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1 Centro de Fı́sica da Matéria Condensada & Departamento de Fı́sica, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal, 2 Centro de Quı́mica e Bioquı́mica &

Departamento de Quı́mica e Bioquı́mica, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal, 3 Department of Chemistry and Chemical Biology, Harvard

University, Cambridge, Massachusetts, United States of America

Abstract

A major component of ex vivo amyloid plaques of patients with dialysis-related amyloidosis (DRA) is a cleaved variant of b2-
microglobulin (DN6) lacking the first six N-terminal residues. Here we perform a computational study on DN6, which
provides clues to understand the amyloidogenicity of the full-length b2-microglobulin. Contrary to the wild-type form, DN6
is able to efficiently nucleate fibrillogenesis in vitro at physiological pH. This behavior is enhanced by a mild acidification of
the medium such as that occurring in the synovial fluid of DRA patients. Results reported in this work, based on molecular
simulations, indicate that deletion of the N-terminal hexapeptide triggers the formation of an intermediate state for folding
and aggregation with an unstructured strand A and a native-like core. Strand A plays a pivotal role in aggregation by acting
as a sticky hook in dimer assembly. This study further predicts that the detachment of strand A from the core is maximized
at pH 6.2 resulting into higher aggregation efficiency. The structural mapping of the dimerization interface suggests that
Tyr10, His13, Phe30 and His84 are hot-spot residues in DN6 amyloidogenesis.
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Introduction

b2-microglobulin (b2m) is a 99-residue protein with a typical

immunoglobulin fold comprising seven anti-parallel b-strands

stabilized by a disulfide bridge (Fig. 1) [1]. Upon dissociation from

the MHC-I heavy chain, human b2m (Hb2m) is catabolised in the

kidneys. In individuals undergoing long-term hemodialysis the

clearance process is strongly impaired and the levels of Hb2m in

the serum can increase up to 60-fold [2]. The progressive

accumulation of Hb2m in the osteoarticular system, presumably

driven by its affinity for type-I collagen [3], eventually leads to

amyloid assembly and the onset of dialysis-related amyloidosis

(DRA), a pathological condition characterized by tissue erosion

and destruction [4].

The wild-type Hb2m (WT Hb2m) does not form amyloid fibrils

in vitro in the absence of ex vivo amyloid seeds [5], or additional

factors such as Cu2+ [6,7] or TFE [8]. This limitation makes the

determination of the aggregation mechanism of Hb2m in

physiological conditions (37uC, pH 7.5) a particularly challenging

conundrum. A major contribution towards its solution was the

identification [9,10], and atomic-level structural characterization

[11], of an intermediate state (representing from 3.761.4% [10]

up to ,1468% [9] of the equilibrium population) in the folding

pathway of WT Hb2m. The intermediate was termed IT because

its main structural trait is a non-native trans isomerization of Pro32.

Enhanced fibrillogenesis in physiological conditions (including the

ability to elongate and/or nucleate amyloid fibril assembly) has

been observed in connection with an increase in the equilibrium

concentration of IT [10,12,13], indicating that IT is highly

amyloidogenic and a key player in Hb2m fibrilogenesis. While

relevance of IT for b2m fibrillogenesis is widely acknowledged

[9,10,14–16], alternative intermediate states, which are less native-

like than IT, become relevant under different experimental

conditions [8,17–19]. Furthermore, a variety of environmental

aspects have been found to directly affect the process of fibril

formation by b2m including solubility, supersaturation and

ultrasonication/agitation effects [20].

Recently, the single point mutant Asp76Asn (D76N), a naturally

occurring variant of Hb2m, was associated with the late onset of a

fatal hereditary systemic amyloidosis characterized by extensive

visceral amyloid deposits. However, and contrary to what occurs

in DRA, in this newly discovered disease the plasma concentration

of Hb2m is not augmented [21,22]. In vitro studies have shown

that the Asp76Asn mutant is highly amyloidogenic, displaying an

abundant (,25%) equilibrium population of IT under physiolog-

ical conditions [22]. Another recently reported single point variant
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of b2m for which fibrillation occurs without seeding under

physiological conditions is the Arg3Ala (R3A) mutant [23]. The

latter, however, has not yet been associated with any conforma-

tional disorder.

In this work we focus on DN6, a truncated form of Hb2m,

lacking the first six N-terminal residues. This variant is potentially

relevant because it represents ,30% of ex vivo amyloid deposits

extracted from DRA patients [24]. Radford and co-workers

proposed that DN6 is a structural mimic of IT because it populates

a conformational state that reproduces the conformational features

of IT and represents 90% of DN6’s in vitro equilibrium population

[11]. While there is a broad agreement regarding the ability of

DN6 to prime the fibrillar conversion of WT Hb2m in vitro under

physiological conditions, the mechanism by which it occurs is not

consensual. In particular, Eichner and Radford proposed that

monomeric DN6 conformationally converts WT Hb2m into an

amyloidogenic state in a mechanism akin to prion conversion [11],

while Bellotti and coworkers challenged the prion-like hypothesis

by reporting that the WT Hb2m does not fibrillate with mono-

meric DN6 but rather with preassembled fibrils of DN6 [22].

However, and independently of these controversies, it is widely

accepted that DN6 alone is able to efficiently nucleate fibrillogen-

esis in physiological conditions (tlag,35 days, 80 mM) [11,12,25].

Furthermore, it displays an enhanced amyloidogenicity at pH 6.2

(tlag,15 days, 80 mM) [11], i.e., in conditions compatible with the

mildly-acidic character of the synovial fluid of DRA patients [26].

It has been suggested that the aggregation potential of DN6 stems

from its unique ability to populate one or more aggregation-prone

intermediate states [11]. Therefore, a complete picture of the

aggregation mechanism of DN6 requires disclosing the process

according to which it aggregates de novo starting from the self-

association of aggregation-prone monomeric states. Addressing

this challenge via molecular simulation is the major goal of the

present work. By studying the early stage of aggregation of DN6

one expects to get insights into the amyloidogenicity of the full-

length protein.

The large size of the system and the long timescales involved

in the process of protein aggregation strongly restrict the use of

classical molecular dynamics (e.g. based on the AMBER or

GROMOS force fields) to explore it. For this reason researchers

have been developing coarse-grained approaches to study protein

aggregation [27]. One example is the symmetrised Gō potential

used to study domain-swapping (DS) [28]. In DS two monomers

exchange identical structural elements or ‘‘domains’’ to form a

strongly bound dimer. Since the DS hypothesis is based on the

association of two monomers into dimers, the mechanism of fibril

formation from more than two identical proteins is still unclear.

On the other hand since DS is a manifestation of concomitant

folding and binding it requires the use of a simulation framework

where the two processes compete directly with each other via a

force field that accounts for competing intra- and intermolecular

interactions [28]. Hb2m fibrillogenesis has been reported to be

initiated by dimerization of monomers [6,12,16,29–31] including

DS [32]. Here, however, we will not study the dimerization of

Hb2m that may result from DS. Instead, our goal in this study is

to explore the early stage of the aggregation mechanism of the

truncated variant DN6 that may occur as a side-effect of protein

folding. More precisely, if aggregation-prone intermediate states

(including highly native-like species) are populated along the

folding pathway of DN6, they may start interacting with each

other (e.g. via solvent-exposed hydrophobic residues) thus

triggering the amyloid cascade. These aggregation-prone inter-

mediates are a by-product of the folding process and likewise

their formation is exclusively driven by intra-molecular interac-

tions. Inter-molecular interactions will only start operating once

the monomers representative of the intermediate state get within

interaction range, which may eventually lead to their self-

association into dimers. Our study seeks to explore this type of (de

novo) aggregation route for the variant DN6 of Hb2m by

highlighting its topological aspects, i.e., the predictions reported

here are strictly structure-based. In doing so, we use a three-stage

computational protocol based on an array of tools as detailed in

the Methods section. In the first stage, following our previous

studies [33,34], replica-exchange discrete molecular dynamics

(RE-DMD) simulations of a full atomistic Gō model [35] are used

to study the folding transition and to identify intermediate states

in the folding pathway of DN6. The adopted level of structural

resolution encompasses the effect on the folding mechanism of

detailed atomic native contacts and fully takes into account side-

chain packing, a fundamental ingredient of the folding process.

