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Abstract 

Objective

Patients with acute coronary syndrome (ACS) are at increased risk of in-hospital 

heart failure (HF) following percutaneous coronary intervention (PCI), yet understand-

ing of the associated risk factors is limited. This study aims to identify predictors of 

in-hospital HF after PCI and to develop and validate a clinical prediction model for the 

early identification of high-risk patients.

Methods

We retrospectively analyzed data from the patients hospitalized for ACS who 

underwent PCI at Henan Provincial Hospital of Traditional Chinese Medicine from 

01/01/2019–01/10/2023. Patients were classified into non-HF and HF groups based 

on the occurrence of heart failure after PCI. LASSO regression and logistic regres-

sion were employed to identify potential predictors. The model’s diagnostic efficacy 

was assessed using receiver operating characteristic curves and calibration curves, 

while decision curve analysis and clinical impact curve were utilized to evaluate clini-

cal benefits.

Results

A total of 309 patients were included in this study, of whom 79.93% were male, with 

a mean age of 57.84. Key predictors included New York Heart Association (NYHA) 

classification, smoking status, right coronary artery occlusion after PCI, left ejection 

fraction (LVEF), and N-terminal fragment of brain natriuretic peptides. The area under 

the curve (AUC) was 0.910 (95% CI: 0.868–0.953), indicating strong predictive ability. 
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Decision curve analysis and clinical impact curve demonstrated good clinical applica-

bility of the nomogram.

Conclusion

The identified predictors and the prediction model can be used in identifying high-risk 

individuals who develop HF hospital admission after PCI, or as a basis for further 

guiding personalized prevention and treatment.

1. Introduction

Coronary artery disease (CAD) is a pathological process characterized by athero-
sclerotic plaque accumulation in the epicardial arteries [1,2]. The dynamic nature 
of the CAD process is categorized as either acute coronary syndromes (ACS) or 
chronic coronary syndromes (CCS). ACS is an acute onset of heart disease that 
can be subdivided into two categories: ST-elevation myocardial infarction (STEMI) 
and non-ST-elevation ACS (NSTE-ACS). NSTE-ACS includes both non-ST elevated 
myocardial infarction (NSTEMI) and unstable angina (UA) [3,4]. Despite significant 
advances in the diagnosis and treatment of ACS, cardiovascular disease remains the 
leading cause of death worldwide. Each year, more than 7 million people worldwide 
are diagnosed with ACS, including more than 1 million hospitalizations in the United 
States alone [5].

Percutaneous coronary intervention (PCI) is the cornerstone treatment for ACS, 
effectively alleviating myocardial ischemia [6,7]. However, accumulating evidence 
indicates that up to 20% of patients with acute myocardial infarction (AMI) expe-
rience poorer outcomes despite successful PCI [8]. Among these, heart failure 
following PCI poses a life-threatening risk, often leading to progressive deteriora-
tion [9,10]. Particularly in patients with left ventricular dysfunction and multivessel 
disease, despite improved myocardial perfusion from revascularization, the risk of 
heart failure remains high [11]. The REVIVED-BCIS2 trial found that PCI did not 
significantly improve survival in patients with multivessel disease and left ventric-
ular dysfunction [12]. This may be related to the severity of myocardial injury and 
the completeness of revascularization. Heart failure is a complex clinical syndrome 
characterized by the heart’s inability to pump effectively due to myocardial stiffness 
or weakness [13,14]. Identifying the factors that influence the development of heart 
failure in ACS patients after PCI has been a longstanding concern. Although numer-
ous studies have explored this topic, they vary widely in design and inconsistent 
results, particularly pinpointing the most critical risk factors [15,16]. To date, only 
the study by Yu et al. [17] has established a predictive model for in-hospital mor-
tality risk in patients with acute ST-elevation myocardial infarction and acute heart 
failure post-PCI. However, this study did not specifically examine the critical window 
from post-PCI to the onset of in-hospital heart failure and eventual in- hospital  
mortality. Early identification of high-risk individuals during this period may help 
reduce the risk of death.
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Therefore, the present study expanded on the potential risk factors based on the previous study. Based on cases from 
the Henan Provincial Hospital of Traditional Chinese Medicine, it aims to develop a clinical prediction model to identify 
individuals at risk for in-hospital heart failure post-PCI, providing a scientific basis for establishing a clinical screening tool 
for heart failure following coronary intervention.

2. Materials and methods

2.1. Study population and selection criteria

This retrospective study was based on the database of the Chest Pain Centre specializing in patients with ACS at Henan 
Provincial Traditional Chinese Medicine Hospital. It included patients hospitalized for acute coronary syndrome who 
underwent PCI from 01/01/2019–01/10/2023, and met the inclusion criteria. Following approval from the Institutional Eth-
ics Committee, data retrieval and analysis took place from 01/06/2024–01/11/2024. Patients completed a registration of 
basic information and laboratory tests within 24 hours of admission, and echocardiography was performed within the third 
day after PCI. The study was conducted in accordance with the principles of the Declaration of Helsinki and was approved 
by the Medical Research Ethics Committee of Henan Provincial Traditional Chinese Medicine Hospital (Approval Number: 
2024ZY3053). Due to the retrospective design, written informed consent from participants was not obtained.

