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Abstract

Aedes aegypti and Culex pipiens complex mosquitoes are prolific vectors of arboviruses

that are a global threat to human and animal health. Increased globalization and ease of

travel have facilitated the worldwide dissemination of these mosquitoes and the viruses they

transmit. To assess disease risk, we determined the frequency of arboviruses in western

Kenyan counties bordering an area of high arboviral activity. In addition to pathogenic

viruses, insect-specific flaviviruses (ISFs), some of which are thought to impair the transmis-

sion of specific pathogenic arboviruses, were also evaluated. We trapped mosquitoes in the

short and long rainy seasons in 2018 and 2019 at livestock markets and hospitals. Mosqui-

toes were screened for dengue, chikungunya and other human pathogenic arboviruses,

ISFs, and their blood-meal sources as determined by high-resolution melting analysis of

(RT-)PCR products. Of 6,848 mosquitoes collected, 89% were trapped during the long rainy

season, with A. aegypti (59%) and Cx. pipiens sensu lato (40%) being the most abundant.

Most blood-fed mosquitoes were Cx. pipiens s.l. with blood-meals from humans, chicken,

and sparrow (Passer sp.). We did not detect dengue or chikungunya viruses. However, one

Culex poicilipes female was positive for Sindbis virus, 30 pools of Ae. aegypti had cell fusing

agent virus (CFAV; infection rate (IR) = 1.27%, 95% CI = 0.87%-1.78%); 11 pools of Ae.

aegypti had Aedes flavivirus (AeFV; IR = 0.43%, 95% CI = 0.23%-0.74%); and seven pools

of Cx. pipiens s.l. (IR = 0.23%, 95% CI = 0.1%-0.45%) and one pool of Culex annulioris had

Culex flavivirus. Sindbis virus, which causes febrile illness in humans, can complicate the

diagnosis and prognosis of patients with fever. The presence of Sindbis virus in a single

mosquito from a population of mosquitoes with ISFs calls for further investigation into the

role ISFs may play in blocking transmission of other arboviruses in this region.
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Introduction

Mosquitoes of the genera Culex and Aedes are the major vectors of arboviruses, bridging the

transmission of viruses from the sylvatic world to urban settings [1]. Mosquitoes of the Culex
pipiens complex transmit West Nile and Sindbis viruses, and have been implicated in the trans-

mission of Rift Valley fever virus [2]. West Nile virus, first documented in Uganda [3], causes

self-limiting febrile illness, which in rare cases proceeds to a fatal meningoencephalitis, while

Sindbis virus also causes a febrile illness associated with chronic arthritis in humans [1]. Pas-

serine birds are the reservoir and amplifying hosts for both viruses, while mammals, when

infected, are considered dead-end hosts [4–6]. Aedes aegypti transmits dengue, chikungunya,

Zika, yellow fever, and Rift Valley fever viruses, which are endemic in East Africa, including

Kenya [7].

The ability of these viruses to cause worldwide epidemics is of increasing concern due to

intensified globalization and travel [8–10]. Globally, vaccines against arboviruses are either not

available or have limited use, and treatment is usually palliative [8, 11]. In developing coun-

tries, inadequate diagnostic capacity for these viruses is an additional challenge, especially in

areas where other causes of febrile disease, like malaria, are present [12].

Arboviral disease control is more likely to be successful when the vector species present,

and their competence, is known. Residual spraying with insecticides and the use of insecticide-

treated bed nets, have been successful in reducing malaria transmission, but have achieved less

in reducing arbovirus transmission due to differences in the feeding and resting behaviour of

anopheline and culicine mosquitoes [13]. The use of insect-specific flaviviruses (ISFs) that nat-

urally infect Aedes and Culex mosquitoes as potential regulators against infection with patho-

genic arboviruses via superinfection exclusion mechanisms has been suggested [14].

Replication of ISFs in co-infected cells is believed to be more efficient, thereby competitively

suppressing the proliferation of pathogenic arboviruses [15]. However, such superinfection

mechanisms may be restricted to specific arbovirus-ISF pairings.

Many Aedes and Culex mosquitoes are adapted to a domestic life cycle, breeding in man-

made habitats and biting people indoors and outdoors. Some of their breeding sites include

open septic tanks, bushy/grassy places, discarded tyres/cars, jars, drums, and any other open

water containers [1, 16]. Studies in East Africa have demonstrated the presence of several arbo-

viruses of public health importance [7, 17], but the links between human and livestock infec-

tions have not been explored. Therefore, in this study, we surveyed selected hospitals and

livestock markets (LMs) in western Kenya for the presence of mosquito-borne viruses. Specifi-

cally, we investigated mosquito diversity and abundance associated with these settings, host-

feeding preferences, and the frequency of arboviruses and ISFs within the mosquitoes. Addi-

tionally, we described the implementation of mosquito control strategies at hospital sites.

Materials and methods

Sampling sites selection

The study was carried out in the western Kenyan counties of Bungoma, Busia, and Kakamega,

which border Uganda. This region occurs within the wider Lake Victoria basin of East Africa

whose ecology is likely to support an abundant mosquito population. The selection of sam-

pling sites is described elsewhere [18]. Briefly, 12 LMs and neighbouring hospitals, four in

each of the three counties, were selected for an integrated surveillance program. The selection

of the LMs was based on the size and catchment area, whereas selection of the hospitals was

based on the number of outpatients and the type of hospital. Specifically, both public (Referral
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and sub-County) and private (Missionary) hospitals were included. Finally, logistical factors

such as the distance to the field laboratory in Busia, were also taken into consideration.