Combined with RE-DMD simulations, the full atomistic Gō

model enables equilibrium sampling of the conformational space,

a task far beyond the possibilities of routinely used classical

molecular dynamics protocols, especially for a system of the size

of Hb2m. While this simulation procedure captures the funda-

mental features of the folding process [36], it fails to include

others. In particular, it neglects the effects of the pH, an

important environmental parameter. Indeed, it is well known that

changes in pH can induce conformational changes of varying

degree, ranging from structural fluctuations to modifications in

secondary structure content [37–39]. Furthermore, in the case of

DN6 the pH turns out to be a particularly relevant parameter

because – as stated before – the aggregation potential of this

variant is remarkably sensitive to pH changes [11]. To identify

the molecular roots of this dependence, it is thus crucial to

establish how the pH affects the structure of the relevant

conformational states, because structural changes at the mono-

mer level (e.g. the reorganization of aromatic side chains, which

Author Summary

Dialysis-related amyloidosis (DRA) is a conformational
disease that affects individuals undergoing long-term
haemodialysis. In DRA the progressive accumulation of
protein human b2-microglobulin (Hb2m) in the osteoartic-
ular system, followed by its assembly into amyloid fibrils,
eventually leads to tissue erosion and destruction. Dis-
closing the aggregation mechanism of Hb2m under
physiologically relevant conditions represents a major
challenge due to the inability of the protein to efficiently
nucleate fibrillogenesis in vitro at physiological pH. On the
other hand, DN6, a truncated variant of Hb2m, which is
also a major component of ex vivo amyloid deposits
extracted from DRA patients, is able to efficiently form
amyloid fibrils de novo in physiological conditions. This
amyloidogenic behavior is dramatically enhanced in a
slightly more acidic pH (6.2) compatible with the mild
acidification that occurs in the synovial fluid of DRA
patients. In this work, an innovative three-stage method-
ological approach, relying on an array of molecular simu-
lations, spanning different levels of resolution is used to
investigate the initial stage of the de novo aggregation
mechanism of DN6 in a physiologically relevant pH range.
We identify an intermediate state for folding and aggre-
gation, whose potential to dimerize is enhanced at pH 6.2.
Our results provide rationalizations for previous experi-
mental observations and new insights into the molecular
basis of DRA.
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are bulky and therefore natural players in the establishment of

intermolecular interactions) will directly affect monomer associ-

ation and ultimately dictate aggregation performance. In the

second stage of our computational protocol, we investigate how

the pH modulates an intermediate state’s structure. Leaving aside

its possible effect on large-scale conformational dynamics, we can

afford to accurately capture the effect of pH by employing

constant pH molecular dynamics (CpHMD) with explicit titration

[37,38,40–43]. In doing so one also obtains conformations

representative of the intermediate state with the most accurate

representation of side-chain and backbone geometries, which is a

requirement of the Monte Carlo ensemble docking (MC-ED) [33]

protocol whose predictions depend critically on the structural

accuracy of the analysed structures. The MC-ED is a low-

resolution protocol that highlights the role of shape complemen-

tarity, a major driver of protein aggregation [44,45]. It takes pairs

of monomer conformations obtained with CpHMD to generate

two ensembles of putative dimer structures (one obtained from

monomers at equilibrated pH 6.2 and another at pH 7.2) where

the number of residue pairs within interaction distance is

maximized and the number of excluded volume interactions is

minimized. The number of contacts thus evaluated provides a

measure of the quality of the geometric matching between the

two monomers. Therefore the MC-ED method allows predicting

the residues that are most likely to trigger dimerization in an

ensemble of dimers whose interface was optimized for shape

complementarity. The MC-ED allows analyzing the association

of an exceedingly large number of monomeric conformations

while discriminating between the dimer structures that are prone

to further oligomerize from those that are not. This is an

important point because protein conformations are not static

entities. Indeed, they have a dynamic nature leading to structural

variability even for the native state. Thus, two pairs of self-

associating conformations (representing the same conformational

state) will not form exactly the same docking interface upon

dimerization. By exhaustively docking thousands of equilibrated

conformations collected from CpHMD simulations at pH 6.2 and

7.2 this work provides a probabilistic structurally resolved picture

of the dimerization interface of the identified intermediate state,

the native state of DN6 and also the native state of WT Hb2m at

physiological and near physiological pH. In doing so, it recapi-

tulates and rationalizes previous experimental observations, and

draws new insights into the aggregation mechanism of DN6,

including the prediction of aggregation hot spots.

Results

Identification of an aggregation-prone folding
intermediate

The free energy (FE) surfaces at the folding temperature (Tf),

evaluated with the WHAM method [46], reveal a well-defined

intermediate basin for DN6 that is not present in the FE surfaces of

Figure 1. The wild-type human beta-2 microglobulin protein. The native structure of wild-type (WT) human beta-2 microglobulin (Hb2m) (A),
its primary sequence (B) and secondary structure content (C). Hb2m comprises 99 residues arranged into a typical immunoglobulin (Ig) fold. It exhibits
a sandwich-like structure formed by two sheets of anti-parallel b-strands. One of the sheets comprises strands A-B-E-D with the second sheet being
formed by strands C-F-G. The native structure is stabilized by a disulfide bond (highlighted in yellow) established between residue Cys25 (located on
strand B) and residue Cys80 (located on strand F). Another key structural feature of Hb2m is the existence of a peptidyl-prolyl bond on the BC-loop
(between His31 and Pro32), which adopts the thermodynamically unfavorable cis-conformation in the native structure. The location of each b-strand
along the Hb2m sequence is also shown (C). In the cleaved variant, DN6, the secondary structure assignment is similar with b-strands being defined in
the following manner: 8–11(A), 21–27(B), 35–41(C), 44–45(C9), 64–70(E), 78–84(F), and 91–94(G).
doi:10.1371/journal.pcbi.1003606.g001
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Hb2m (Fig. 2A). The native and intermediate states populate

,38% and 11% of the equilibrium ensemble at Tf, respectively.

To isolate and structurally characterize the intermediate state

populated by DN6, which we term DN6-I, we performed

structural clustering over an ensemble of conformations collected

from DMD simulations at fixed temperature (,Tf). The interme-

diate species preserves the trans-isomerization of Pro32 (as a

consequence of the native-centric character of the Gō potential)

and exhibits an unstructured/disordered strand A detached from a

fairly conserved core region comprising residues 21 to 94 (i.e.

strands B–G and connecting loops) (Fig. 2B). The detachment of

strand A from the protein core and its structureless nature are

likely the result of a smaller number of native interactions

involving this secondary structural element, which decreases by

27% with regard to that observed in the full length species (Fig.
S5). The evaluation of solvent accessible surface area (SASA) per

residue reveals that 62% of the hydrophobic core residues become

highly solvent-exposed in DN6-I with SASA exhibiting a 3- up to

7-fold increase in Leu7, Val9, Leu23 and Trp95, all located at the

termini. Phe30 on the BC-loop, and Ile35 in strand C are also

significantly more exposed to the solvent in the intermediate state

(Fig. 2C). These observations are particularly relevant because the

exposure of aggregation-prone hydrophobic patches has been

pointed out as a hallmark of protein aggregation (reviewed in [47])

and suggest that the identified intermediate state has a high

aggregation potential. We conjecture that strand A, by being

exposed to the solvent, will be a particularly important structural

motif for the early aggregation stage of DN6.

The Gō potential adopted in this work does not predict an

equilibrium population of a similar full-length species, with a

conserved core region and detached strand A, across the folding

transition of the WT variant. However, there is experimental evi-

dence that the amyloid-transition of the full-length Hb2m is

concomitant with a detachment of the N-terminal strand A [48]

triggered by an acidic pH [19,49–51] or Cu2+ binding [7,48,52].

Therefore it is likely that the full-length Hb2m may undergo a

similar conformational transition.

Effect of pH on the structure of the intermediate state
The DN6-I intermediate state identified with the Gō model

highlights the importance of native topology in determining the

folding space. In order to investigate how the pH modulates the

structure of the intermediate state, and, in particular, the degree of

solvent-exposure of the unstructured strand A, we set up a series of

CpHMD simulations that used the intermediate conformation as a

topological template. This means that a structurally refined version

of DN6-I was prepared by taking into account the structural

information provided by the native-centric model. The refined

structure was then used as the starting conformation in CpHMD

simulations at pH 7.2 and pH 6.2.

The analysis of conformational ensembles taken from the

equilibrated parts of CpHMD trajectories reveals that pH 6.2 has

a striking effect on the region comprising strand A and the AB-

loop. In DN6-I this region deviates significantly from its original

position in the native structure as indicated by the large (mean)

RMSD (16 Å) obtained after optimally superimposing each

analyzed intermediate conformation over the native core region.

