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The barrier function of the intestine is essential for maintaining the normal homeostasis of the gut and mucosal immune system.
Abnormalities in intestinal barrier function expressed by increased intestinal permeability have long been observed in various
gastrointestinal disorders such as Crohn’s disease (CD), ulcerative colitis (UC), celiac disease, and irritable bowel syndrome (IBS).
Imbalance of metabolizing junction proteins and mucosal inflammation contributes to intestinal hyperpermeability. Emerging
studies exploring in vitro and in vivomodel systemdemonstrate that Rho-associated coiled-coil containing protein kinase- (ROCK-)
and myosin light chain kinase- (MLCK-) mediated pathways are involved in the regulation of intestinal permeability. With this
perspective, we aim to summarize the current state of knowledge regarding the role of inflammation and ROCK-/MLCK-mediated
pathways leading to intestinal hyperpermeability in gastrointestinal disorders. In the near future, it may be possible to specifically
target these specific pathways to develop novel therapies for gastrointestinal disorders associated with increased gut permeability.

1. Introduction

Epithelium of the gastrointestinal tract forms a dynamic and
selective barrier between the external and the internal envi-
ronment. It enables the absorption of dietary nutrients and
the restriction of potentially harmful compounds [1]. Under
physiologic conditions, the passage of molecules occurs
selectively across cellular sheets by transcellular transport or
paracellular pathway dictated by both electrical charge and
size [2].

The primary structure that regulates intestinal barrier
is the apical junctional complex (AJC) which is located at
the paracellular space and contributes to maintaining tissue
integrity and cell-to-cell communication [3, 4]. The major
constituents of the AJC are the tight junction (TJ) and the
subjacent adherens junction (AJ). TJ and AJ are closely
positioned at the apical part of the lateral plasma membrane

and are physically linked to the intracellular cytoskeleton.
Both TJ and AJ are multiprotein complexes composed of
transmembrane proteins (occludin, claudin family proteins,
and E-cadherin) and cytoplasmic proteins (zonula occludens
(ZO) family proteins and p120 catenin proteins) [5]. TJ and
AJ cytoplasmic proteins have been shown to interact with
the cytoskeleton [6]. Coupled together, the AJC regulates
paracellular permeability under various luminal stimuli [7,
8]. The actomyosin cytoskeleton is critical for assembly,
maintenance, and disassembly of the epithelial paracellular
junction. Multiple in vitro and in vivo studies have demon-
strated the role of nonmuscle myosin II (NM II) as a key
regulator of intestinal epithelial junction and barrier integrity
[8, 9]. The activation of actomyosin cytoskeleton is regulated
by reversible forms between globular monomeric actin (G-
actin) and filamentous actin (F-actin). F-actin associatedNM
II is an important regulator of highly flexible and adaptable
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actomyosin cytoskeleton. NM II is composed of two heavy
chains, two regulatory light chains (RMLC), and two essential
light chains [10]. The actin binding domain is located in
the heavy chain and folded until RMLC is activated by
phosphorylation, leading to contraction of actomyosin [11].
NM II is the principal cytoskeletal motor that mediates the
static tension and contractility of actin filaments [10]. Multi
kinases including Rho-associated coiled-coil containing pro-
tein kinase (ROCK), myosin light chain kinase (MLCK),
citron kinase, and leucine zipper interacting kinase (ZIPK)
can phosphorylate MLC of NM II [12–15]. However, only
MLCK and ROCK have been implicated to be involved in TJ
regulation during intestinal inflammation [16, 17]. In certain
circumstances, the disruption of the intestinal barrier can be
indicated by a decrease in transcellular electrical resistance
(TER) and an increase in paracellular permeability. The
compromised intestinal barrier dysfunction may be either
causative or consequential. The disruption of the intestinal
epithelial TJ barrier allows increased mucosal penetration of
intestinal luminal toxic substances, pathogens, and antigens
that can lead to intestinal mucosal injury and inflammation
[18]. Proinflammatory cytokines like interferon (IFN)-𝛾,
tumor necrosis factor (TNF)-𝛼, interleukin- (IL-) 1𝛽, IL-6,
and IL-13 have been identified to contribute to the disruption
of intestinal barrier [19–24]. Hyperpermeability and immune
activation lead to a vicious self-propagating cycle. The com-
ponents of the cycle including barrier dysfunction, abnormal
immune response, and inflammatory stimuli may initiate
and contribute to further epithelial barrier dysfunction and
immune activation [25].