For this survey, six hospitals (one public and one missionary hospital in each county) were

originally selected for mosquito sampling. Factors impacting mosquito habitat, resting, and

feeding behavior, such as hospital size and in/outpatient number, were considered in the selec-

tion process. Similarly, availability of mosquito habitats, resting places, proximity to human

dwellings, and security for setting up mosquito traps were considered when selecting LMs in

each county.

A pilot study was conducted in the short rainy season from 17 October 2018 to 7 December

2018 at six hospitals (Lugulu Missionary, Bungoma Referral, Busia Referral, Butula Missionary,

Matungu sub-County, and Mukumu Missionary) and four LMs (Lubao, Angurai, Kimilili, and

Chwele). Sampling in the long rainy season was done from 9 May to 26 June 2019 when mos-

quito habitat and density were expected to be high. The same six hospitals were sampled dur-

ing the long rainy season; however, due to poor mosquito catches and logistical challenges

experienced at some LMs during the short rainy season (pilot), where we were unable to ade-

quately secure the trapping equipment despite the security measures put in place, only Lubao

LM and an additional LM in Funyula were sampled. Fig 1 shows the locations of all the hospi-

tals and LMs where mosquitoes were sampled in the short and long rainy seasons.

Questionnaire on mosquito control at hospitals

Concurrently with the mosquito collection at hospitals during the long rainy season, a short

questionnaire was administered to capture information about the methods implemented to

control the breeding of mosquitoes and prevent them from biting patients and personnel at

hospitals (S1 File). The questionnaire was administered by the same individual at all sites to

the public health officers, medical superintendents, or hospital administrators. Direct observa-

tions on the presence of environmental features suited to the breeding and presence of mos-

quitoes were also recorded.

Mosquito trapping and schedule

During the short rainy season (pilot), seven CDC light (John W. Hock Company, Gainesville,

USA) and seven BG sentinel traps with a lure (Biogents, Regensburg, Germany) were set for

one night and one day, respectively, at each site. All traps were baited with dry ice delivered

from insulated dry ice containers. CDC light traps were set and run from 6:30 pm to 6:30 am

the next day, while BG sentinel traps were run from 6:30 am to 6:15 pm. In the long rainy sea-

son, seven CDC light traps and seven BG sentinel traps were set for three consecutive nights

and days, respectively, at the six hospitals. Due to security constraints experienced at the LMs

the CDC and BG traps were set for two consecutive nights and days, respectively.

Traps in hospital settings were placed away from direct wind, foot traffic, and artificial

lighting. Preferred locations for CDC traps were disused pit latrines, dilapidated buildings,

broken-down vehicles, and uncovered septic tanks. In some instances, and following consulta-

tion with the hospital staff, traps were set in patient wards and consultation rooms. BG sentinel

traps were placed in grassy or bushy locations of the hospital, away from direct sunlight and

wind gusts. At LMs, CDC light traps were hung around the perimeter of the market and close

to any surrounding homesteads, while BG sentinel traps were placed in grassy shaded places

around the markets. Traps were set for a cumulative 231 trap days and 223 trap nights; these

included 63 trap days and nights during the pilot phase conducted during the short rainy sea-

son, and 168 trap days and 160 trap nights in the long rainy season.
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This study was nested within the Zoonoses in Livestock in Kenya (ZooLinK) project. The

trapping of mosquitoes and interviews at hospitals were carried out under the approval of the

International Livestock Research Institute (ILRI) Institutional Research Ethics Committee

(IREC) under protocol number ILRI-IREC2017-08/2. ILRI IREC is registered and accredited

by the National Commission for Science, Technology and Innovation (NACOSTI) in Kenya,

and approved by the Federalwide Assurance for the Protection of Human Subjects in the USA.

At each of the selected hospitals sampling was carried out with permission from the medical

superintendent or administrative officer. In Kakamega County, Matungu sub-County Hospital

replaced the planned sampling site at Kakamega Referral Hospital due to logistical and consent

challenges. At LMs, the chairpersons of the two markets were informed of the planned exercise

before sampling began.

Storage of mosquitoes and identification

Mosquitoes were collected alive in the evening and early morning. They were anaesthetized

with ethyl acetate, sorted to remove non-target insects and stored in cryovials in a nitrogen

Fig 1. Sites where mosquito traps were set in the three counties in western Kenya. Pie charts of the relative abundance of Ae. aegypti and Cx. pipiens s.l. and their

infection rates (IRs) with cell fusing agent virus (CFAV)/Aedes flavivirus (AeFV) and Culex flavivirus (CxFV), respectively, are shown for each county. Infection rates

that were significantly lower in Busia than in the other two counties are indicated by asterisks. Water bodies, country and county boundary data were downloaded and

re-published under CC BY 4.0 license from the World Resources Institute website (https://www.wri.org/resources/data_sets) [19]. The map was developed using QGIS

software version 3.16.1 (https://www.qgis.org/en/site/) [20].

https://doi.org/10.1371/journal.pone.0252369.g001
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tank. They were shipped to the Martin Lüscher Emerging Infectious Disease (ML-EID) Labo-

ratory at the International Centre of Insect Physiology and Ecology (icipe) in Nairobi, where

they were morphologically identified on a chilled surface under a stereomicroscope with the

aid of identification keys [21, 22]. Mosquitoes were grouped in pools of up to 25 mosquitoes

per pool, according to the site, trap type, date of collection, sex, and species. Blood-fed mosqui-

toes were placed individually in Eppendorf tubes for blood-meal determination.

Nucleic acid extraction

We homogenized mosquito pools and individual mosquito abdomens by mechanical disrup-

tion in 1.5-ml micro-centrifuge tubes with ten 2.0-mm zirconia/yttria stabilised zirconium

oxide beads (Biospec, USA) using a Mini Bead Beater 16 (BioSpec, Bartlesville, USA) for 45–70

seconds at a frequency of 3,450 revolutions per minute. For blood-fed mosquitoes, the abdo-

mens were separated from the rest of the body using sterile 10-μl pipette tips before processing.