The recorded RMSD at pH 6.2 represents an increase of 20%

from that observed at pH 7.2 indicating a distinctively higher

degree of solvent exposure at lower pH. On the other hand, the

core region is better preserved at pH 6.2 with the (mean) RMSD

decreasing up to 40% relative to pH 7.2 (Table S1).

The increased solvent-exposure of the N-terminal region

(comprising residues 6 to 20) at pH 6.2 can be tentatively

Figure 2. Characterization of the intermediate state populated
by DN6. (A) Free energy surfaces for the Hb2m and DN6 variant,
showing an intermediate basin for the truncated mutant. The location
of the free energy minima shows that the intermediate’s energy, E,
represents 83% of the native energy and its radius of gyration, Rg, is
18% larger than that of the native state. The root-mean-square
deviation, RMSD, measured with reference to the Hb2m native structure
is ,10 Å. (B) Structure of a representative conformation (i.e. the
conformation that is the closest to the cluster centroid) populated by
the DN6 intermediate (which was isolated with structural clustering),
and mean values (averaged over the intermediate’s ensemble) of
selected properties. The first Ca RMSD is measured for the whole chain
taking as a reference the native structure (PDB ID: 2XKU). The second Ca
RMSD21–94 was evaluated over the core region comprising residues 21
to 94 (i.e. strands B–G and connecting loops), after fitting to the core
region of the native structure. This property highlights the conservation
of this region in the intermediate species. (C) SASA values per residue
were obtained as averages over the ensemble of intermediate
conformations identified in the clustering and compared with those
of the Hb2m native structure (black line). The SASA values depicted
were obtained with GROMACS v4.5.5 [80–82]. The dots represent the 21
hydrophobic core amino acids: Leu7, Val9, Leu23, Val27, Phe30, Ile35,
Val37, Leu39, Leu40, Leu54, Phe56, Trp60, Phe62, Tyr63, Leu64, Leu65,
Phe70, Tyr78, Val82, Val93, and Trp95. In the intermediate species 62%
of the hydrophobic core residues have a noticeable increase in SASA.
doi:10.1371/journal.pcbi.1003606.g002
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explained on the basis of a more favorable electrostatic contribu-

tion to the free energy of solvation at this pH. At a physiological/

near-physiological pH Arg12 and Lys19 are permanently proton-

ated, Glu16 is mostly deprotonated (only ,0.3% protonation at

pH 6.2), but the protonation state of His13 changes given the

similarity between the medium pH and the average pKa of its

imidazole ring (6.0). Our data hints at the possibility of a direct

connection between His13’s protonation state and the SASA of the

N-terminal region (comprising both strand A and the AB-loop) at

pH 6.2 (Fig. S1). Therefore, one can argue that the higher degree

of protonation of His13 at pH 6.2 leads to an increased solvent-

exposure of that region which is concomitant with a favorably-

enhanced electrostatic contribution to its free energy of solvation

(it has been shown that protonation of the imidazole side chain

produces a substantial increase of that histidine’s absolute

solvation free energy [53]).

Dimerization propensity of the intermediate state
Seminal studies carried out by Miranker and co-workers have

emphasized the importance of dimerization in the aggregation

pathway of a mutational variant of Hb2m (P32A) [6]. The latter is

a structural mimic of an intermediate state (M*), which shares with

IT (and, therefore, with DN6) important structural features. Of

note, a trans peptidyl-prolyl His31-Ala32 bond and the re-packing

of several aromatic side chains within the hydrophobic core

including Phe30 and Leu62. Furthermore, Eichner and Radford

have shown that the M* intermediate elutes at a retention volume

identical to that of IT [12]. More recently, studies carried out by

Radford and co-workers on the mutational variants P5G and DN6

(for which the intermediate IT represents respectively ,60% and

90% of the equilibrium ensemble in physiological conditions)

showed that the first assembled oligomeric state in the amyloid

pathway of both mutants is a dimer of IT monomers [12].

Motivated by these findings, we carried out an exhaustive study of

the dimerization interface in DN6 via MC-ED simulations.

We mapped the dimerization interfaces of the intermediate state

(DN6-I) and of the native state (DN6-N) at pH 7.2 and 6.2 by

docking pairs of conformations obtained from CpHMD simula-

tions under those pH conditions. We also investigated the

dimerization interface of the native state of WT Hb2m (WT-N)

as a control experiment.

In Figure 3 we report density histograms (DH) of the number

of intermolecular contacts at pH 7.2 (Fig. 3A) and pH 6.2

(Fig. 3B) for the dimers of the analyzed species. This property

provides a quantitative measure of the quality of the geometric

matching between the two monomers because each dimer

conformation was optimized for maximum number of interactions

and minimum number of excluded volume interactions. Each

dimer interface was thus optimized for shape complementarity, a

property that is considered a major driver of protein-protein

association [44,45]. In this sense the density histograms provide

insight regarding the dimerization potential of each species. In the

DHs the vertical lines indicate the mean, and the mode

corresponds to the highest point of the distribution (representing

the most probable number of intermolecular interactions in the

population of dimers). In order to facilitate the comparison of these

data, Figures 3C–E separately report the DHs for the two

considered pH values. The analysis of the DHs reveals important

findings. First, the high similarity between the curves obtained for

the WT-N species suggests that it should conserve its dimerization

propensity upon changing the pH from 7.2 to 6.2 (Fig. 3C). Since

WT-N is the most populated state [9,10,15] of the in vitro

equilibrium population in physiological conditions, our observa-

tion is consistent with the conservation of the aggregation behavior

of Hb2m across this pH range [25]. Our analysis further suggests

that at the molecular level this behavior may be rooted in the

conformational robustness exhibited by the monomeric form of

WT-N across the analyzed pHs (Table S2), and, in particular,

points out the importance of the protective role played by the N-

terminus in maintaining the hydrophobic balance that stabilizes

the native state [25]. Second, DN6-I forms dimers with number of

intermolecular contacts given by the mode (mean) with a

probability that is up to ,52% (60%) higher than in the WT-N

at pH 6.2 (for DN6-N this probability goes up to 51% at pH 7.2)

(Fig. 3D and Fig. 3E). This is consistent with the higher

amyloidogenicity of DN6 at physiological/near physiological pH.

Third, when the pH decreases from 7.2 to 6.2, the mean and the

mode decrease marginally for both DN6 conformational states.

However, in the case of DN6-I, this mild decrease goes in tandem

with a significant increase (up to 10%) in the probability of

formation of the corresponding dimers (Fig. 3E). On the other

hand, for DN6-N, the dimer conformations representative of the

mean and mode are less probable at pH 6.2 than at pH 7.2

(Fig. 3D). Since it is likely that further oligomerization will be

limited by nucleation of dimers, both measures (i.e. mean and

mode) predict that DN6-I plays a major role in amyloid formation

at pH 6.2.

Structural mapping of the dimerization interfaces
In order to pinpoint the regions of the protein that are most

likely to start dimerization, we have constructed probability

contact maps for the dimer interfaces (Fig. S2). The probability of

each intermolecular contact was evaluated by counting the

number of times the contact is present in the ensemble of dimers

that was used to determine the DH. We have also analyzed several

representative dimer conformations (i.e. conformations with

number of intermolecular contacts corresponding to the mode

and tail of the DHs), to gauge their importance for further

oligomerization (Fig. 4 and Fig. S3). We have chosen to analyze

the structure of ‘mode’ dimers for consistency reasons, i.e., because

they exhibit the most likely number of intermolecular contacts

(and a minimal number of excluded volume interactions) in the

dimer interface, a property that quantifies the degree of geometric

matching and shape complementarity of the interfaces in the

ensemble of MC-ED generated dimers. On the other hand, the

analysis of ‘tail’ dimers is particularly pertinent for the WT-N

species because a unique feature of its DH is a rather extended tail

indicating the formation of dimers with the strongest geometric

matching (Fig. 3C). Since shape complementarity is a major

driver of protein aggregation and is maximized for ‘tail’ dimers it is

important to establish if/how the existence ‘tail’ dimers may affect

the aggregation performance of Hb2m.