Previous studies have identified that intestinal hyperper-
meability is an important pathogenic factor in a number
of gastrointestinal diseases including ulcerative colitis (UC),
Crohn’s disease (CD), irritable bowel syndrome (IBS), and
functional dyspepsia (FD) [26–29]. Therefore, the under-
standing of intracellular processes involved in the regulation
of the intestinal epithelial TJ barrier function is important in
developing therapeutic strategies to promote restoration of
the intestinal TJ barrier in certain disease states [30, 31].

This review focuses on ROCK- and MLCK-mediated
intracellular pathways which may play important roles in the
regulation of internal cytoskeleton and are responsible for
interaction between inflammation and increased intestinal
permeability in specific gastrointestinal disorders.

2. ROCK Signaling Pathway

Rho proteins are members of the Ras superfamily of GTP-
binding proteins (20- to 30-KDa), which have been shown
to regulate a wide spectrum of cellular function [32]. As
members of the Rho family, RhoA, RhoB and RhoC isoforms
are regarded as core molecules that induce stress fibers
to form and regulate cellular adherence by reconstructing
cytoskeleton in response to extracellular stimuli [33]. Rho
proteins function as a bimolecular switch by adopting dif-
ferent conformational states in response to the binding of
GDP (inactive) or GTP (active). The GTP- and GDP-bound
states are controlled primarily by two classes of regulatory

molecules. GTPase-activating proteins (GAPs) increase the
intrinsic rate of GTP hydrolysis, and guanine nucleotide-
exchange factors (GEFs) facilitate the exchange of GDP for
GTP [34]. GAPs and GEFs are highly expressed in epithe-
lium and are activated by extracellular stimuli including
inflammatory cytokines and bacterial products [35]. ROCKs
are downstream effectors of the GTP-binding Rho proteins.
The ROCKs consist of three major domains: RhoA binding
domain (RBD), kinase domain that is responsible for catalytic
activity, and cysteine-rich domain that is thought to partici-
pate in localization [36]. Two isoforms of ROCKs have been
extensively studied: ROCKI and ROCKII. ROCKI is widely
expressed in nonneuronal tissues, including heart, lung, and
skeletal muscles. In contrast, ROCKII is mainly expressed
in the brain [37]. ROCKs belong to the members of the
serine/threonine protein kinases family that are characterized
by their effect on the direct phosphorylation of MLC and
inactivation of myosin–binding subunit of myosin phos-
phatase (MP). This leads to accumulation of phosphorylated
myosin light chain (pMLC) and subsequent regulation of
cytoskeletal contractility [36, 38, 39]. Furthermore, Rho-
ROCK signaling activates LIM kinase and stabilizes actin
filaments by inducing phosphorylation and inactivation of
cofilin which is essential for actin filaments turnover. As a
result, this mechanism contributes to spatial reorganization
of actin cytoskeleton [40].