After homogenization, 410 μl of phosphate-buffered saline was added to each micro-centrifuge

tube containing either a mosquito pool, or an engorged abdomen. The magnetic-based Mag-

bio HighPrep™ Viral DNA/RNA Kit (Gaithersburg, USA) was used for rapid isolation of total

nucleic acids. Initially, 200 μl of the homogenized sample was mixed with 528 μl of a lysis mas-

ter-mix, 10 μl magnetic beads, and 10 μl proteinase K before proceeding with the rest of the

protocol according to the manufacturer’ instructions. Total nucleic acid was eluted in 100 μl

elution buffer. Dengue serotype 2 and Sindbis viruses cultured on Vero cell lines in a previous

study were included as positive extraction controls in each extraction run. For both viruses,

high (10−2) and low (10−6) viral titre controls were included in the extraction [23]. The extrac-

tion was carried out in a PCR enclosure and to minimize the chances of cross contamination,

the controls were always extracted in the last runs with change of gloves and decontamination

of pipettes with RNase AWAY1 (Molecular Bio-Products, New York, USA) between runs.

After nucleic acid extraction, 15 μl of the total RNA was subjected to cDNA synthesis using

a High Capacity cDNA Reverse Transcription (RT) Kit (Life Technologies, USA). The 30-μl

reaction mixtures contained 1X RT buffer, 4 mM dNTPs, 600 μM random hexamers [24], 2.5

U/μl reverse transcriptase enzyme, and 1U/μl RNAse inhibitor.

Blood-meal analysis

We carried out blood-meal analysis on each individually extracted blood-fed mosquito to

determine its vertebrate host. We used primers for cytochrome b (cyt b) and 16S rRNA mark-

ers to resolve the vertebrate host source of the blood-meals [25]. Total nucleic acid (1 μl) from

each blood-fed mosquito was used as template in 10-μl PCRs containing 2 μl of 5X HOT FIRE-

Pol1 EvaGreen1 qPCR Mix (Solis BioDyne, Estonia) and 10 pmoles of each forward/reverse

primer. Thermo-cycling and high-resolution melting (HRM) analysis were carried out in a

Rotor-Gene Q real-time PCR thermo-cycler (Qiagen, Hilden Germany) as previously

described [26]. DNA extracted from human, cattle, sheep, goat, pig, camel, and chicken sam-

ples served as positive controls in each of the runs. Rotor-Gene Q software 2.1.0 was used to

select representative amplicons for post-PCR clean (Exo 1-rSAP combination, Biolabs, UK)

and sequencing at Macrogen (The Netherlands).

Molecular detection of viruses

Mosquito pools were screened for six genera (Flavivirus, Alphavirus, Phlebovirus, Orthobunya-
virus, Nairovirus, and Thogotovirus) of arboviruses using a multiplex PCR that uses degenerate

primers coupled with end-reaction high resolution melting analysis (PCR-HRM). Briefly, this

test has a high analytical sensitivity and is able to detect viral nucleic acid in as low as 20–200
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PFU/ml for flaviviruses and thogotoviruses, and 2–20 PFU/ml for alphaviruses and orthobu-

nyaviruses [23]. While this test can distinctly detect 15 different arboviruses across the six gen-

era of interest with analytical sensitivity comparable to Vero cell plaque assays [23], specific

arboviruses of interest in this study were dengue, chikungunya, yellow fever, West Nile, Sind-

bis, and Rift Valley fever viruses. Each 10-μl reaction mixture contained 5 μl of 2X MyTaq

master-mix (Bioline, UK), 50 mM Syto-9 dye (Life Technologies, Carlsbad, USA), and a

degenerate primer mix (Table 1). Cycling and HRM analysis was done in a Rotor-Gene Q

real-time PCR thermo-cycler (Qiagen, Hilden Germany) using conditions described by Villin-

ger et al. [23]. Dengue virus serotype 2 and Sindbis virus cDNA served as Flavivirus and Alpha-
virus positive controls, respectively, and molecular grade PCR water as the negative control.

High (10−2) and low (10−6) viral titre positive controls from extraction and cDNA synthesis

were included in the runs for both dengue and Sindbis viruses.

All positive samples from the multiplex PCR-HRM, identified by visual inspection of the

HRM profiles on the Rotor-Gene Q software 2.1.0, were selected for genus-specific (single-

plex) amplification using the same reaction mixtures and cycling conditions as outlined above.

Representative positive samples from the single-plex runs were selected and prepared for

sequencing using the Exo 1-rSAP combination (Biolabs, UK). Bi-directional sequencing was

outsourced at Macrogen (The Netherlands). Sequence chromatograms were inspected, edited,

and aligned using Geneious Prime version 2019.0.4 software (Biomatters, New Zealand). The

resulting sequence contigs were used in nucleotide BLAST searches against the GenBank data-

base (www.ncbi.nlm.nih.gov) to identity the closest sequence matches.

To generate a longer fragment of 900 nt for flaviviruses, positive samples were re-amplified

using nested conventional PCR targeting the non-structural protein 5 (NS5) gene [29]

(Table 1). The 20-μl primary reaction mix contained 4 μl 5X HOT FIREPol1 EvaGreen1

qPCR Mix (Solis BioDyne, Estonia), 10 pmoles of each primer and 1 μl of the template. For the

nested amplifications, 1 μl of the first-round PCR product was used as template. Thermal

Table 1. Primers used for blood-meal and arboviral identification.