Inclusion criteria were as follows: (1) Data collected from 01/01/2019–01/10/2023; (2) Patients who met the Amer-
ican College of Cardiology/American Heart Association guidelines for coronary artery disease; (3) Patients who were 
indicated for PCI treatment. The indications for PCI include patients with confirmed STEMI, as well as those with NSTE-
ACS who meet any of the following high-risk criteria for immediate PCI: hemodynamic instability, recurrent or persistent 
chest pain unresponsive to medical treatment, acute atrial fibrillation presumed to be due to ongoing myocardial ischemia, 
life-threatening arrhythmias or cardiac arrest, mechanical complications, and dynamic ECG changes indicative of recur-
rent ischemia [3].

Exclusion criteria included: (1) Patients with missing baseline data or clinical information; (2) Patients with malignant 
tumors, cognitive disorders, severe mental illnesses, or uncontrolled systemic diseases such as primary liver or kidney 
failure; (3) Patients who underwent imaging only without receiving stenting or balloon angioplasty; (4) Patients who expe-
rienced other complications post-PCI (such as bleeding, coronary artery perforation, or stent thrombosis); (5) Patients 
with a clear history of acute or chronic heart failure due to acute myocarditis, dilated cardiomyopathy, or rheumatic heart 
disease prior to the procedure.

2.2. Assessment of outcome

With reference to the 2021 European Society of Cardiology (ESC) and 2022 American College of Cardiology/American 
Heart Association (ACC/AHA) consensus guidelines [18,19], the diagnosis of HF requires a combination of symptoms, 
signs, and objective clinical markers such as ancillary tests, including: (1) the presence of at least one of the typical 
symptoms including resting or active dyspnea, fluid retention, and a significant decrease in activity tolerance; (2) signs 
of cardiogenic abnormalities on physical examination, including elevated jugular venous pressure, pulmonary crackles, 
peripheral edema, or abnormal cardiac auscultation; (3) objective indicators of structural or functional cardiac abnormal-
ities, including echocardiographic evidence of reduced (≤40%), mildly reduced (41–49%), or preserved (≥50%) LVEF 
with diastolic dysfunction, or elevated natriuretic peptide levels (BNP ≥ 100 pg/mL or NT-proBNP ≥ 300 pg/mL in chronic 
settings, with a higher threshold in the acute phase such as BNP ≥ 500 pg/mL or NT-proBNP ≥ 1000 pg/mL as per ACC/
AHA guidelines); and (4) systematic exclusion of non-cardiac etiologies, such as chronic lung disease, cirrhosis, nephrotic 
syndrome, abnormal thyroid function, or severe anemia.

Patients who developed heart failure after PCI were classified into heart failure with reduced ejection fraction (HFrEF), 
heart failure with intermediate ejection fraction (HFmrEF), and heart failure with preserved ejection fraction (HFpEF). The 
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diagnosis of HFrEF is based on symptoms and/or signs of HF and left ventricular ejection fraction (LVEF) < 40%; the 
diagnosis of HFmrEF is based on symptoms and/or signs of HF, LVEF = 41–49%, and other evidence of structural heart 
disease (including increased left atrial (LA) size, left ventricular hypertrophy (LVH) or echocardiographic measures of LV 
filling) make the diagnosis more likely. HFpEF is diagnosed on the basis of symptoms and/or signs of HF, LVEF ≥ 50%, 
and objective evidence of cardiac structural and/or functional abnormalities consistent with the presence of LV diastolic 
dysfunction/raised LV filling pressures, including raised natriuretic peptides. (The greater the number of abnormalities 
present, the higher the likelihood of HFpEF).

2.3. Potential predictors

This study is based on previous research evidence and expert opinions, categorizing the potential predictors of post-PCI 
heart failure in patients with coronary artery disease into three main categories: patient demographics and medical history, 
cardiovascular-related clinical data at admission, and laboratory indicators obtained upon admission.

The demographics and medical history of the patients include: age, gender (male, female), smoking and drinking status 
(yes, no), marital status (married, others), hypertension status (yes, no), diabetes status (yes, no), history of cerebral 
infarction (yes, no), and prior PCI experience (yes, no).

Cardiovascular-related clinical data at admission included type of ACS (UA, UNSTEMI and STEMI), the number of cor-
onary artery lesions post-PCI (none, single-vessel, multi-vessel), time of patient delay (time from arrival at the hospital to 
the opening of occluded coronary arteries in ACS patients), occlusion status of the left anterior descending artery (LAD), 
left circumflex artery (LCX), and right coronary artery (RCA) post-PCI (yes, no), New York Heart Association (NYHA) clas-
sification (levels I, II, III, IV), left ventricular ejection fraction (LVEF), left ventricular electrical delay (LVED), and intraopera-
tive heparin dosage.