We find that at both pH values dimerization of WT-N is

majorly driven by the DE-loop (especially residues 56–60) (Fig.
S2A). The analysis of several dimer conformations representative

of the mode of the DH reveals that the most likely dimerization

interface involves the DE-loop of one monomer that associates

with the second monomer in several possible spots (Fig. S3A). On

the other hand, the DE-loop directed interfaces of the strongly

packed dimers are more specific, being based on loop-loop

interactions involving the BC and DE aromatic-rich regions (Fig.
S3B). Since the latter become unavailable for subsequent

interaction, further oligomerization (via addition of another

monomer) appears to be restricted to the potentially adhesive

residues located on the EF-loop (e.g. Phe70 and Tyr78) and in the

C-terminus (Trp95). Our analysis therefore predicts that the

recruitment of the aromatic-rich regions in the WT-N best

geometrically matched dimers’ interfaces renders these dimeric
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entities particularly soluble thus lowering their aggregation

potential (soluble dimerization was recently found to be a possible

dead-end for aggregation in Ref. [54]).

In order to gauge the importance of residue 76 (located in the

EF-loop) for the dimerization of Hb2m we have selected a

representative mode dimer of WT Hb2m and used the program

SCAP (included in the Jackal package [55]) to replace (in each

monomer) the original amino acid Asp by an Asn thus mimicking

the mutation that occurs in the systemic amyloidosis characterized

by extensive visceral amyloid deposits. We then computed the

electrostatic potential at the interface of both dimers (i.e. with and

without the mutation) (Fig. S4). Our results are consistent with the

enhanced amyloidogenicity observed in vitro for Asp76Asn with

regard to Hb2m [21,22] because they indicate that the mutation

contributes to stabilize the dimer by decreasing the amount of

repulsive electrostatic interactions between the EF-loop of one

monomer with the DE-loop of the second monomer.

In the case of DN6-N the pH has a modulating effect on the

dimerization interface. First, the DE-loop is no longer the major

player in dimerization, as both the AB- and BC-loops gain

significant importance (Fig. S2B; Fig. 4C and Fig. 4E). The

most important structural element for dimerization in DN6-I at

pH 6.2 is the unstructured and detached strand A together with

the adjoining AB-loop (Fig. S2C). Furthermore, inspection of

several dimer conformations with number of intermolecular

contacts equal to the mode (Fig. 4B and Fig. 4D; Fig. S3C
and Fig. S3D) reveals that strand A facilitates fibril growth by

imposing a rather straightforward oligomerization pattern. Indeed,

strand A acts as a sticky ‘hook’ that recruits another monomer by

interacting with its DE-, EF- or FG-loops (Fig. 4B and Fig. 4D;

Fig. S3C and Fig. S3D) thereby leaving the second monomer’s

strand-A available for further growth. These ‘sticky hook’ inter-

actions driven by strand A clearly drive a preferred oligomeriza-

tion direction that could coincide with that of the amyloid fibril

axis (Fig. 4I). Whenever monomer association involves strand A-

strand A interactions, the resulting dimers can still grow via the

BC- and DE-loops (Fig. 4F; Fig. S3D).

Prediction of aggregation hot spots at different pH
In order to identify putative hot spots for aggregation, we com-

puted the probability of intermolecular interaction per residue in

the subset of the 50 most frequent intermolecular interactions. The

latter were identified by taking the ensemble of dimers used in the

evaluation of the corresponding DH. Pairs involving an aromatic

amino acid and His or Lys dominate in DN6-I dimers at pH 6.2.

In WT-N (Fig. 5A) the distinctive predominance of interactions

involving the DE-loop illustrates this region’s importance for

dimerization. The relevance of the DE-loop in different experi-

mental conditions has been acknowledged by several authors

[11,56,57], including a recent study by Eisenberg and co-workers

which reported a hinge motif in dimers of Hb2m based on DE-

loop swapping at pH 8 (in the presence of DTT) [32] and another

study by Rennella et al. which reported the formation of Hb2m

dimers with a head-to-head arrangement of monomers driven by

DE-loop interactions [16]. The aromatic residues Phe56, Trp60

(located on the DE loop’s tip), Phe62, Tyr63 and the aliphatic

Leu65 are expected dimerization spots because they assist the

docking of Hb2m onto the MHC-I heavy chain [2]. Phe62, Tyr63

and Leu65 were further shown to play an important role in fibril

nucleation at acidic pH 2.5 [58]. The importance of Phe56 and

Trp60 in b2m oligomer assembly based on D-D strand association

(pH,7) was reported in several studies [7,57]. Of note, Trp60 was

found to be the residue involved in the largest number of

intermolecular contacts in Molecular Dynamics simulations that

studied intermolecular interactions establishing between mono-

mers of b2m [59]. The results reported here recapitulate that, with

the exception of Leu65, DE-loop aromatic residues are important

Figure 3. Intermolecular contact formation at pH 7.2 and 6.2.
Density histograms for the number of intermolecular contacts
established in dimers of WT-N, DN6-N and DN6-I at pH 7.2 (A) and
pH 6.2 (B). To facilitate the comparison, the DHs for pH 7.2 and for
pH 6.2 for WT-N (C), DN6-N (D), and DN6-I (E) are also shown. The
vertical lines in the plots indicate the mean of the distributions.
doi:10.1371/journal.pcbi.1003606.g003
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drivers of monomer association in Hb2m. We further find that

lowering the pH reduces the importance of residues Phe56, Lys58

and Phe62, while Trp60 becomes a particularly promiscuous

interaction hub at pH 6.2 (Fig. 5A). However, the analysis of

dimer’s conformations whose formation is triggered by this region

of the protein indicates that further oligomerization is not

straightforward (Fig. S3A and Fig. S3B). In other words, our

results suggest that while the DE-loop is certainly important for

dimerization, the amyloid route that is triggered by this structural

element is not the most efficient one. Since the native state is the

dominant conformational state in physiological (and near physi-

ological) pH, this observation rationalizes the little amyloidogenic

character of WT Hb2m in those conditions. Also, in line with

this idea, we find that in DN6, which is considerably more

amyloidogenic than Hb2m, the importance of Trp60 (and nearby

residues) is substantially reduced, especially in DN6-I at pH 6.2.

This observation is particularly relevant because at this pH the

cleaved mutant is more amyloidogenic.

In DN6-N (Fig. 5B), the region comprising the AB-loop

(residues 10 to 20) exhibits an increased probability to form inter-

molecular contacts at both pH values. Due to increased solvent

exposure of the BC-loop (residues 28 to 34) (Fig. 2C), there is also

a significant enhancement of the participation of Phe30 and His31

(especially at pH 6.2). Direct involvement of the BC-loop in DN6

oligomer assembly (in physiological and near physiological pH)

was reported in Ref. [11]. Furthermore, His31 was found to be a

major contributor to the intermolecular contacts established in

association interfaces within hexamers of H13F [7] and tetramers

of DCIM50, the E50C Hb2m mutant disulfide-linked homodimer

[57], in physiological conditions (in the presence of Cu2+ or 20%

TFE and fibril seeds, respectively). It was also observed to be a com-

ponent of the non-covalent interface between two DN6 nanobody-

trapped domain-swapped dimers (pH 5.0) in the respective crystal

asymmetric unit along with the aromatic residues Phe56 and Trp60

[31]. The region comprising the end of strand F and the FG-loop

(residues 84 to 90) – which is not involved in dimerization of Hb2m

– becomes especially relevant for DN6-N (pH 7.2) and DN6-I (at

both pHs) (Fig. 5C). Interestingly, the stretch of amino acids
83N-89Q was implicated in the nanobody-driven domain-swapping

aggregation of DN6 [31] and was shown to fibrillate into amyloid in

a highly acidic pH 2.0 [60].

At neutral pH, both the BC- and DE-loops of DN6-N and DN6-

I deviate significantly from their native positions (Table S1 and

Table S3). The cleaved N-terminus, which is more detached from

the core in DN6-I, facilitates such conformational migration.

Consequently, His84 located in the FG-loop (adjoined to the BC-

loop), is more solvent exposed in DN6-N and DN6-I than in WT-

N thus becoming an important interaction hub in the mutant’s

dimers (Fig. 5B and Fig. 5C). In the DN6-N dimer interfaces,

His84 preferentially interacts with Phe56 and Trp60 at pH 7.2,

while interaction with Tyr10 becomes relevant in DN6-I,

especially at pH 6.2 (see next section for further details). The

low amyloidogenicity of the Hb2m mutational variant DN6/H84A

in physiological or near-physiological pH [11] may thus reflect the

absence of relevant interactions involving His84. Taken together,

these findings thus point out to a direct participation of His84 in

Hb2m association, which adds up to a proposed indirect effect

according to which His84 helps maintaining the trans-isomeriza-

tion of Pro32 thus enhancing the population of IT [61].