Target gene Primer name Primer sequence (5’– 3’) Product size (bp) References

Vertebrate 16S Vert 16S F GAGAAGACCCTRTGGARCTT 250 [25]

Vert 16S R CGCTGTTATCCCTAGGGTA

Vertebrate cyt b Cytb F CCCCTCAGAATGATATTTGTCCTCA 310 [27]

Cytb R CATCCAACATCTCAGCATGATGAAA

Alphavirus NS4 Vir 2052 F TGGCGCTATGATGAAATCTGGAATGTT 150 [28]

Vir 2052 R TACGATGTTGTCGTCGCCGATGAA

Flavivirus NS5 Flavi JV2a F AGYMGHGCCATHTGGTWCATGTGG 150 [23]

Flavi JV2b F AGCCGYGCCATHTGGTATATGTGG

Flavi JV2c F AGYCGMGCAATHTGGTACATGTGG

Flavi JV2d F AGTAGAGCTATATGGTACATGTGG

Flavi JV2a R GTRTCCCADCCDGCDGTRTCATC

Flavi JV2b R GTRTCCCAKCCWGCTGTGTCGTC

Flavivirus NS5 1NS5F GCATCTAYAWCAYNATGGG 930 [29]

1NS5R CCANACNYNRTTCCANAC

2NS5F GCNATNTGGTWYATGTGG

2NS5R CATRTCTTCNGTNGTCATCC

Alphavirus NS1 m2w YAGAGCDTTTTCGCAYSTRGCHW 320 [30]

m2w2 TGYCCNVTGMDNWSYVCNGARGAYCC

cm3w ACATRAANKGNGTNGTRTCRAANCCDAYCC

https://doi.org/10.1371/journal.pone.0252369.t001
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cycling conditions for first and second round PCR comprised an initial hot start step of 95˚C

for 15 minutes followed by denaturation at 94˚C for 60 secs, annealing for 40 secs, and exten-

sion at 72˚C for 2 min, with a final extension at 72˚C for 5 min. Annealing temperature and

cycle number for first and second round PCR were 54˚C and 40 cycles, and 60˚C and 35 cycles,

respectively. The DNA (no-RT controls) of all samples positive for flaviviruses were screened

using the same methods described above for detection of flaviviruses to rule out non-specific

amplification of integrated viral elements in the mosquito genome. Fig 2 illustrates the steps

taken from total nucleic acid extraction to identification of blood-meal sources and detection

of viruses.

For alphaviruses, to generate a longer 320-nt fragment, we used a conventional, hemi-

nested PCR targeting the non-specific protein 1 (NS1) gene using primers described before

[30]. The 10-μl first-round reaction mixtures contained 2 μl 5X HOT FIREPol1 EvaGreen1

qPCR Mix (Solis BioDyne, Estonia), 10 pmoles of each primer and 1 μl of the template. In the

second round of amplification, 1.25 μl of the product was used as a template in a 20 μl mixture.

The cycling conditions were as follows: An initial hot start step of 95˚C for 15 minutes fol-

lowed by 45 cycles of 94˚C for 20 secs, 50˚C for 30 secs, and 72˚C for 30 secs, and a final exten-

sion at 72˚C for 5 min. The same conditions were used for the second round except that the

annealing was at 48˚C. Positive controls were included in each run as above. Amplicons were

visualized by gel electrophoresis. Positives were then purified for sequencing, resulting

sequences edited and then identity confirmed as described before.

Phylogenetic analysis, calculation of infection rates, and statistical analysis

A maximum likelihood phylogeny of the detected Flavivirus NS5 gene sequences was con-

structed using PHyML v. 3.0 [31]. The phylogeny employed the Akaike information criterion

[32] for automatic model selection and tree topologies were estimated using nearest neighbour

interchange improvements over 1000 bootstrap replicates. The phylogenetic trees were visual-

ized using FigTree v.1.4.2 [33]. To estimate the infection rates (IRs), maximal likelihood esti-

mates were calculated using the PooledInfRate, version 4.0 Microsoft Excel1 Add-In, and

expressed per 100 (%) mosquitoes tested [34]. Logistic regression analysis was performed in

R1 version 3.5.3 to test the association between sampling sites, mosquito sex, and season (pre-

dictor variables), and a mosquito pool testing positive for ISFs (outcome variable). The odds

ratios (OR), 95% confidence intervals (CI), and p-values were computed, and a p-value less

than 0.05 was considered statistically significant.

Results

Mosquito abundance and species diversity

A total of 6,848 mosquitoes were collected and assembled into 545 pools (�25 individuals/

pool) (Table 2). The 2019 long rainy season collections accounted for 89.08% (n = 6,100) of the

total catch, while the 2018 short rainy season (pilot) made up the remainder (10.92%; n = 748).

The collection comprised 21 mosquito species from three genera (Table 2), inclusive of 38

blood-fed specimens which were processed individually. The most abundant mosquitoes were

from the genus Culex, contributing 59.49% (n = 4,074) of the total catch, followed by 39.66%

(n = 2,716) Aedes and 0.85% (n = 58) Anopheles mosquitoes. The most abundant species were

Cx. pipiens s.l. (n = 3,130) and Ae. aegypti (n = 2,661), translating to 45.71% and 38.86% of the

total catch, respectively.

A total of 6,539 mosquitoes were collected from the selected six hospitals, 631 and 5,908

during the short and long rainy seasons, respectively. Among these, the mosquito abundance

was highest at Lugulu Missionary (n = 2,170), followed by Busia Referral (n = 1,212), Bungoma
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Fig 2. Flowchart showing the molecular detection of arboviruses, insect-specific flaviviruses and determination of blood-meal sources of

blood-fed mosquitoes.

https://doi.org/10.1371/journal.pone.0252369.g002
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Table 2. Summary table of mosquitoes caught at the sampling sites during the long and short rainy seasons in western Kenya.