Laboratory indicators at admission included total cholesterol (TC), triglycerides (TG), low-density lipoprotein (LDL), 
high-density lipoprotein (HDL), cardiac troponin I (c-TNI), creatine kinase-MB (CK-MB), myoglobin (MYO), NT-pro-BNP, 
D-dimer, glycated hemoglobin (HbA1c), and urea. These laboratory indicators were classified according to the critical 
value standards outlined in the supplementary materials (see S1 Table ) into normal, abnormal high, and abnormal low 
groups. Due to a high proportion of missing data for variables such as lesion length, inflammatory markers, peak troponin 
concentration, and the number of stents implanted during PCI, these factors were not included in the analysis.

2.4. Statistic analysis

All continuous variables were assessed for normality. Those with a normal distribution were presented as mean ± standard 
deviation (SD), while non-normally distributed variables were expressed as median, minimum and maximum value. Differ-
ences between groups were evaluated using the Student t-test or the rank sum test, as appropriate. Categorical variables 
were reported as frequencies and proportions, with differences between groups assessed using the Chi-squared test. To 
identify key predictors, we employed a LASSO regression model and examined the associations between these predictors 
and outcomes using a multivariable logistic regression model, without including any interaction terms. Key predictors were 
further refined based on the Akaike Information Criterion (AIC) and the significance of each variable. We fitted the model 
not only in the overall population but also within different genders and age subgroups (with age divided by the median) to 
assess potential bias.

The constructed model was evaluated jointly using the receiver operating characteristic (ROC) curve and the calibration 
curve. ROC area under the curve (AUC) values of 0.80–0.89 and 0.90 or greater were considered indicative of good and 
excellent diagnostic performance, respectively [20]. The calibration curve was assessed through subjective evaluation 
and Brier scores, where scores ranging from 0 to 0.25 indicated better predictive ability, with smaller values representing 
superior performance [21]. To assess the internal validity of the model, we performed 1,000 bootstrap resamples. In each 
iteration, a new dataset was generated by sampling with replacement from the original dataset while maintaining the same 
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sample size. The predictive model was then refitted to each resampled dataset, and AUC and Brier score were calculated. 
Finally, the average of the 1,000 calculations was reported as the internal validation result.

Based on the identified clinical prediction model, we developed heart failure risk nomograms to identify potentially high-
risk individuals in clinical settings. Additionally, we conducted clinical decision curve analysis (DCA) and clinical impact 
curves (CIC) to evaluate the clinical utility of the model. DCA assesses the risks of undertreatment and overtreatment 
during patient visits, aiding in treatment selection and decision-making [22]. The multivariate imputation by chained equa-
tions method was applied to generate five imputed datasets after 100 iterations to handle a small amount of missing data 
[23]. In this study, a P value of <0.05 was considered statistically significant. All statistical analyses were conducted using 
SPSS version 26.0 and R version 4.3.0.

3. Result

3.1. Basic characteristics of the study population

A total of 309 patients were included in this study, of whom 247 (79.93%) were male, with a mean age of 57.84 years (stan-
dard deviation = 13.38 years old). Among these patients, 282 (91.26%) were married, 105 (33.98%) were smokers, and 60 
(19.42%) were alcohol drinkers. Regarding comorbidities, 165 (53.40%) had hypertension, 81 (26.21%) had diabetes, and 57 
(18.45%) had a history of cerebral infarction. Additionally, 28.16% had single coronary artery lesions post-PCI, and 39.81% 
had multiple lesions post-PCI. The prevalence of heart failure (HF) after PCI was 26.21% (n = 81), with HFpEF, HFrEF, and 
HFmrEF comprising 70.38%, 14.81%, and 14.81% of HF patients, respectively. Univariate analysis showed that the differ-
ences in the distribution of 9 variables, age, gender, RCA occlusion post-PCI, LVEF, cTnI, MYO, NTproBNP, and NYHA, were 
statistically significant between the patients in the HF group and the Non-HF group (all P-value < 0.05, Table 1).

3.2. Screening for potential predictors

A total of seven key variables were identified through LASSO regression, including NYHA, smoking, RCA occlusion 
post-PCI, LVEF, NT-proBNP, HDL, and MYO (Fig 1). Based on the AIC and the significance of results from the multivari-
able logistic regression model, we further excluded HDL and MYO. The final analysis revealed that NYHA (OR = 9.232, 
95%CI = 4.949–19.220), smoking (OR = 2.730, 95%CI = 1.224–6.261), RCA-occlusion (OR = 2.647, 95%CI = 1.094–
6.328), LVEF (OR = 3.547, 95%CI = 0.997–12.222), and NT-proBNP (OR = 3.909, 95%CI = 1.735–8.886) were significantly 
associated with the risk of developing HF after PCI (Table 2 and S2 Table). S3 Table presents the model results across 
different genders and age subgroups. The findings in male and older age groups were generally consistent with the main 
analysis, whereas in female and younger age groups, only NYHA remained statistically significant.