In DN6-I (Fig. 5C) residues Tyr10 and His13, located in strand

A and start of the AB-loop, gain importance especially at pH 6.2.

Previous studies reported the participation of these residues in

association interfaces within hexamers of H13F [7] and tetramers

of DCIM50 [57]. Furthermore, a single Tyr residue can act as the

sole driving force triggering self-aggregation of a short polyalanine

peptide (through cation - p and p-stacking interactions) [62].

His84 and Phe30 maintain their relevance for dimerization at both

pHs. There is, however, a noticeable increase in the importance of

Trp60 at pH 7.2 (in comparison with DN6-N). This happens

because there is a larger migration of the DE-loop from the core

region facilitating the participation of Trp60 in dimerization (Table
S1). At pH 6.2 the EF-loop (residues 71–77), especially residues

Glu74 and Lys75, also gains importance in dimer association (the

EF-loop is not involved in dimerization in the WT-N). Overall, the

most important feature of DN6-I dimerization is the striking

increase in importance of strand A relative to WT-N.

Fine-grained description of the dimerization interfaces
Here we identify the interaction partners of the predicted

dimerization hot spots (Fig. 6) and pinpoint specific interactions

(e.g. aromatic p-stacking, cation-p, and hydrophobic) that may

contribute to efficiently stabilize the dimerization interface in vitro

and in vivo (see Table S4 and description therein of the 50 most

frequent intermolecular contacts in DN6-I dimers at pH 6.2).

Indeed, while the force field used in the MC-ED simulations does

not explicitly take into account specific types of interactions, it is

reasonable to determine if the predicted (structured-based) dimers

meet the geometric requirements for the occurrence of such

interactions (e.g. Cation-p interactions require that at least one of

the atoms of the aromatic ring is located no further than ,4.5 Å

from one of the atoms carrying the net or partial positive charge –

in His the positive charge can be located in the atoms Nd1, Ne2,

or Ce1 of the imidazole ring. In the present Gō model the

maximum contact distance is ,4.7 Å. Therefore, every contact

between one His or Arg or Lys and one aromatic residue is within

the Cation-p interaction distance).

Dimerization of WT-N. Phe56, Trp60, and Trp95 are the

most prevalent amino acids in the WT-N interfaces at both pHs.

These amino acids belong to two aromatic clusters (one formed by

Phe30, Phe56, Phe62, Tyr63 and the other formed by Phe70,

Tyr78, Trp95) of native Hb2m. At neutral pH Phe56 interacts

preferably with Tyr63 and Trp95, while Trp60 interacts mostly

with Phe70 and Trp60. Trp95 interacts with several residues in

the DE-loop. In a more acidic pH Phe56 interacts more with

Phe30 and Trp60. The latter is also found in association with

Trp95 and Phe62 with high probability. At pH 6.2 Tyr10

becomes a new, albeit less important, player in WT-N dimer

interfaces interacting with Trp60 (possibly via aromatic p-stacking

interactions), Asp59 and Lys58 (possibly via a stable cation-p
interaction). Overall, there is a preponderance of intermolecular

contacts involving aromatic amino acids within the DE-loop which

interact preferably with other aromatic amino acids in the second

monomer (Fig. 6A).

Dimerization of DN6-N. Phe30 and its neighboring residue

His31 are putative hot-spots for DN6-N aggregation at both pHs.

They interact preferably with Trp60, followed by Lys19 (Phe30)

and Arg97 (His31). His84 becomes distinctively important in DN6-

N dimers at pH 7.2 having as most probable interaction partner

aromatic residues Phe56 and Trp60 (Fig. 6B).

Dimerization of DN6-I. Phe30 and His84 are potential hot

spots for DN6-I aggregation, along with Tyr10 and His13, whose

interaction potential increases substantially at pH 6.2. At this pH,

Tyr10’s most probable interaction partners include Trp60, His84,

Glu74, and Asp59. His13 interacts preferably with Lys75, Phe56,

His84 and Trp60, while His84 appears to prefer the aromatic

residues Tyr10, Trp60, and Phe30, among others. His31 is also an

important participant in DN6-I dimer interfaces at pH 6.2 where

it establishes frequent interactions with Trp60, Lys75 and Tyr10.
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At pH 7.2, His13 and His31 have slightly fewer interaction

partners but there is still a preferential association with Trp60,

Phe56 (His13), and Tyr62 (His31) (Fig. 6C).

Residues His13, His31, and His84 are particularly interesting

aggregation hot spots (at pH 7.2 and 6.2) in the dimerization of

DN6 (with His13 assuming a more important role in the

intermediate state and His31 in the native state at pH 6.2). These

histidines interact preferentially with aromatic amino acids,

including the highly promiscuous Trp60. Recently, the relevance

of such associations for aggregation has been put forward in the

case of islet amyloid polypeptides which were found to rapidly

oligomerize into dimers and trimers via His-Tyr interactions [63].

Since the imidazole side chain of histidine has a pKa of

approximately 6.5 in solution [64] (in the current CpHMD

simulations this particular pKa takes values between 6.7,pKa,4),

the protonation of histidines in the DN6 sequence has long been

implicated with its increased amyloidogenicity at pH 6.2 [11]. A

change of pH towards a more acidic value will favor the onset of

strongly favorable cation-p interactions between the positively

charged imidazole ring of His and the negatively-charged indole

p-electron cloud in the aromatic amino acid. This ‘‘switch-like’’

behavior displayed by His-aromatic cation-p interactions, which is

promoted by the protonation of His, produces an increase in the

stability of the interaction in the order of 1 to 2 kcal mol21 [65].

We conjecture that this effect should play an important role in

DN6 dimerization producing a differentiated stabilization of its

dimers at pH 6.2. This should be particularly relevant for the

intermediate state dimers in which the occurrence of His-pairing

interactions at pH 6.2 represents an increment of 23% relative to

the neutral pH situation and for which the fraction of protonated

His13/His31/His84 increases 3/26/1.25 times at pH 6.2. This

increase in the fraction of protonated histidines upon a reduction

of the pH from 7.2 to 6.2 is a direct consequence of the average

pKa values of the DN6-I histidines’ imidazole rings. In fact, the

average pKa of the imidazole ring of His13/His31 in DN6-I is 6.0/

5.2. The corresponding value for His84 could not be determined

but it is low (,4) therefore explaining the lower increase in the

fraction of protonated His84 at pH 6.2. The possibility/likelihood

of cation-p interactions within DN6 dimer interfaces (Table S4) is

compatible with their acknowledged relevance in a variety of

protein-protein interfaces [66,67]. Indeed, cation-p interactions

have recently been shown to play an active role in molecular

recognition in an intrinsically disordered oncoprotein family [68].

Discussion

In recent years the identification and structural characterization

of intermediate states for folding and aggregation [33,69] has greatly

contributed to a better understanding of the relation between the

folding and aggregation landscapes [70]. The identification of these

states in association with proteins of medical interest is of paramount

importance. Indeed, not only it contributes to solve their aggrega-

tion mechanism but it also strengthens the need of including protein

homeostasis as a therapeutic target for conformational diseases [71].

The work reported here illustrates how the combination of

computational methods with different levels of resolution provides

a unique opportunity to analyze the aggregation pathway and

formulate testable predictions thus contributing to clarify the

relation between folding and aggregation.

This study focused on the truncated mutant DN6 of protein

Hb2m and its dimerization mechanism. While the results reported

here help gaining insights into the fibrillogenesis mechanism of the

parent species, they do not entail an exclusive role of the truncated

species in the actual fibrillogenesis pathway of the full-length protein.

Our study predicts the existence of an intermediate state for

folding and aggregation in DN6. The intermediate preserves the

trans-isomerization of Pro32 that characterizes IT and a new

structural trait: an unstructured strand A that detaches signifi-

cantly from a fairly conserved core region comprising residues 21

to 94. The new intermediate state identified here represents a

conformational excursion of the native state extending the loss of

native structure already detected in the amyloidogenic intermedi-

ate IT [10,11]. The association of an unstructured/detached

strand A with the onset of fibrillogenesis in b2-microglobulin was

originally proposed by Verdone and co-workers [48], and

subsequent studies have linked this structural trait with acidic

pH [19,49–51] or Cu2+ binding [7,48,52]. Therefore, it is likely

that a similar conformational pathway may occur also with the

full-length protein despite remaining undetected in the simulations

carried out in this study. That this should the case is in fact

demonstrated by the fibrillogenesis of the mutants D76N and R3A

at neutral pH and without seeding. A lack of structure in one or

both termini is a common feature shared by intermediates states

that link the folding and aggregation landscapes [33,69,72].