Busia

RH

Butula

MH

Bungoma

RH

Lugulu

MH

Mukumu

MH

Matungu

SCH

Lubao

LM

Funyula

LM

Angurai

LM

Chwele

LM

Kimilili

LM

Total

Short rainy season (October–December 2018)

Aedes aegypti 75 84 79 48 62 43 27 - 1 1 420

Aedes metallicus - 1 - - - - - - - - - 1

Aedes sp. - - - - - - 11 - 2 13

Anopheles
funestus

- - - - - - 1 - - - - 1

Anopheles
gambiae

- - - - - - 5 - - - 1 6

Anopheles
squamosus

- - - - - - 1 - - - - 1

Culex annulioris - - - - - - 9 - - - - 9

Culex cinerellus - 5 - - - 1 30 - - - - 36

Culex pipiens s.l. 2 58 56 27 14 10 16 - - 3 1 187

Culex sp. - - - - - - - - 4 - - 4

Culex
vansomereni

- 2 0 2 7 - 4 - - - - 15

Culex zombaensis - 40 3 4 8 - - - - - - 55

Subtotal 77 190 138 81 91 54 104 - 4 6 3 748

Long rainy season (May–June 2019)

Aedes aegypti 762 240 157 582 307 119 30 44 - - - 2,241

Aedes africanus - 9 - 2 - - - - - - - 11

Aedes hirsutus 1 1 - - - - - - - - - 2

Aedes mcintoshi - - - - - 1 - 8 - - - 9

Aedes metallicus - - - - 4 3 5 - - - - 12

Aedes simpsoni - - - - 3 2 - - - - - 5

Aedes tricholabis - - - 2 - - - - - - - 2

Anopheles
coustani

- - - - - - 3 - - - - 3

Anopheles
funestus

- 1 - - - 1 7 - - - - 9

Anopheles
gambiae

1 16 3 - 1 14 3 - - - - 38

Culex annulioris - 5 - 2 10 1 7 - - - - 25

Culex cinerellus - - - - - - 5 - - - - 5

Culex cinereus - 11 1 - 2 3 - - - - - 17

Culex pipiens s.l. 255 129 646 1,273 269 307 63 1 - - - 2,943

Culex poicilipes - - - - 1 - - - - - - 1

Culex rubinotus - 5 - - - - - - - - - 5

Culex tigripes 1 - - 18 - - 1 - - - - 20

Culex univittatus 1 5 - - - - 3 - - - - 9

Culex
vansomereni

- 3 1 8 2 5 2 - - - - 21

Culex zombaensis 114 27 119 202 85 165 10 - - - - 722

Subtotal 1,135 452 927 2,089 684 621 139 53 - - - 6,100

Total mosquitoes captured (short and long rainy seasons) 6,848

RH = Referral hospital; MH = Missionary hospital; SCH = sub-County hospital; LM = livestock market.

https://doi.org/10.1371/journal.pone.0252369.t002
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Referral (n = 1,065), Mukumu Missionary (n = 775), Matungu sub-County (n = 675), and

Butula Missionary (n = 642) hospitals (Table 2).

BG sentinel collections consisted mostly of Aedes spp., of which Ae. aegypti was the domi-

nant species, comprising 38.29% (n = 2,622) of the total catch; very few specimens of the other

six Aedes spp. were collected (Table 2). CDC light trap collections were dominated by Cx.

pipiens s.l., which accounted for 45.02% (n = 3,083) of the total catch. There was also a signifi-

cant number (n = 777) of Cx. zombaensis. Overall, 309 mosquitoes were collected at LMs: 117

during the short rainy season (pilot) and 192 during the long rainy season. Aedes aegypti
(33.33%; n = 103) was the most abundant species collected at LMs, followed by Cx. pipiens s.l.

(27.18%; n = 84) (Table 2).

Of particular note were the higher total night catches of Cx. pipiens s.l. mosquitoes in the

vicinity of several sewage tanks that were not covered at Lugulu Missionary (n = 1,300) and

Bungoma Referral (n = 702) hospitals, compared to the other four sites where these environ-

mental features were absent. Atypically, during the short rainy season more Cx. pipiens s.l.

mosquitoes were captured at Butula Missionary Hospital compared to Lugulu Missionary and

Bungoma Referral hospitals. This could be explained by the presence of unused pit latrines at

Butula Missionary Hospital, and during the short rainy season their effect on Cx. pipiens s.l.

abundance is comparable to open sewage tanks. In total more Ae. aegypti mosquitoes were

also collected during the day at Busia Referral Hospital (n = 837) and Lugulu Missionary Hos-

pital (n = 630), where there was a combination of huge piles of disused vehicle tyres and tall

grasses, compared to the other sites where such features were less pronounced. In contrast, in

the short rainy season more Ae. aegypti mosquitoes were captured at Butula Missionary, Bun-

goma Referral and Mukumu Missionary hospitals compared to Busia Referral and Lugulu

Missionary hospitals. This could be attributed to the fact that the above mentioned favorable

environmental features for Ae. aegypti proliferation were more pronounced at the former

three hospitals during the short rainy season compared to the other sites.

Blood-meal analysis

Of the 38 blood-fed individual mosquitoes, 35 were Cx. pipiens s.l., two were Ae. aegypti, and

one was An. gambiae. The blood-meals were from five vertebrate species: human, cattle, dog,

chicken, and sparrow (Table 3). Two blood-meals (from one An. gambiae and one Cx. pipiens
s.l.) could not be resolved by amplification with either cyt b or 16S rRNA markers (Table 3).