3.3. Evaluation of clinical prediction model

Fig 2 illustrated the ROC curve (Fig 2A) and the calibration curve (Fig 2B), indicating that the clinical prediction 
model demonstrates excellent diagnostic efficacy (AUC = 0.910, 95% CI = 0.868–0.953) and predictive power (Brier 
score = 0.083). The results of the internal validation were generally consistent with those of the primary analysis 
(AUC = 0.918, Brier score = 0.084).

3.4. Application of clinical prediction model

Fig 3A presented the nomogram of this clinical prediction model, clearly delineating the scoring criteria and enhancing 
clinical utility. To evaluate the potential clinical benefit of the constructed model, we performed decision curve analysis (Fig 
3B) and clinical impact curve analysis (Fig 3C). The results from both curves indicated that, as the probability threshold 
increased, our predictive model could achieve a high rate of clinical benefit in determining whether PCI patients experi-
enced postoperative heart failure compared to interventions based on either all patients or none.
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Table 1. Univariate analysis of the basic characteristics between the HF group and the Non-HF group (n = 309).

Variables Non HF group
(n = 228)

HF group
(n = 81)

t/Z/χ2 P

Continuous variable Mean ±SD/ Median (min, max)

Age (years old) – 56.45 ± 12.85 61.75 ± 14.12 −3.106 0.002

Heparin (U) – 8000 (5500, 15000) 8000 (6000, 20000) −1.542 0.123

Time of patient delay (minutes) – 69 (16, 1395) 74 (25, 294) −0.916 0.36

NYHA – 1 (1, 4) 2 (1, 4) −12.372 <0.001

Categorical variable Level n (%)

Gender Male 190 (83.3) 57 (70.4) 6.262 0.012

Female 38 (16.7) 24 (29.6)

Hypertension No 108 (47.4) 36 (44.4) 0.205 0.65

Yes 120 (52.6) 45 (55.6)

Diabetes No 170 (74.6) 58 (71.6) 0.270 0.603

Yes 58 (25.4) 23 (28.4)

Cerebral infarction No 191 (83.8) 61 (75.3) 2.846 0.092

Yes 37 (16.2) 20 (24.7)

Prior PCI experience No 202 (88.6) 70 (86.4) 0.269 0.604

Yes 26 (11.4) 11 (13.6)

Smoking No 155 (68.0) 49 (60.5) 1.494 0.222

Yes 73 (32.0) 32 (39.5)

Drinking No 182 (79.8) 67 (82.7) 0.319 0.572

Yes 46 (20.2) 14 (17.3)

Marriage Married 209 (91.7) 73 (90.1) 0.178 0.673

Others 19 (8.3) 8 (9.9)

Number of coronary artery lesions post-PCI None 77 (33.8) 22 (27.2) 2.402 0.301

Single 66 (28.9) 21 (25.9)

Multiple 85 (37.3) 38 (46.9)

LAD occlusion post-PCI No 161 (70.6) 59 (72.8) 0.144 0.813

Yes 67 (29.4) 22 (27.2)

LCX occlusion post-PCI No 170 (74.6) 53 (65.4) 2.480 0.115

Yes 58 (25.4) 28 (34.6)

RCA occlusion post-PCI No 190 (83.3) 55 (67.9) 8.667 0.003

Yes 38 (16.7) 26 (32.1)

HbA1c Normal 165 (72.4) 55 (67.9) 0.582 0.446

Abnormal high 63 (27.6) 26 (32.1)

TC Normal 183 (80.3) 66 (81.5) 0.057 0.812

Abnormal high 45 (19.7) 15 (18.5)

TG Normal 151 (66.2) 59 (72.8) 1.200 0.273

Abnormal high 77 (33.8) 22 (27.2)

LDL Normal 202 (88.6) 72 (88.9) 0.005 0.943

Abnormal high 26 (11.4) 9 (11.1)

HDL Normal 90 (39.5) 25 (30.9) 1.896 0.169

Abnormal low 138 (60.5) 56 (69.1)

Urea Normal 203 (89.0) 66 (81.5) 5.137 0.077

Abnormal low 8 (3.5) 2 (2.5)

Abnormal high 17 (7.5) 13 (16.0)

(Continued)
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Variables Non HF group
(n = 228)

HF group
(n = 81)

t/Z/χ2 P

LVEF Normal 217 (95.2) 57 (70.4) 36.613 <0.001

Abnormal low 11 (4.8) 24 (29.6)

LVED Normal 210 (92.1) 69 (85.2) 3.265 0.071

Abnormal high 18 (7.9) 12 (14.8)

c-TnI Normal 154 (67.5) 44 (54.3) 4.540 0.033

Abnormal high 74 (32.5) 37 (45.7)