Results reported here indicate that DN6 dimerizes with higher

probability than WT Hb2m, in line with its higher in vitro

amyloidogenic potential and further predict that at pH 6.2 the

intermediate state DN6-I identified in this work becomes the key

player in DN6 dimerization. We find that the region comprising

strand A and the AB-loop is critical for dimerization (especially at

pH 6.2) and, presumably, to further oligomerization as well.

Eichner and Radford reported a set of resonances in strand A and

in the AB-loop of DN6 that shifted significantly at physiological

pH depending on protein concentration, which is consistent with

their involvement in aggregation. Interestingly, most of the

chemical shifts of strand A are not defined because the residues

resonate in a crowded region of the spectrum [11]. This may be

taken as an indication of conformational liability for this part of

the protein, making the NMR characterization of the proposed

intermediate state a particularly challenging task.

The DN6(-N and I) dimers depicted in this work provide direct

access to the atomic-level details associated to the participation of

the N-terminal and BC-loop regions in Hb2m oligomer assembly.

In particular, our results reinforce the importance of the direct

involvement of both regions in oligomerization which has been

previously observed for several Hb2m mutational variants usually

in association with an enhanced amyloidogenicity [7,11,57].

Figure 4. DN6-N and DN6-I dimer conformations. Representative dimer conformations with number of intermolecular contacts equal to the
mode (mode dimers) and tail (strongly-matched dimers) of the density histograms. Mode dimers of DN6-N (A) and DN6-I (B) at pH 7.2, DN6-N (C) and
DN6-I (D) at pH 6.2. Strongly-matched dimers of DN6-N (E) and DN6-I (F) at pH 7.2, DN6-N (G) and DN6-I (H) at pH 6.2. The DN6-I mode dimers (and
the strongly-matched dimers at pH 6.2) highlight the involvement of strand A of one of the monomers in dimerization and the intrinsic possibility of
further oligomerization via the second monomer’s solvent-exposed strand A. If the unstructured strands A of both monomers are involved in
dimerization (as in the strongly-packed dimer at pH 7.2, F) further growth is still possible via the highly solvent-exposed and aromatic-rich DE-loops
(highlighted in green). In DN6-N the AB-loop and the ‘‘unstructured’’ DE-loop (which is detached from the protein’s core and exposed to the solvent)
account for the possibility of further oligomerization. Other examples of DN6-I ‘mode’ dimers are reported in Fig. S3C and Fig. S3D. (I) Pictorial
representation of monomers of DN6-I that were packed ‘by hand’ to indicate a possible oligomerization pattern leading to amyloid fibrils.
doi:10.1371/journal.pcbi.1003606.g004
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The study of the dimerization interface we carried out for the

WT form also recapitulates previous experimental findings.

Namely, they reinforce the relevance of the DE-loop aromatic

amino acids as important drivers of monomer association in

Hb2m. We found that monomer association driven by this region

of the protein results into dimers of (WT) Hb2m with a head-to-

head arrangement of monomers that is similar to what is observed

by other authors [16,59]. The current work establishes that this

(WT) Hb2m mode of monomer association is such that further

oligomerization is not straightforward. This is in agreement with

the reported limited oligomerization of the native WT in phy-

siological conditions [12,56].

The comparative study of the dimerization interfaces we

carried out for DN6 and WT Hb2m allowed the prediction of

putative dimerization hot spots in the truncated form. Residues

Phe30, Phe56, Trp60 and Trp95 are universally important

interaction hubs across the three species and pHs. They are able

to establish a myriad of associations via their aromatic side-

chains ranging from hydrophobic to the more stabilizing cation-

p and p-stacking interactions. Trp60 is always highly promis-

cuous, Phe30 becomes distinctively important for DN6-N and

DN6-I at pH 6.2, with Trp95 assuming a more important role

in WT-N.

Finally, our results highlight the involvement of His84 in

important interactions within DN6-N and DN6-I dimers therefore

contributing to rationalize the low amyloidogenicity observed in

vitro (at physiological and near-physiological pH) for the Hb2m

mutational variant DN6/H84A [11].

Methods

This work employs different computational methodologies,

described below. Figure 7 shows a schematic representation of

how these methods and their outputs are combined.

Full atomistic Gō model
We consider a full atom representation where each non-

hydrogen atom is taken as a hard sphere of unit mass. The atom’s

size is defined by scaling the relevant van der Waals (vdW) radius

by a factor a,1 [73]. Protein energetics is given by excluded

volume interactions (which forbid hard-core clashes), bonded

interactions, and non-bonded (or contact) interactions, all of which

are all modeled by discontinuous, piecewise constant interaction

potentials. Contact interactions are represented by a square-well

potential whose depth is given by Gō energetic [35]. Thus, if

atoms i and j are located in residues which are separated by more

than two units of backbone distance the interaction parameter

between them, eij, is given by

eij~

? if rijvs

Dij if sƒ rijvls

0 if rij§ls

8><
>:

ð1Þ

In the expression above s = a (r0i+r0j) is the hard-core distance,

r0i is the vdW radius of atom i, l is a scaling factor that controls the

range of attractive interactions, and Dij = 21e (where e is the

energy unit) if i and j are in contact in the native conformation and

is 0 otherwise. We followed Ref. [74] in treating the energetics of

the disulfide bond in the same manner as we treat the other

contact interactions. We set a = 0.80 and l = 1.6 in order to have a

well-behaved folding transition [73,74]. This choice of parameters

sets a cut-off distance of 4.7 Å (for methyl carbon), and leads to

957 native contacts in Hb2m (PDB ID: 2XKS) and 899 native

contacts in the DN6 mutant (PDB ID: 2XKU). The native

contacts are distributed within the elements of secondary structure

as reported in Fig. S5. The total energy of a conformation is

computed as the sum over all atom pairs,

Figure 5. Putative aggregation hot spots. Intermolecular contact
probability per residue evaluated over the ensemble of the 50 most
frequent intermolecular contacts found in the dimers of WT-N (A), DN6-
N (B) and DN6-I (C) at pH 7.2 and 6.2. The residues that exhibit a high
probability to establish intermolecular contacts in DN6 (but not in WT-
N) are considered to be putative aggregation hot spots.
doi:10.1371/journal.pcbi.1003606.g005
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E~
X

all pairs

eij ð2Þ

Further information about the adopted model can be found in

Refs. [33,34,75]. Temperature is measured in units of e/kB.

Replica-exchange discrete molecular dynamics
The folding transition is explored with a discrete (or discontin-

uous) Molecular Dynamics (DMD) engine [76] and correct

equilibrium sampling is achieved by using a standard replica-

exchange (RE) Monte Carlo method [77] with a temperature grid

that was calibrated to ensure a high acceptance probability (.

90%) for the RE moves and replica ‘round-trips’ (i.e. moving from

the top to the bottom of the temperature grid and back) with a

mean cycle time of ,50 RE moves. The equilibrated part of each

simulation consisted of ,561010 events per replica, and was used

to collect uncorrelated data for the thermodynamic calculations.

The folding (or melting) transition Tf is usually estimated as the

temperature at which the heat capacity Cv attains its maximum

value. Here, the Cv is computed from the mean squared fluc-

tuations in energy at each temperature considered in the RE

simulations, in accordance with the definition Cv~(vE2
w{

vEw
2)=kBT2. To compute the free energy as a function of

different reaction coordinates (E, Rg, RMSD) we have used the

weighted histogram analysis method (WHAM) [46].

Figure 6. Interaction pies for the dimerization hot spots. Detailed analysis of the interaction partners of the dimerization hot spots (i.e. amino
acids involved in the higher number of interactions within the set of the 50 most frequent intermolecular contacts). The numbers within each circle
identify the residue (via its number along the protein sequence) that interacts with a putative hot spot, while the associated color represents the
number of contacts found between the two-residues. The color code ranges from blue (i.e., small number of interactions) to red (i.e., large number of
interactions). Whenever a hot-spot candidate has many interaction partners (more than six) a rainbow-like pie is used, and the residues are not
explicitly identified. The hot-spots residues involved in the higher number of intermolecular interactions are mapped into the corresponding native
structure (left column), and colored according to the color code adopted in Figure 1.
doi:10.1371/journal.pcbi.1003606.g006
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Structural clustering
In order to isolate and structurally characterize the intermediate

state populated by the DN6 truncated variant we started by

running extensively long (up to 2.461011 events) DMD simula-

tions at fixed temperature T (with T located within the transition

region). A total number of three trajectories were considered. For

each trajectory, a conformational ensemble (with up to 30k

elements) was constructed by picking up equilibrated conformations

(i.e. conformations sampled beyond the first folding transition).