3. MLCK Signaling Pathway

MLCK is a Ca2+-calmodulin-dependent serine/threonine
kinase that dynamically regulates actomyosin reorganization
and cell contraction in both smooth-muscle and nonmuscle
cells. The MLCK family is comprised of nonmuscle forms
(210-KDa), short smooth-muscle forms (108-KDa), and
telokin (21-KDa) that lacks enzymatic activity. Nonmuscle
MLCK (nmMLCK) is predominantly expressed in epithe-
lium, endothelium, and polymorphonuclear (PMN) leuko-
cytes. Moreover, it has been identified that nmMLCK plays a
vital role inmodulating cell functions [41–43]. Previous stud-
ies showed that nmMLCK represents the principal MLCK
in intestinal enterocytes and is responsible for Na+-nutrient
cotransport-dependent TJ regulation [43]. NmMLCK phos-
phorylates MLC at threonine 18 and/or serine 19 leading
to actin-myosin interaction and cytoskeletal sliding. This
induces epithelial barrier breakdown [44]. MLCK is widely
studied for its role on intestinal epithelial breakdown, which
is critical for the pathogenesis of several diseases including
burn injury, inflammatory bowel disease (IBD), and IBS [45–
47]. In response to physiologic and pathophysiologic stimuli,
MLCK-dependent regulation of epithelial barrier function
may lead to increased intestinal permeability resulting from
tight junction breakdown [30, 31]. Moreover, one study found
that the magnitude of MLCK expression and presence of
increased MLC phosphorylation strongly correlated with
active inflammation [45].Thus, targeted nmMLCK inhibition
may be a potential target for epithelial restoration and
inhibition of inflammatory diseases progression.
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4. Crosstalk between Inflammation
and MLCK and/or ROCK in Increased
Intestinal Permeability

TJ activity is regulated by a wide variety of physiologic and
pathologic conditions including those in the RhoA pathway
and inflammatory cytokines [48, 49]. The activation of
actomyosin contraction assessed by phosphorylation ofMLC
has been implicated in TJ regulation in the epithelium. TJ
barrier can be regulated immediately by signal transduction
cascades, which frequently require activation of MLCK and
ROCK [50, 51]. Though MLCK and ROCK have the same
phosphorylation sites, they have distinct roles in spatial
regulation of MLC phosphorylation. Previous studies have
demonstrated that ROCK-mediated direct phosphorylation
of MLC and inhibition of MP lead to the assembly of
stress fibers in the center of nonmuscle cells, while MLCK
is involved in microfilament assembly in the periphery of
the cells [52, 53]. Moreover, activated ROCK may promote
disruption of E-cadherin-mediated AJs in epithelial cells
by stimulating actomyosin contractility [54]. Another study
demonstrated that disruption of AJs and TJs by inflammatory
stimuli is induced by Rho and ROCK activation while
attenuated by Rho and ROCK inhibition [55]. The activation
of ROCK is Ca2+-independent which has been clearly shown
in Ca2+-depleted epithelial cells [56]. The signaling pathways
work as an intermediate step involved in the intracellular
process triggered by extracellular cytokines, microbiota, or
other chemicals. A number of proinflammatory cytokines
induced epithelial breakdown is dependent on the activation
of ROCK and/or MLCK signaling pathways.

It has been demonstrated that MLCK is required for
maintenance of basal stress fibers in unstimulated cells but
does not affect late stress fiber reorganization, morphological
changes, or epithelial permeability, while ROCK is required
for the maintenance of late stress fibers organization in TNF-
𝛼 induced intestinal permeability [57]. TGF-𝛽1 has been
shown to play a role in the dissolution of TJs by Rho/ROCK
signaling pathway [58]. IFN-𝛾 induces endocytosis of epithe-
lial AJC transmembrane proteins by Rho-ROCK-mediated
contraction of perijunctional actomyosin cytoskeleton [56].
A recent study has found that apical bacterial internalization
is regulated by IFN-𝛾 induced MLCK-dependent brush
border fanning associated with CD and celiac disease [59].
Several studies have demonstrated that TNF-𝛼 and other
proinflammatory cytokines induce intestinal hyperperme-
ability by cytoplasmic-to-nuclear translocation of nuclear
factor-kB (NF-kB). Therefore, NF-kB-regulated activation of
MLCK promoter is the trigger for downstream increased
expression of MLCK and subsequent opening of TJ barrier
[21, 60–62]. Previous works have established that inflamma-
tory cytokines are capable of independently reducing barrier
function. However, more commonly, these cytokines induce
barrier dysfunction synergistically [51].

