S. A. Lobato, C. C. Vol, S. J. Cowling, J. W.
Goodby, Phys. Chem. Chem. Phys. 2014, 16, 6907 – 6915.

[24] R. J. Mandle, C. C. A. Voll, D. J. Lewis, J. W. Goodby, Liq. Cryst. 2016, 43,
13 – 21.

[25] T. Ivsic, M. Vinkovic, U. Baumeister, A. Mikleusevic, A. Lesac, RSC Adv.
2016, 6, 5000 – 5007.
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