Subsequently, each conformational ensemble was analyzed with the

k-means clustering algorithm of Brooks and co-workers as

implemented in the MMTSB toolset [78]. The clustering radius

cutoff was set to 9 Å (whenever the trajectories sampled both the

native and intermediate basins) or 5–6 Å (if only the native basin

was sampled).

Constant-pH molecular dynamics
We performed CpHMD simulations at pH 7.2 and 6.2. The

simulations of WT-N and DN6-N started from their NMR

structures (PDB ID: 2XKS and 2XKU, respectively) and those of

DN6-I started from five conformations that were built from the

intermediate state obtained in DMD simulations. As reported

previously (page 4 and Fig. 2) the intermediate state predicted by

the full atomistic Gō model has two important structural features:

it preserves the native core structure of DN6 (the RMSD of the

region comprising strands B-G plus connecting loops to the same

region in the native structure is 3 Å) and it exhibits a detached and

unstructured strand A. To construct the starting conformations for

the CpHMD we have firstly detached strand A from the core of

the native conformation of DN6-N using PyMol (http://www.

pymol.org) and subsequently relaxed these conformations via

classical MD. All backbone dihedral angles modified were

confirmed to be in Ramachandran allowed regions [79]. Relaxed

conformations with an RMSD of 3 Å of the core region (measured

to the core of the native structure) and five representative positions

of strand A (that are consistent with those found in the ensemble of

conformations representative of the intermediate basin) (see

Fig. 2A) were then used as starting conformations for the

CpHMD. By adopting this procedure one obtains conformations

representative of the intermediate state with the most accurate/

realistic representation of side-chain and backbone geometries,

which is a requirement for the Monte Carlo ensemble docking

protocol (see below) because the quality of the method’s prediction

depends critically on the structural accuracy of the analysed

structures. We performed 30 simulations of 100 ns (3 systems, 2

pH values and 5 replicates). All simulations were performed using

the stochastic titration constant-pH MD method implemented for

the GROMACS package, developed by Baptista et al. [37,38,40–

43]. The stochastic titration method consists essentially of a MM/

MD simulation in which the protonation states of the protein are

periodically replaced with new states sampled by Monte Carlo

(MC) using Poisson-Boltzmann (PB) derived free energy terms. All

His and acidic (Asp, Glu and C-ter) residues were titrated at all

simulated pH values. Each constant-pH MD cycle was 2 ps long

and the solvent relaxation step was 0.2 ps long. The MM/MD

steps were performed using GROMACS 4.0.7 [80–82] and the

GROMOS96 54A7 force field [83]. The leap-frog algorithm was

used with a 2 fs time step. The structures were surrounded by

13641 SPC [84] water molecules in a rhombic dodecahedral box

with periodic boundary conditions. The non-bonded interactions

were treated using a twin-range cutoff of 8/14 Å and updating the

neighbor lists every 10 fs. Electrostatic long range interactions

were treated with a generalized reaction field [85] with a relative

dielectric constant of 54 [86] and an ionic strength of 0.1 M [41].

The Berendsen coupling [87] was used to treat temperature

(310 K) and pressure (1 bar) with coupling constants of 0.1 and

0.5, respectively. Solvent and solute were separately coupled to the

temperature bath. Isothermal compressibility of 4.561025 bar21

was used. All bonds were constrained using the LINCS algorithm.

The PB/MC calculations were done as previously described [88].

The MEAD 2.2.0 [89] software package was used for PB

calculations. The atomic charges and radii [88] were taken from

the GROMOS96 54A7 force field. A dielectric constant of 2 for

the protein and 80 for the solvent were used. Grid spacing of 0.25,

1.0 and 2.0 Å were used in the finite difference focusing procedure

[90]. The molecular surface was determined using a rolling probe

of 1.4 Å and the Stern layer was 2 Å. The temperature was 310 K

and the ionic strength was 0.1 M. The MC calculations were

performed using the PETIT (version 1.5) [91] software with 105

steps for each calculation. Each step consisted of a cycle of random

choices of protonation state (including tautomeric forms) for all

individual sites and for pairs of sites with a coupling above 2.0 pKa

units [91,92], followed by the acceptance/rejection step according

to Metropolis criterion [93]. Several tools from the GROMACS

software package [80–82] were used for analysis and others were

developed in-house. The DSSP criterion [94] was used to assign

the secondary structure.

Monte Carlo ensemble docking
The MC-ED method highlights the role of shape complemen-

tarity, which is a major driver of protein aggregation [44,45]. The

ultimate goal of the MC-ED [33] is to predict which parts of the

protein are most likely to form geometrically matched protein-

protein interfaces upon monomer self-association, and which

residues may be critical for the onset of dimerization (i.e.

dimerization hot-spots). This It is based on the assumption that

any pair of monomers (representative of a specific conformational

state, e.g., the intermediate state of DN6-I equilibrated at pH 6.2

or 7.2) may a priori dimerize should they come into interaction

distance and on the importance of interface shape complemen-

tarity in protein-protein association. This assumption translates

into building an ensemble of random pairs, over which the

propensity to form geometrically matched interfaces will be

analyzed statistically, as the starting point of the method. The

random pairing introduces no bias and it is physically reasonable,

since there is evidence that monomers approach each other via a

long-range hydration force of enthalpic origin acting on the

hydrophilic residues [95], before short-range, local hydrophobic

interactions initiate dimerization and a well-packed interface may

eventually be formed. The MC protocol employed to dock the two

monomers represents protein conformations as rigid bodies and

uses a series of random translations and rotations along the so-

called docking axis (which is the axis that a priori guarantees a

higher number of intermolecular contacts) combined with two cost

functions that exclusively take into account packing interactions.

For each pair of randomly selected conformations the MC returns

an optimized docking interface with a maximum number of

structural interactions (i.e. intermolecular contacts) and a mini-

mum number of excluded volume interactions (i.e. atomic clashes).

The detailed chemical structure of each amino acid is taken into

account in the full atomistic protein representation and also to

establish the intermolecular contact map (two amino acids are

considered to be in contact in the dimer if any two atoms, whose

size is given by the corresponding vdW radii, are within the

interacting distance defined by the intramolecular Gō potential).

To construct the density histograms the MC is applied consecu-

tively to random pairs until the mean and the standard deviation

of the number of intermolecular contacts converge. This typically
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Figure 7. Methodological flow-chart. The methodological approach used in this work is based on a three-stage process. In the first stage,
equilibrium sampling is performed with a full atomistic Gō model combined with replica-exchange discrete molecular dynamics simulations (RE-
DMD). The transition temperature is calculated as the temperature at which the heat capacity peaks, and the heat capacity is computed from the
mean square fluctuations in energy at each temperature considered in the RE simulations. The calculation of the free energy surfaces at the transition
temperature – which indicates the existence of an intermediate state for DN6 – is done with the Weighted Histogram Analysis Method (WHAM).
Structural clustering is performed over ensembles of conformations extracted from DMD simulations at the transition temperature to isolate the
intermediate state populated by DN6 that is termed DN6-I. In the second stage, constant-pH molecular dynamics simulations (CpHMD) are used to
study the effects of pH on the structure of DN6-I, native structure of DN6 (DN6-N) and native structure of the wild-type Hb2m (WT-N). Two pH values
are investigated, namely pH 6.2 and pH 7.2. The output of the CpHMD simulations consists of six ensembles of equilibrated conformations of DN6-I,
DN6-N and WT-N at the two considered pH values. Finally, in the last stage of our approach, the conformations extracted from the CpHMD
simulations are used as input for the Monte Carlo Ensemble Docking (MC-ES), which delivers ensembles of dimers of DN6-I, DN6-N and WT-N at the
two considered pH values. The study of the dimerization interface is based on the statistical analysis of the ensembles of dimers.
doi:10.1371/journal.pcbi.1003606.g007
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amounts to dock up to 5000 pairs of conformations per studied

species. The DHs are computed by counting (and normalizing) the

number of dimers assigned to each bin of intermolecular contacts.