5. Epithelial Barrier Breakdown and
Gastrointestinal Disorders

MLCK- and ROCK- associated signaling pathways mediate
actomyosin-dependent disruption of the epithelial barrier in

Table 1: Summary of inflammatory cytokines involved in gastroin-
testinal intestinal disorders.

Diseases Species Inflammatory
cytokines Reference

IBD

Human TNF-𝛼 Suenaert et al., 2002 [65]
Järnerot et al., 2005 [66]

Human IFN-𝛾
Niessner and Volk, 1995 [67]

Haep et al., 2015 [68]
Rismo et al., 2012 [69]

Human IL-10 Niessner and Volk, 1995 [67]

Human IL-17A Liu et al. 2016, [70]
Rismo et al., 2012 [69]

Human IL-1𝛽 Winchester and Pepine, 2015
[71]

Human IL-8 Rodŕıguez-Perlvárez et
al.,2012 [72]

Human IL-2 Zaidi et al., 2016 [73]
Human IL-13 Heller et al., 2005 [24]

Celiac
disease

Human IL-15 Koning [74]

Human IFN-𝛾 Schuppan et al., 2009 [75]
IL-21 Schuppan et al., 2009 [75]

IBS

Human IFN-𝛾 Barbaro et al., 2016 [76]
Human IL-10 Chen et al., 2012 [77]

Human

TNF-𝛼 Vivinus-Nébot et al., 2014
[78]

IL-6 Seyedmirzaee et al., 2016 [79]
Il-8 Seyedmirzaee et al., 2016 [79]
IL-1𝛽 Pike et al., 2015 [80]

FD Human
TNF-𝛼 Liebregts et al., 2011 [81]
IL-10 Liebregts et al., 2011 [81]
IL-1𝛽 Liebregts et al., 2011 [81]

different inflammatory settings. MLCK-mediated signaling
pathway induces a modest contraction of perijunctional
actomyosin belt and subsequently increases paracellular per-
meability without alterations in AJs structure, while ROCK-
mediated signaling pathway is involved in the activation
of the GEF-H1-Rho-ROCK pathway that leads to profound
actomyosin contraction and TJs/AJs disassembly [63].

TJs are dynamic and are activated in different circum-
stances. Epithelial TJs and AJs have different sensitivity
to different inflammatory cytokines. For example, TNF-
𝛼 and INF-𝛾 selectively disrupt TJs without affecting the
AJ structure [64]. Alterations of the TJs in inflammatory
conditions and disrupted epithelial barrier-induced mucosal
immune activation are demonstrated in various gastroin-
testinal disorders. The detailed information of inflammatory
cytokines and MLCK-/ROCK-mediated pathways observed
in gastrointestinal disorders is listed in Tables 1 and 2.

6. Inflammatory Bowel Disease

IBD are relapsing and progressive inflammatory conditions
thatmainly affect the gastrointestinal tract [85].There are two
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Table 2: Summary of ROCK and MLCK signaling pathways in
gastrointestinal intestinal disorders with increased intestinal perme-
ability.

Diseases Species Signaling
pathway Reference

IBD Human MLCK Blair et al., 2006 [45]
Human ROCK Segain et al., 2003 [82]

Celiac
disease Human ROCK Monsuur et al., [83]

IBS Human
and mice

MLCK or
ROCK Gecse et al., 2008 [84]

major forms: CD and UC [86]. Abnormal gut permeability
has been identified in patients with IBD and also in some of
their first-degree relatives [87]. The disruption of intestinal
barrier induces exposure of luminal antigens to mucosal
immune cells which subsequently leads to abnormal immune
response [88]. Genetic studies have demonstrated an associ-
ation between barrier integrity and epithelial regeneration-
related genes in patients with IBD. Junction protein encoding
genes like CLDN1, CLDN2, and CDH1 are involved in the
progression of disease activity in IBD [89, 90]. Moreover, it
has been demonstrated that there is severe loss of occludin,
ZO-1, and E-cadherin from AJC in the intestinal mucosa of
patients with IBD [91].