MYO Normal 157 (68.9) 37 (45.7) 13.745 <0.001

Abnormal high 71 (31.1) 44 (54.3)

CKMB Normal 39 (17.1) 7 (8.6) 3.379 0.098

Abnormal high 189 (82.9) 74 (91.4)

NTproBNP Normal 183 (80.3) 27 (33.3) 60.454 <0.001

Abnormal high 45 (19.7) 54 (66.7)

D2 Normal 194 (85.1) 50 (61.7) 19.633 <0.001

Abnormal high 34 (14.9) 31 (38.3)

ACS UA 80 (35.1) 27 (33.3) 0.159 0.924

UNSTEMI 30 (13.2) 10 (12.3)

STEMI 118 (51.8) 44 (54.3)

Note: ACS, Acute coronary syndrome; c-TNI, cardiac troponin I; CK-MB, creatine kinase-MB; D2, D-dimer; HDL, high-density lipoprotein; HbA1c, 
glycated hemoglobin; LAD, left anterior descending artery; LCX, left circumflex artery; LDL, low-density lipoprotein; LVEF, left ventricular ejection frac-
tion; LVED, left ventricular electrical delay; MYO, myoglobin; NYHA, New York Heart Association classification; NSTEMI, non-ST-elevation myocardial 
infarction; RCA, right coronary artery; PCI, Percutaneous coronary intervention; STEMI, ST-elevation myocardial infarction; TC, total cholesterol; TG, 
triglycerides; UA, unstable angina.

https://doi.org/10.1371/journal.pone.0325036.t001

Fig 1. LASSO regression for variable screening. (A) LASSO coefficient path; (B) LASSO regularization path.

https://doi.org/10.1371/journal.pone.0325036.g001

Table 1. (Continued)

https://doi.org/10.1371/journal.pone.0325036.t001
https://doi.org/10.1371/journal.pone.0325036.g001
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4. Discussion

This study developed a clinical prediction model to assess the risk of in-hospital HF after PCI by retrospectively collecting 
case data. The results showed that the model has excellent diagnostic and predictive capabilities. It includes five key  
predictor variables: NYHA classification, smoking status, RCA occlusion post-PCI, LVEF, and NT-proBNP levels. The 
nomogram derived from this model provided accurate risk predictions tailored to individual patient conditions, thereby 
supporting clinical decision making and improving the efficiency of treatment strategies.

Steyerberg et al. [24] proposed that when constructing clinical prediction models, it is important not only to focus on 
model performance, such as discrimination, but also to consider clinical applicability and convenience to promote the 
model’s use in clinical practice. In this study, LASSO regression was used to select the most critical influencing factors. 
LASSO regression performs feature selection by applying L1 regularization, which compresses the regression coefficients 
to zero and effectively handles multicollinearity [25]. This was particularly important when considering multiple laboratory 
indicators. Subsequently, based on stepwise regression and model significance, high-density lipoprotein and myoglobin 

Table 2. Multivariable logistic regression analysis of the risk of HF after PCI in patients with ACS.

Variables LASSO regression After model simplification

OR 95%CI P OR 95%CI P

NYHA 9.201 4.827–19.816 <0.001 9.232 4.949–19.220 <0.001

Smoking 2.576 1.138–5.993 0.025 2.730 1.224–6.261 0.015

RCA occlusion post PCI 2.736 1.104–6.715 0.028 2.647 1.094–6.328 0.029

LVEF 3.171 0.879–10.972 0.071 3.547 0.997–12.222 0.046

NT-proBNP 3.649 1.589–8.404 0.002 3.909 1.735–8.886 <0.001

HDL 1.725 0.750–4.197 0.211 – – –

MYO 1.678 0.756–3.693 0.198 – – –

Note: CI, confidence interval. HDL, high-density lipoprotein; RCA, right coronary artery; LVEF, left ventricular ejection fraction; MYO, myoglobin; NYHA, 
New York Heart Association classification; OR, odds ratio; PCI, Percutaneous coronary intervention.

https://doi.org/10.1371/journal.pone.0325036.t002

Fig 2. Receiver operating characteristic curve (A) and calibration curve (B) of clinical prediction model.

https://doi.org/10.1371/journal.pone.0325036.g002

https://doi.org/10.1371/journal.pone.0325036.t002
https://doi.org/10.1371/journal.pone.0325036.g002
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were excluded, further simplifying the model while ensuring the contribution of each variable and reducing its complexity, 
making it more applicable in clinical practice.

The NYHA classification of cardiac function, was the most important variable in our model. This classification reflects 
not only the cardiac function status of patients with coronary artery disease but also the severity and complexity of 
coronary artery lesions [26]. It serves as a foundation for the diagnosis, treatment, and prognosis of heart failure [27]. 