The DHs provide a probabilistic description of the ensemble of

random pairs from the point of view of the number of contacts of

the geometrically matched interface each pair can form. They are

used for comparison of dimerization propensity between species,

and the ensemble of dimers that generates each DH is further used

to identify the most likely structural parts of the protein which are

key players in dimer formation, including the aggregation hot-

spots. In this regard, since the heterogeneity in the amino acid

interactions resulting from their different chemical nature is not

taken into account into the corresponding cost function, the

dimerization hot-spots will mostly depend on the quantity (and not

on the quality) of intermolecular interactions established by each

residue.

Supporting Information

Figure S1 Relation between the N-terminal region
(bA+AB-loop) SASA and His139 imidazole side-chain
charge in the DN6-I dimers at pH 7.2 (green) and
pH 6.2 (yellow). Each point corresponds to an independent

constant-pH MD trajectory mean SASA/His13 charge value.

Error bars indicate the standard deviation in each trajectory. The

correlation coefficients of the regressions have values of ,0.6. The

standard error of the regression coefficient at pH 7.2 (0.48) is,

however, 3 times larger than the one obtained at pH 6.2 (0.15).

(PNG)

Figure S2 Probability maps of the intermolecular
contacts established in the (A) WT-N, (B) DN6-N, and
(C) DN6-I dimer interfaces. The location of each b-strand

along the protein sequence is also shown for Hb2m. In the case of

the cleaved variant DN6, the secondary structure assignment is

similar with b-strands being defined in the following manner: 8–

11(A), 21–27(B), 35–41(C), 44–45(C9), 64–70(E), 78–84(F), and

91–94(G).

(PNG)

Figure S3 WT-N and DN6-I dimers. WT-N dimers (A–B)

and DN6-I dimers (C–D). Loops are highlighted in green/cyan

tones. In the DN6-I dimers the region comprising the A-strand and

the AB-loop is highlighted in blue. At pH 6.2 the preferred

association pattern in DN6-I mode dimers involves strand A of one

monomer and the BC-, DE-, and/or EF-loop of the second

monomer. The highly solvent-exposed strand A of the second

monomer remains available for further oligomerization. At pH 7.2

strand A is not so critical for DN6-I dimer association, and the

preferential association regions include the DE- and FG-loops.

(PNG)

Figure S4 Surface electrostatic potentials of a typical
(mode) WT-N dimer interface, with the original Asp76
(left) and the single-point mutation Asn76 (right), at
physiological pH 7.2. The color transitions from red – white –

blue when going from negative (25 kBT/e) – neutral (0 kBT/e) –

positive (+5 kBT/e) electrostatic potential. The regions around

residue 76, located in the EF-loop, are circled. In the WT-N dimer

interfaces the EF-loop of one monomer interacts, almost

exclusively through Tyr78, with the second monomer’ DE-loop

(Fig. S2A; Fig. S3A; Fig. 5A). The dimer depicted is a

representative example of such type of interaction. At physiolog-

ical pH, the EF-loop of the WT-N has 3 negative charges and 1

positive charge. The DE loop displays 2 negative and 1 positive

charges. In the WT-N dimer the interaction between both EF and

DE loops can thus be affected by unfavorable electrostatic

repulsions. The abundance of red color in the electrostatic map

indicates a high load of negative charges in this type of interface

(left) which is diminished when residue 76 is mutated into an Asn

(right). The elimination of one negative charge from the EF-loop

in the interface of the D76N dimer should therefore contribute to

stabilize it, facilitating further oligomerization. The amino acids

protonation states were attributed with PROPKA via the web

server PDB2PQR v1.8 (http://nbcr-222.ucsd.edu/pdb2pqr_1.8/)

and the calculation of the surface electrostatic potentials was done

with the Adaptive Poisson-Boltzmann Solver – APBS v1.4 (http://

www.poissonboltzmann.org/apbs/) and represented in VMD v1.8.7

(http://www.ks.uiuc.edu/Research/vmd/).

(PNG)

Figure S5 Native contacts in the Gō model. Number of

native contacts per b-strand in the native structures of (WT) Hb2m

(PDB ID: 2XKS) and truncated variant DN6 (PDB ID: 2XKU).

Secondary structure assignment is concurrent with the information

provided in the PDB data files. In the WT form b-strands are

defined within the sequence segments 6–11(A), 21–28(B), 36–

41(C), 44–45(C9), 50–51(D), 64–70(E), 79–83(F), and 91–94(G). In

the cleaved variant b-strands are defined in the following manner:

8–11(A), 21–27(B), 35–41(C), 44–45(C9), 64–70(E), 78–84(F), and

91–94(G).

(PNG)

Table S1 Structural characterization of the monomeric
DN6-I sampled in the CpHMD simulations. The second

column displays the mean Ca RMSD of the full chain fit to the

native structure (PDB ID: 2XKU). The fifth column displays the

SASA of the (bA+AB-loop) region. The remaining columns display

the mean Ca RMSD of selected protein regions after fitting the

core region, which comprises residues 21 to 94 (i.e. strands B–G

and connecting loops), to the native structure. The RMSD of the

(bA+AB-loop) region was obtained by taking into account the

residues belonging to those structural elements plus the remaining

N-terminus residues (residues 6–20). The BC region comprises

residues 21–41 (strands B–C and BC-loop), the DE-region residues

50–70 (strands ‘‘D’’–E and DE-loop) and the FG-region residues

78–94 (strands F–G and FG-loop). Averages were obtained from

ensembles with ,5000 conformations.

(DOC)

Table S2 Structural characterization of the monomeric
WT-N sampled in the CpHMD simulations. The second

column reports the mean Ca RMSD of the full protein chain fit to

the native structure (PDB ID: 2XKS). Values for the mean Ca
RMSD21–94 were evaluated over the core region comprising

residues 21 to 94 (i.e. strands B–G and connecting loops), after

fitting to the core region of the native structure. Averages were

obtained from ensembles with 2883 (6.2) and 3003 (7.2)

conformations.

(DOC)

Table S3 Structural characterization of the monomeric
DN6-N sampled in the CpHMD simulations. The second

column displays the average Ca RMSD of the full chain fit to the

native structure (PDB ID: 2XKU). The remaining columns display

the average Ca RMSD of selected protein regions after fitting the

core region, which comprises residues 21 to 94 (i.e. strands B–G

and connecting loops), to the native structure. The RMSD of the

(bA+AB-loop) region was evaluated by taking into account the

residues located within those structural elements plus the N-

terminus residues (residues 6–20). The BC region comprises

residues 21–41 (strands B–C and BC-loop), the DE-region residues
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50–70 (strands ‘‘D’’–E and DE-loop) and the FG-region residues

78–94 (strands F–G and FG-loop). Averages were obtained from

ensembles with 1902(6.2) and 3003 (7.2) conformations.

(DOC)

Table S4 50 most probable intermolecular contacts in
DN6-I at pH 6.2. The color code is as follows: aromatic amino

acids (i.e., Phe, Tyr, or Trp) interacting with Lys, Arg or His are

highlighted in light blue. Aromatic amino acids interacting with an

aromatic counterpart are highlighted in red (aromatic amino acids

pairs can interact through their aromatic p rings in p–stacking

interactions) while hydrophobic pairs (with an aromatic or

aliphatic side chain) are highlighted in orange. Amino acids with

electrically charged side chains (acidic – Asp and Glu; basic – Arg,

Lys, and His) are highlighted in blue. Pairs involving an aromatic

amino acid and His or Lys dominate the top 50 most frequent

intermolecular contacts in DN6-I dimers at pH 6.2. These pairs

can interact through cation-p interactions involving the aromatic

p-ring and the positively charged moiety on Lys or protonated His

(when neutral, His can establish aromatic–aromatic or p–stacking

interactions with its aromatic partner as well as d+-p interactions

due to polarization). Arg and Lys side chains are protonated

(positively charged) in the range of pHs studied (pKa..pH). Glu

and Asp RCOO2 side chains are mostly unprotonated (negatively

charged) in physiological or near-physiological pHs. His imidazole

ring can become protonated in the 6.2–7.2 pH range. Assuming

an average pKa of the imidazole ring side chain of approximately

6.5, only 17% of all His in the system become protonated at a pH

of 7.2 while at a slightly lower pH of 6.2 this value increases up to

67% (the side chain pKa of a buried His can assume a value under

6.5 thus lowering the pH for which it becomes protonated).

(DOC)
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