As extracellular signals, all cytokines influence the
expression of tight junction proteins resulting in interfering
cellular junction structure and changing of intestinal integrity
via Rho kinase-mediated F-actin cytoskeleton regulation
[88]. Previous studies have shown that TNF-𝛼 induces epithe-
lial MLCK activation which is related to barrier dysfunction
in IBD. Moreover, the magnitude of MLCK expression
correlated strongly with active inflammation [45].

Furthermore, TNF antagonism (infliximab) has thera-
peutic efficacy for patients with IBD, indicating that proin-
flammatory cytokines participate in the pathogenesis of IBD
[65, 66]. IFN-𝛾 is also mainly involved in regulation of
immune response, and the expression is elevated in the
intestinal mucosa in patients with IBD [67]. Furthermore,
IFN-𝛾 induces cellular internalization of transmembrane TJ
proteins by activating small GTPase RhoA and subsequently
regulating ROCK expression [82, 92]. In addition, the expres-
sion of IL-1𝛽 is also elevated in intestinal mucosa in patients
with IBD,which causes intestinal inflammation and intestinal
permeability [21]. Another study suggested that the barrier
defect induced by IL-1𝛽 is associated with MLCK expression
and MLC phosphorylation [93].

7. Celiac Disease

Celiac disease is an autoimmune disease of small intestine
in genetically susceptible individuals and characterized by
gluten sensitivity [94]. Sixty to 80% of patients with celiac
disease show increased intestinal permeability leading to
inflammatory reaction induced by luminal gliadin fractions
[95, 96]. Many structural and molecular changes of epithelial
tight junctions have already been reported. In duodenal

biopsies of patients with untreated celiac disease, the levels of
claudin-2 and occludin are increased while levels of claudin-
3 and claudin-4 are decreased [96]. Genes, such as ACTB,
GNAII, TJPI, and CRB3, that encode tight junctions showed
altered levels of expression in patients with active celiac
disease [97]. Previous studies suggest that the pathogenesis
of celiac disease is driven by heightened Th1-predominant
immune response [75]. Gluten elicits a response in antigen-
presenting cells (dendritic cells, macrophages) that activate
intraepithelial lymphocytes (IELs) and intestinal epithe-
lial cells [98]. Taken together, numerous proinflammatory
cytokines are involved in celiac disease including IFN-𝛾, IL-
18, IFN-𝛼, and IL-21 [75]. Proinflammatory cytokines such as
IFN-𝛾 and TNF-𝛼 contribute to the development of mucosal
lesions in the small intestine along with villous atrophy and
crypt hyperplasia. For example, the activation of NF-kB by
IFN-𝛾 causes occludin to dissemble and results in increased
paracellular permeability [61, 99].

In addition,MYO9B is a good candidate gene for therapy
in celiac disease as its encoded protein is involved in early
mucosal inflammatory response. MYO9B-encoded protein
belongs to class IX myosin molecules, which contains a
Rho-GTPase-activating domain and regulates Rho/ROCK-
dependent remodeling of cytoskeleton and epithelial perme-
ability [5, 83]. However, the involvement of ROCK/MLCK
in the pathogenesis of celiac disease requires further explo-
ration.