Fig 3. Application of clinical prediction model. (A) Nomogram, where variable levels corresponded to the “Points” axis, with the green line indicating 
the confidence interval; the “Total Points” reflected the predicted risk on the “Risk” axis; (B) Decision curve analysis, where “None” assumed no patients 
are treated (net benefit is zero) and “All” assumed all patients are treated (showing net benefit in this extreme case). “Model” represents the benefit from 
decisions based on the model; (C) Clinical impact curve, where “Number high risk” indicated the total high-risk patients at different thresholds, and “Num-
ber high risk with events” indicated those high-risk patients with actual events.

https://doi.org/10.1371/journal.pone.0325036.g003

https://doi.org/10.1371/journal.pone.0325036.g003
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Furthermore, several studies have confirmed that smoking significantly increases the risk of angina pectoris, acute myo-
cardial infarction, and sudden death, and it is a known risk factor for developing heart failure [28]. In a study by Ning Ding 
MD et al., smokers were 2.28 times more likely than non-smokers to be diagnosed with heart failure with preserved ejec-
tion fraction and 2.16 times more likely to develop heart failure with reduced ejection fraction [29]. The main components 
of tobacco, including carbon monoxide and nicotine, are important contributors to cardiovascular disease [30]. Carbon 
monoxide increases oxidative stress, leading to impaired mitochondrial function, inflammation, disrupted endothelial func-
tion, and deterioration of renal function—all closely linked to heart failure development [31]. Additionally, smoking dramati-
cally raises systolic and diastolic blood pressure, systemic vascular resistance, pulmonary artery pressure, and pulmonary 
vascular resistance, all of which are recognized risk factors for heart failure [32,33].

Among the laboratory indicators, our study identified a strong association between the development of heart failure 
after PCI and NT-proBNP and LVEF, consistent with existing clinical guidelines. NT-proBNP is an inactive substance 
formed by cleaving the signal peptide from proBNP, the precursor of brain natriuretic peptide (BNP), which is transcribed 
into proBNP [34]. Following the onset of heart failure, hemodynamic changes activate the natriuretic peptide system, lead-
ing to increased synthesis and secretion of BNP, which subsequently elevates NT-proBNP levels. This makes NT-proBNP 
a widely used biomarker in diagnosing heart failure [35]. Additionally, compared to BNP, NT-proBNP has a longer and 
more stable half-life, enhancing its sensitivity for early heart failure diagnosis. It better reflects the new synthesis of BNP 
and the activation of the BNP pathway over shorter periods, minimizing the influence of external factors, making it more 
suitable for monitoring heart failure [36]. LVEF is an important indicator for assessing left ventricular systolic function, 
defined as the ratio of the volume of blood ejected with each heartbeat to the left ventricular end-diastolic volume. A 
decrease in ejection fraction typically indicates cardiac dysfunction and provides objective evidence for patients with heart 
failure [37]. As a key criterion for assessing cardiac function, ejection fraction not only aids in classifying patients with car-
diac dysfunction but also holds significant importance in their prognostic evaluation [38].

Our study revealed a strong positive association between RCA occlusion after PCI and the development of heart 
failure. Previous studies have shown that heart failure may also be caused by dysfunction of the right ventricle, which has 
unique anatomical and physiological characteristics, with a thin and compliant wall that is extremely sensitive to pressure 
loading, and an acute elevation of afterload that can result in a substantial reduction in stroke volume. Therefore, when 
the right ventricle is affected by various cardiac diseases, myocardial hypertrophy, fibrosis, and metabolic abnormalities 
can occur, exacerbating the deterioration of right ventricular function, and these mechanical and functional changes ulti-
mately lead to circulatory stasis and low cardiac output, which may ultimately lead to the development of right heart failure 
[3,39]. The severity of RCA occlusion correlates with the extent of right heart infarction [40]. Femia et al. [41] reported that 
RCA occlusion leads to a larger infarct size and directly impairs right ventricular systolic function, triggering an increase 
in right ventricular end-diastolic pressure, a significant increase in right atrial pressure, and a decrease in left ventricular 
preload through septal leftward motion, leading to systemic hypoperfusion. If left untreated, persistent ischemia exacer-
bates necrosis of cardiomyocytes, ventricular remodeling, and fibrosis, which further induce right ventricular dilatation 
and systolic-diastolic uncoupling. This results in dilatation and systolic-diastolic dysfunction, forming a vicious cycle of 
“ischemia-dysfunction-ischemia”, causing chronic heart failure. Although RCA occlusion does not significantly alter cardiac 
output or right and left ventricular pressures, it does lead to a notable reduction in right ventricular contractility [42]. The 
primary function of the right ventricle is to propel blood into the pulmonary arteries; thus, decreased right heart contractility 
can increase pulmonary artery resistance, leading to greater pulmonary artery obstruction. This obstruction can result in 
decreased cardiac output and elevated right ventricular diastolic pressure, ultimately leading to right ventricular failure or 
systemic shock. Jiang et al. [43] conducted a retrospective study in 2024 on the prognosis of percutaneous coronary inter-
vention for chronic total occlusion of the right coronary artery, enrolling 2,659 patients. Their findings demonstrated that 
the RCA has more complex lesion characteristics than the LAD and LCX, with longer lesion lengths, more tortuous vascu-
larization, greater difficulty in opening, and higher risk of restenosis, and that prolonged ischemia can lead to impaired or 
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remodeled right ventricular systolic function and exacerbated right heart afterload, which may create critical conditions for 
the development of right heart failure.