For confirmation of human blood meals our vertebrate 16S rRNA gene sequences (GenBank

accessions MT012144-MT012144) all shared 100% identity with human 16S rRNA sequence

MK248422 in GenBank. The human vertebrate cyt b gene sequences (GenBank accessions

MT019210-MT019216) all shared 100% identity with reference human cyt b sequences (e.g.,

GenBank accession MW389273). Our cattle vertebrate 16S rRNA sequences (GenBank acces-

sions MT012262-MT012263) all shared 100% identity with reference cattle 16S rRNA

sequence MN714195 in GenBank. Our chicken vertebrate 16S rRNA gene sequences (Gen-

Bank accessions MT012140-MT012142) all shared 100% identity with a reference chicken 16S

rRNA sequence (GenBank accession MN013407). The chicken vertebrate cyt b sequence (Gen-

Bank accession MT019209) also shared 100% identity with a reference cyt b chicken sequence

(GenBank accession KX512321). While positive controls for dog and sparrow were not avail-

able, confirmation of dog blood-meal source was based on the shared 98.2% identity between

our 16S rRNA sequence (GenBank accession MT012139) and a reference GenBank sequence

(accession MN181404). Similarly, the sparrow vertebrate 16S rRNA sequence from this study

(GenBank accession MT012844) shared 95% identity with a reference sequence (GenBank

accession KT895996), while the cyt b sequence (GenBank accession MT019217) shared 100%
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identity with a reference sparrow cyt b sequence (GenBank accession AF230908). The rather

low sparrow 16S rRNA percentage identity was compensated for by amplification in the cyt b
marker. The melt rate profiles of the samples and the positive controls are shown in Fig 3.

Non-amplification in one of the markers was resolved by amplification in the other marker.

Most of the blood-fed mosquitoes were caught at Matungu sub-County Hospital (Table 3).

Viruses detected

While the mosquito pools analyzed were negative for most of the human pathogenic arbovi-

ruses endemic in Kenya, a single unique Culex poicilipes female sampled at Mukumu Mission-

ary Hospital (Kakamega County) was positive for Sindbis virus (GenBank accession

MT019267). The NS1 sequence of our Sindbis virus strain varied from that of the strain used

as a positive control at twelve nucleotide position, making it unlikely that it was a false positive

due to cross contamination (S1 Fig). On the other hand, it showed highest similarity (99.6%)

with a Sindbis strain detected in a Cx. pipiens mosquito in Kenya (MK510862) [35].

A total of 49 mosquito pools were positive for ISFs, among which 30 pools were positive for

cell fusing agent virus (CFAV), 11 for Aedes flavivirus (AeFV), and eight for Culex flavivirus

(CxFV) (Fig 4). Nucleotide sequence identities of the NS5 gene region ranged from 98.3–100%

for CFAV, 98.6–99.6% for AeFV, and 98.2–99.9% for CxFV characterized in this study with

those in the Genbank database. None of the ISF-positive samples amplified using their DNA

(no-RT controls), illustrating that the amplification observed was due to identified ISFs, not

endogenous viral elements that may be integrated into the mosquito genome. Culex flavivirus

positive mosquito pools were all comprised of Cx. pipiens s.l. mosquitoes, except for one Culex
annulioris. All 38 fed specimens were negative for both ISFs and pathogenic arboviruses.

The overall maximum likelihood estimates of IRs for sampled Ae. aegypti with ISFs were

1.27% (95% CI = 0.87%-1.78%) for CFAV infection, and 0.43% (95% CI = 0.23%-0.74%) for

AeFV. The overall IR estimate for Cx. pipiens s.l. with CxFV was 0.23% (95% CI = 0.1%-

0.45%) (S1 Table). The odds of Ae. aegypti testing positive for ISFs (AeFV and CFAV) were

significantly higher in Bungoma (OR = 2.53, 95% CI = 1.18–5.72, p = 0.02) and Kakamega

(OR = 2.70, 95% CI = 1.18–6.36; p = 0.02) compared to Busia (Fig 1; S2 Table). For CFAV

alone, the odds for Ae. aegypti to be infected were similarly higher in Bungoma (OR = 3.99,

95% CI = 1.65–11.10, p = 0.004) than in Busia, while there was no significant difference

between sites in Kakamega and Busia. The odds of Ae. aegypti being infected with AeFV, and

Table 3. Number of blood-meal sources of mosquitoes sampled at hospitals in Busia, Bungoma and Kakamega counties.

Sampling site Species Human Cattle Dog Chicken Sparrow NDa Total

Bungoma RH Culex pipiens s.l. 5 0 1 1 0 0 7

Busia RH Culex pipiens s.l. 7 0 0 0 0 0 7

Aedes aegypti 1 0 0 0 0 0 1

Butula MH Culex pipiens s.l. 1 0 0 1 0 0 2

Lugulu MH Culex pipiens s.l. 0 1 0 0 1 0 2

Matungu SCH Anopheles gambiae 0 0 0 0 0 1 2

Culex pipiens s.l. 10 0 0 1 0 1 12

Mukumu MH Culex pipiens s.l. 1 0 0 4 0 0 5

Aedes aegypti 0 1 0 0 0 0 1

Total blood meals 25 2 1 7 1 2 38

RH = Referral hospital; MH = Missionary hospital; SCH = sub-County hospital.
aND: Not determined by the two markers.

https://doi.org/10.1371/journal.pone.0252369.t003

PLOS ONE Viruses in mosquitoes at hospitals and livestock markets

PLOS ONE | https://doi.org/10.1371/journal.pone.0252369 May 28, 2021 11 / 21

https://doi.org/10.1371/journal.pone.0252369.t003
https://doi.org/10.1371/journal.pone.0252369


Cx. pipiens s.l. with CxFV, were not significantly different in the three counties (S2 Table). The

odds of a mosquito being infected with ISFs was not significantly different between LMs and

hospitals (OR = 0.41, 95% CI = 0.18–1.20), p = 0.06 (S2 Table). Both female and male pools of

Ae. aegypti were positive for CFAV and AeFV, but only female Culex were positive for CxFV.