8. Irritable Bowel Syndrome

IBS is a common functional gastrointestinal disorder with
undetermined etiology [100]. The pathogenic factors of
IBS recently reported are impaired barrier function, low-
grade mucosal inflammation, and changes in intestinal
microbiota composition [101, 102]. Altered expression of
tight junction proteins including ZO-1 and occludin is
responsible for increased intestinal permeability, especially
in IBS patients with diarrhea predominant symptoms [103].
Mucosal cytokine composition changes and penetration of
mast cell mediators into the mucosa play important roles
in the modulation of intestinal permeability [104–106]. For
example, proinflammatory cytokine IFN-𝛾 strongly increases
gut permeability, while anti-inflammatory IL-10 protects
against the disruption of the TJ barrier [107]. Significantly
increased levels of INF-𝛾 and decreased levels of IL-10 have
been shown in the intestinal mucosa of patients with IBS
and also in postinfectious IBS [76, 77]. IFN-𝛾 also plays an
important role in visceral hypersensitivity in patients with
IBS. IFN-𝛾 induces MLC phosphorylation which leads to
the contraction of epithelial cell cytoskeleton. The opening
of TJ allows exposure to intraluminal agents that activates
immune cells and sensitizes sensory nerve terminals to
mechanical stimuli [108]. Finally, TNF-𝛼 also plays a role in
the pathogenesis of IBS. TNF-𝛼 increases epithelial leakage by
a mechanism that involves reorganization of tight junctions
and perijunctional actomyosin ring that require MLCK [78,
109]. Another study has shown that there are increased
phosphorylation of MLC and delayed redistribution of ZO-1



Gastroenterology Research and Practice 5

in epithelial cells after mucosal exposure to IBS-D super-
natants.This suggests that intestinal hyperpermeability in IBS
is related to ROCK or MLCK pathway [84].

9. Functional Dyspepsia

FD is also a common functional gastrointestinal disorder
affecting 20% of population worldwide with poorly under-
stood pathophysiology [110]. Recent studies have provided
evidence for the presence of low-grade inflammation in the
duodenal mucosa [111, 112]. Patients with FD have been
shown to have significantly higher levels of circulating TNF-
𝛼, IL-1𝛽, and IL-10 compared with healthy controls, and
the cytokines release correlated with symptom onset of
abdominal pain, cramps, nausea, and vomiting [81].The low-
grade duodenal inflammation in FD is associated with tight
junction breakdown and increased intestinal permeability.
Expression of OCLN and ZO-1 in the duodenal mucosa
has shown to be significantly depressed in patients with FD
[27]. Although there is lack of current evidence that MLCK
or ROCK is involved in hyperpermeability and immune
activation, MLCK/ROCK signaling pathways are essential
routes contributing to epithelial barrier breakdown. The
mechanism of barrier dysfunction and immune response in
FD need further investigation.

10. Summary

Gastrointestinal mucosal epithelium provides an impor-
tant role by performing a barrier to luminal antigens and
maintaining mucosal homeostasis. Epithelial breakdown is
associated with a number of gastrointestinal diseases [78, 113,
114]. Regardless of whether breakdown of intestinal barrier
is the initial cause or the result of injury that contributes
to pathology, restoring barrier function remains a worth-
while therapy in a variety of intestinal and extraintestinal
diseases [16, 115]. The importance of the TJ barrier is demon-
strated in nmMLCKknockoutmicewhich showed protection
from systemic or luminal stressors [116, 117]. Furthermore,
inflammatory cytokines antagonism may also play a role in
disease restoration, as TNF-𝛼 antagonism (infliximab) has
efficacy in reducing inflammation and restoring gut barrier
in patients with CD [65]. Elucidating upstream mechanism
and key factors may provide important clues to develop
novel therapeutic interventions in patients with debilitat-
ing diseases. Although inhibition of intestinal epithelial
nmMLCK or ROCK to specifically restore barrier function
may be therapeutically attractive, such attempts may not
be clinically suitable up to now. Since the catalytic domain
of MLCK in epithelium and smooth muscle are identical
and MLCK/ROCK pathways are involved in a number of
cellular activities and are important in maintaining cellular
homeostasis, inhibitors are likely leading to unacceptable
toxicities.

However, further basic research is still needed to improve
our understanding of these complex signaling pathways and
the crosstalk between them. The dynamic characteristic of
AJC, the involvement of specific molecules, and intracellular
signaling pathways that regulate epithelial functions offer

opportunity for development of drugs with more specific
actions in patients with gastrointestinal disorders.
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