This study further conducted subgroup analyses based on gender and age to evaluate the applicability of the model 
in different populations and identify potential biases. The results showed that in male and older patients, the predictive 
performance of the model was consistent with the main analysis, with key predictors remaining stable. However, in female 
and younger patients, only NYHA remained statistically significant. This gender difference may be primarily attributed 
to the significant imbalance in sample size between males and females, leading to male characteristics dominating the 
selection of predictive variables. The most direct evidence is smoking: since the proportion of smokers among female 
patients is inherently low, the predictive role of smoking in this group was not sufficiently demonstrated, which requires 
further validation in future studies. Additionally, a study by Merella et al. [15] found that over a five-year follow-up, the risk 
of HF was significantly higher in males than in females (HR = 1.22, 95% CI: 1.03–1.44), further supporting the necessity 
of developing separate predictive models for different genders. Similarly, in the age subgroup analysis, the model showed 
greater stability in the older age group, likely due to the higher prevalence of cardiovascular risk factors such as hyperten-
sion, diabetes, and coronary atherosclerosis, which may amplify the effects of key predictive variables. Therefore, future 
studies should consider developing separate predictive models for different sex and age groups to enhance model appli-
cability and precision, ultimately optimizing individualized risk assessment and clinical decision-making.

In our study, the omission of key clinical variables and established scoring systems may have some impact on the 
model’s performance and generalizability. First, the exclusion of lesion length, inflammatory markers, peak troponin levels, 
and the number of stents implanted during PCI due to excessive missing data may lead to an incomplete representation 
of factors influencing post-PCI heart failure. These variables are closely related to myocardial injury, procedural complex-
ity, and systemic inflammation, and their absence may weaken the model’s ability to fully capture the multifactorial nature 
of post-PCI heart failure risk. Second, widely used risk scores, such as the Syntax score, HEART score, TIMI risk score, 
Killip classification, and GRACE score, integrate multiple prognostic factors and have been externally validated in differ-
ent populations. The absence of these scores may reduce the comparative utility and interpretability that these scoring 
systems provide. Furthermore, while we included NYHA classification as an indicator of heart failure severity, it does not 
account for ischemic burden, coronary complexity, or overall cardiovascular risk, which could have been better repre-
sented by the omitted scoring systems. As a result, the predictive accuracy of our model may be affected by the absence 
of these variables, potentially leading to an underestimation of risk in some patients.

Among related clinical model studies, the one most comparable to this study is the research by Fei Yu [17] et al. They 
analyzed the in-hospital mortality of patients with acute ST-segment elevation myocardial infarction who developed acute 
heart failure after undergoing PCI. They found that key predictive factors included LVEF and Killip class IV, which aligns 
with this study’s identification of LVEF and NYHA classification as critical predictors. Furthermore, other clinical prediction 
model studies on heart failure have reported similar findings. For example, in a 10-year heart failure prediction model 
study conducted by Paul M Hendrik et al. [44]. involving 602 patients with moderate or complex congenital heart disease, 
NT-proBNP was found to significantly improve the C-statistic of the clinical prediction model. Similarly, in a clinical predic-
tion model study by Xiyi Huang [45] on patients with coronary heart disease complicated by HF, where the primary out-
come was major adverse cardiovascular events within one year, key predictive factors included NYHA classification ≥3, a 
history of heart failure, and NT-proBNP. Additionally, in Wenwu Tang’s study [46] on predicting heart failure hospitalization 
and mortality in patients undergoing maintenance hemodialysis, LVEF and NT-proBNP were also identified as key predic-
tors. These findings suggest that indicators such as LVEF, NYHA classification, and NT-proBNP hold significant predictive 
value across different types of heart failure patients, further confirming the validity and clinical applicability of the results of 
this study.