However, the odds of Ae. aegypti being positive for ISFs (CFAV and AeFV) were not signifi-

cantly different between the two sexes (S2 Table). The odds for ISFs (CFAV and AeFV) infec-

tion of Ae. aegypti were not significantly different between the two rainy seasons. Logistic

Fig 3. Melt rate profiles of resolved blood-meal sources from mosquitoes sampled at selected hospitals in Busia, Bungoma, and Kakamega counties. Each panel

is composed of mixed curves from several controls and blood-meal samples. Amplification of (A) 16S rRNA and (B) cyt b markers in positive controls. Amplification

of (C) 16S rRNA and (D) cyt b markers in positive samples.

https://doi.org/10.1371/journal.pone.0252369.g003
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regression analysis for CxFV in Cx. pipiens s.l. for seasonality and sex was not performed due

to insufficient data.

The CFAV NS5 (GenBank accessions MT019229-MT019258) gene sequences clustered

according to county, with those from Busia being closely related to CFAV NS5 gene sequences

detected previously in Busia (GenBank accession KP792624). Aedes flavivirus NS5 gene

sequences from this study were related to those from Homa Bay (GenBank accession

MG372051) [36] (Fig 5). One of the CxFV NS5 sequences from Kakamega (GenBank acces-

sion MT019266) clustered with two CxFV sequences from Taiwan (GenBank accessions

JX897905; JX897906). Three other CxFV sequences from Kakamega (GenBank accession

MT019264), Bungoma (GenBank accession MT019261), and Busia (GenBank accession

MT019263) were closely related to a strain from Uganda (GenBank accession GQ165808) [37]

and some strains previously found in Busia (GenBank accessions LC388536; LC3885345) [38].

All ISFs sequences also clustered together according to the mosquito species from which they

were detected.

Implementation of mosquito control methods at hospitals

At all the six participating hospitals, a public health officer, medical superintendent or admin-

istration officer provided information on the measures they implement to prevent mosquitoes

from proliferating and from biting patients, visitors, and staff. The use of insecticide-treated

nets provided by the Public Health Department of the Ministry of Health was reported and

also observed in patient wards at all the six hospitals. Three of the hospitals reported that out-

door and indoor residual insecticide spraying, also done by the Public Health Department of

the Ministry of Health, had ceased 2–10 years prior to the study. The other three hospitals

were still undertaking residual insecticide spraying inside patient wards and staff quarters

every four to eight months with Icon1 insecticide as the main insecticide used. Only one of

the hospitals reported that they provided topical repellant to patients, who however generally

preferred not to apply them because of the odour. Only two of the hospitals had installed win-

dow screens and in one of these, the process was still ongoing. At all the institutions, grass cut-

ting and clearing bushes were highlighted as an important tool in the control of mosquitoes.

Fig 4. High-resolution melting profiles of mosquito pools with (A) insect-specific flavivirus and (B) Sindbis virus. PC = positive control.

https://doi.org/10.1371/journal.pone.0252369.g004
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Only one institution highlighted the importance of draining water puddles, disposal of hospital

waste, and rubbish, to control mosquito breeding.

Discussion and conclusion

These findings, which raise awareness to the presence of Sindbis virus and a variety of ISFs in

potential arbovirus vectors in western Kenya calls for further investigation into the

Fig 5. Maximum likelihood phylogeny of flaviviruses inferred from 48 aligned 900-nt segments of the NS5 gene. Taxon names include GenBank accession

numbers, isolation source, and country of origin. Sequences from this study are in red. Bootstrap values at the nodes are of percentage agreement among 1,000

replicates. The branch length scale represents substitutions per site. The gaps to the outgroup represents 2.1 substitutions per site.

https://doi.org/10.1371/journal.pone.0252369.g005
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epidemiology of arboviruses in the region. The trapping procedures we employed targeted

blood-seeking female mosquitoes rather than those already blood-fed, hence few blood-fed

mosquitoes were collected. Mosquitoes were trapped mostly outdoors, therefore fewer Anoph-
eles spp. were collected for both day and night trapping, in comparison to the more abundant

Cx. pipiens s.l. and Ae. aegypti. The common malaria vectors in the study region, Anopheles
gambiae sensu stricto, are known to be highly arthropophilic and endophilic [13]. This is in

comparison to Cx. pipiens s.l., which is both endophilic and exophilic but mostly ornithorphi-

lic [39], and Ae. aegypti, which is exophilic and anthropophilic [40].

To the best of our knowledge, this is the first report of a study screening for viral nucleic

acids in mosquitoes trapped at hospitals and LMs in Kenya. Most similar studies focus on

homesteads [38], peri-domestic sites [41], and/or human-wildlife interfaces [35]. The hospitals

were generally representative of urban settings, which tend to achieve high mosquito catches

and are important for assessing urban transmission of arboviruses. This is of epidemiological

importance because patients who are arboviral carriers visiting these hospitals that have large

catchments in the area can set off a transmission chain in the neighborhood through capable

mosquito vectors. Sampling urban or hospital settings cannot be used to trace sylvatic to urban

spillover, which happens at wildlife/forest-human interfaces. However, an exception may be at

hospitals like Mukumu Missionary and Kakamega Referral (excluded from the sampling),

which see patients coming from distant areas of the county, including the edge of the Kaka-

mega forest, as referral patients from smaller health facilities. In contrast, trapping at LMs can

be used to assess potential zoo-prophylactic/potentiation effects on mosquito abundance.

However, the open nature of the markets results in less habitat and resting sites for mosquitoes,

thereby limiting catches. Furthermore, the poor security at the open markets leaves trapping

equipment susceptible to theft.