Compared with existing studies, the present model did not include certain potential predictors. This discrepancy may 
stem from differences in study design and population characteristics. Firstly, the D-dimer indicator included in Yu et al.’s 
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[17] model was excluded from the final model in this study, which may be related to differences in the time window of the 
study endpoints. As a marker of coagulation function, elevated D-dimer levels have been validated in multiple studies to 
be associated with an increased risk of acute-phase mortality [47]. However, the mechanism underlying in-hospital heart 
failure, the focus of this study, may be more closely related to myocardial remodeling (e.g., ventricular wall stress reflected 
by NT-proBNP) and hemodynamic changes (e.g., contractile function indicated by LVEF). Secondly, the prognostic model 
for CHD patients with acute HF developed by Huang et al. [45] incorporated historical variables such as diabetes history, 
whereas the present study did not retain such variables. This difference may be attributed to the strict selection criteria of 
the study population. Specifically, this study focused on patients with newly developed or aggravated heart failure after 
PCI. In this particular context, immediate postoperative indicators were found to have stronger predictive power than pre-
existing medical history. This contrasts with the population in Huang’s study, which included chronic heart failure patients 
who were more susceptible to the cumulative effects of underlying diseases due to prolonged cardiac remodeling.

However, our study has several limitations. First, the data were collected retrospectively, which may introduce recall 
bias. Second, both the case and control groups were drawn from the same hospital, which may introduce an admission 
rate bias. The characteristics of patients in this particular hospital may differ from those in other medical institutions, which 
may affect the generalizability of our findings. Future studies should aim to select healthy controls from a wider community 
to improve the representativeness of the results and ensure greater external validity. Third, the relatively small sample 
size of our study may limit the statistical validity and credibility of the results. Small sample sizes can lead to increased 
variability, reduced ability to detect true effects, and misleading conclusions. In addition, the gender distribution in our 
sample was uneven, with a higher proportion of male participants than female participants. This gender difference may 
further limit the generalizability of the findings, especially in understanding gender differences in the outcomes of interest. 
Therefore, future studies should increase the sample size and ensure a more balanced gender distribution to improve the 
reliability, statistical validity, and applicability of the findings. Fourth, it is important to include data from different regions 
and hospitals to effectively address issues of population heterogeneity. By increasing the diversity of the sample, we can 
improve the applicability of the clinical prediction model. Fifth, although many potential predictors were considered in this 
study, some important variables were not included, such as lesion length, inflammatory markers, peak troponin levels, and 
number of stents implanted during PCI. These factors are strongly associated with the development of HF and may have 
an important impact on the accuracy and completeness of prediction models. Future studies should build on this study 
by further incorporating these key variables and considering other possible potential predictors, such as genetic factors, 
lifestyle and comorbidities, to more comprehensively assess the risk of heart failure. Sixth, previous studies have indi-
cated that the characteristics of patients with HFpEF, HFrEF, and HFmrEF differ significantly. For example, in comparison 
with HFpEF subjects, patients with HFrEF were younger, more commonly male, and more likely to have an ischaemic 
etiology and left bundle branch block. The HFmrEF group resembled the HFrEF group in some features but had less left 
ventricular and atrial dilation [48]. This highlighted the necessity of refining clinical prediction models for different sub-
groups. However, due to the limited sample size of this study, in particular the small number of patients with HFrEF and 
HFmrEF, we were unable to investigate in depth the potential differences between these subgroups. This limitation may 
affect our understanding of the pathophysiological mechanisms and clinical characteristics between different heart failure 
phenotypes. Future studies should expand the sample size, especially in patients with HFrEF and HFmrEF, to more fully 
analyze the unique characteristics and prognostic differences between these subgroups. Seventh, the occurrence of heart 
failure is not limited to the inpatient setting; it can also manifest after discharge, such as within 30 days or even longer 
post-discharge. The cross-sectional nature of this study restricted our ability to assess long-term outcomes. Future studies 
should adopt a longitudinal design to better evaluate the long-term outcomes and influencing factors related to HF. Eighth, 
the model developed in this study has only been validated internally. While internal validation provides initial evidence of 
the model’s performance, it may not fully capture its generalizability to different populations or settings. External validation 
using datasets from other hospitals or regions is crucial to assess the model’s robustness, reproducibility, and applicability 
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in diverse clinical environments. Ninth, some widely used scoring systems such as Syntax score, HEART score, TIMI risk 
score, Killip classification and GRACE score were not included in this study. These scoring systems are valuable in pre-
dicting the risk of cardiovascular events and heart failure and may provide additional information on the predictive power 
of the model. Failure to include these scoring systems may have limited the comprehensiveness of the model and com-
parability with other studies. Future studies should consider incorporating these scoring systems to further optimize the 
predictive ability and clinical applicability of the model.

5. Conclusion

This study developed a clinical prediction model for assessing in-hospital heart failure risk after PCI in acute coronary 
artery disease patients. Key variables in the model included NYHA classification, smoking, RCA occlusion post-PCI, 
NT-proBNP, and LVEF. The model demonstrated excellent diagnostic efficacy, showing strong consistency and discrimina-
tion. However, while these findings suggested potential clinical utility, further studies are needed to confirm its real-world 
applicability. Moreover, external validation is essential to assess the model’s generalizability, and further refinement is 
required to optimize its performance across different genders and age subgroups. It can help identify high-risk individu-
als likely to develop heart failure during hospital admission after PCI and may serve as a basis for guiding personalized 
prevention and treatment.
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