As expected, the mosquito abundance and species diversity in this study coincided with the

presence of favourable habitats. Aedes aegypti mosquitoes are known to be highly anthropo-

philic and their larvae breed where there are tall grasses and artificial water stagnation [42].

For Cx. pipiens s.l., open septic tanks and pit latrines are favourable habitats for their breeding

[43, 44]. Therefore, proper management of these habitats in urban and peri-urban settings will

go a long way in preventing arboviral transmission and outbreaks.

The detection of Sindbis virus highlights its occurrence even in regions where outbreaks

have not been reported. Sindbis virus, first isolated from mosquitoes in Egypt [45], circulates

between birds and Culex spp. mosquitoes, with humans acting as dead-end hosts [46]. The

virus causes rash, febrile illness, myalgia, and arthralgia. In Kenya, two acute cases of Sindbis

virus were detected by inoculation on Vero cell lines and RT-PCR in febrile patients from

Mfangano islands of Lake Victoria [47], and seroprevalence studies in other Kenyan regions

have shown exposure in local populations [48, 49]. Clinical cases may be masked by other

febrile illnesses, such as malaria in Kenya, and may therefore go unnoticed due to lack of

awareness and inadequate diagnostic capabilities in health institutions [12, 50, 51].

Birds are known to be amplifying hosts of Sindbis and West Nile viruses [4, 52]; hence, the

detection of a Cx. pipiens s.l. mosquito that had fed on a sparrow (Passer sp.) suggests risk of

transmission of Sindbis virus from birds to humans. In Kenya, Sindbis virus has been detected

in Culex mosquitoes [35, 53]. It is endemic in South Africa and northern Europe [4] where

outbreaks have been reported. Several Culex spp. are vectors of the virus in different parts of

the world, with Culex univittatus and Cx. pipiens/Culex torrentium thought to be the main vec-

tors [54, 55]. Increased IRs in the chief vectors in northern Europe have been found to be a

predictor of Sindbis related rash and arthralgia outbreaks [46].

The detection of ISFs is not likely to warrant public health concern since they have not been

shown to infect or grow in vertebrate cells [56]. Previous studies in Kenya have detected
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CFAV, AeFV, and CxFV in mosquitoes mostly around the lake shores [23, 36, 38]. In con-

trast, our study reports significantly higher odds of Ae. aegypti infection by ISFs in Bungoma

and Kakamega, which are more inland compared to Busia, which is closer to Lake Victoria.

The local ecology has been shown to have a pronounced impact not only on mosquito abun-

dance but also their viral infection status [57]. Higher CxFV infection has, for example, been

reported in sites with dense housing, compared to urban open spaces in Chicago, USA [58].

Busia County is closer to the shores of Lake Victoria with a distinct ecology from that of Bun-

goma and Kakamega. While we found no significant difference between male and female

mosquitoes in terms of probability of being infected with ISFs, most previous studies suggest

higher infection rates in females, though these results may be biased due to low numbers of

male mosquitoes collected, and in some cases males are not processed for viral detection

[38]. The detection of ISFs in male mosquitoes emphasises the occurrence of vertical and

venereal transmission of ISFs [36, 59]. Seasonality did not seem to have an effect on ISF posi-

tivity in this study, which could be due to the similarity of environmental variables during

the short and long rainy seasons. Therefore, in the future it would be important to sample

also during the dry season. In Houston, USA, virus-infected mosquito pools were detected

only in the cooler months, compared to the warmer months, showing an effect of seasonality

[60].

There has been growing interest in the possibility of using ISFs to interfere with the acquisi-

tion and transmission of pathogenic arboviruses [59]. Studies have shown that West Nile virus

growth rate was lower in cell cultures co-infected with CxFV, compared to those not co-

infected, and mosquito dissemination rates were lower in persistently-infected Cx. pipiens s.l.

colonies, compared to mosquitoes not infected with CxFV [61]. Other studies have shown in
vitro interference by CFAV on Zika virus growth [62]. However, it should be noted that the

interference effect of ISFs on arboviral transmission may be specific to experimentally investi-

gated arbovirus/ISF pairs and cannot be extrapolated to all the arboviruses and ISFs. As the

high analytical sensitivity of the PCR-HRM test we employed in this study has been demon-

strated [23], the disparity between arboviral and ISFs detection in this study may be due to the

very low infections rates of mosquitoes by arboviruses given that sampling was performed dur-

ing non-epidemic periods [63]. Seroprevalence studies in this region have reported the pres-

ence of antibodies to chikungunya, West Nile, yellow fever, and dengue viruses in the human

population signifying undetected circulation [64, 65]. The clustering of ISF sequences within

mosquito species shows that they are relatively conserved within mosquito species across geo-

graphical divides.

Due to logistical challenges, the number of trap days and nights were not uniform across

the two rainy seasons (short and long) and the sampling sites (hospitals and LMs), limiting

statistical comparisons of mosquito abundance. A more extensive sampling exercise over

several seasons may lead to the detection of more pathogenic arboviruses as the IR in mos-

quitoes is usually very low during inter-epidemic periods [63]. Despite the methodological

limitations of arboviral detection in this study, we hypothesize that the relatively high IRs

with ISFs may be modulating the transmission and occurrence of arboviral outbreaks in

non-endemic areas in Kenya. While the transmission-blocking potential of ISFs has been

studied in the lab, it is important for future studies to compare the IRs of ISFs in our study

site to those from arboviral endemic areas, such as the coast and north-eastern Kenya, to

assess this effect in a field setting. This study highlights the presence of Sindbis, a pathogenic

arbovirus, and ISFs in mosquitoes from western Kenya. While this entails risk of transmis-

sion to humans, it also calls for further investigation of the role of ISFs in the transmission

dynamics of arboviruses.
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