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Abstract
Breast cancer (BCa) molecular subtypes include luminal A, luminal B, normal-like, HER-2–enriched, and basal-like
tumors, among which luminal B and basal-like cancers are highly aggressive. Biochemical pathways associated
with patient survival or treatment response in these more aggressive subtypes are not well understood. With the
limited availability of pathologically verified clinical specimens, cell line models are routinely used for pathway-
centric studies. We measured the metabolome of luminal and basal-like BCa cell lines using mass spectrometry,
linked metabolites to biochemical pathways using Gene Set Analysis, and developed a novel rank-based method
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to select pathways on the basis of their enrichment in patient-derived omics data sets and prognostic relevance.
Key mediators of the pathway were then characterized for their role in disease progression. Pyrimidine metabolism
was altered in luminal versus basal BCa, whereas the combined expression of its associated genes or expression
of one key gene, ribonucleotide reductase subunit M2 (RRM2) alone, associated significantly with decreased
survival across all BCa subtypes, as well as in luminal patients resistant to tamoxifen. Increased RRM2 expression
in tamoxifen-resistant patients was verified using tissue microarrays, whereas the metabolic products of RRM2
were higher in tamoxifen-resistant cells and in xenograft tumors. Both genetic and pharmacological inhibition of
this key enzyme in tamoxifen-resistant cells significantly decreased proliferation, reduced expression of cell cycle
genes, and sensitized the cells to tamoxifen treatment. Our study suggests for evaluating RRM2-associated
metabolites as noninvasive markers for tamoxifen resistance and its pharmacological inhibition as a novel
approach to overcome tamoxifen resistance in BCa.

Neoplasia (2014) 16, 390–402
Introduction
In the United States, breast cancer (BCa) is the most common cancer
diagnosed in women and the second highest cause of cancer-related
deaths among them [1]. Once diagnosed, many important character-
istics of BCa are used to determine optimal treatment and prognosis.
These characteristics include tumor size, estrogen and progesterone
receptor status (ER and PR), HER-2/neu status, histologic subtype,
nuclear grade, lymph node status, and margin status [2,3], all of which
provide limited insight into the molecular pathways driving disease
progression. Breast tumors are clinically stratified into subgroups on
the basis of ER andHER-2 expression and the so-called triple-negative
tumors (TN: ER, PR, and HER-2 negative) for which currently there
is no targeted therapy. Hence, TN subtype tumors are often treated
using conventional chemotherapeutics [4,5].
To obtain a better understanding of the pathways associated with

estrogen-induced molecular alterations, numerous studies have
examined gene and protein expression profiles using high-throughput
omics-based technologies [6–18]. However, the application of
metabolomics to define pathways associated with BCa has been limited.
Unlike the genome and the proteome, the metabolome defines the
actual physiological state of the tumor, is computationally tractable, less
complex (than the other -omics), and more importantly, reveals
potential metabolites that can bemeasured in noninvasive body fluids in
a clinical context. Some researchers have used mass spectrometry to
examine the metabolome associated with BCa [19–21] as well as to
determine altered metabolites and biochemical pathways associated
with the various subtypes of tumors [22–28].
In the current study, using a robust mass spectrometry platform

[29–32], we measured metabolic alterations in luminal and basal
BCa cell lines [33] and ranked pathways using a Gene Set Analysis
(GSA)–based enrichment approach [34]. The enriched pathways were
then selected on the basis of their relevance in patient-derived luminal
and basal-like BCa tissues, by examining pre-existing gene and
metabolic expression data sets. Following this, the selected pathways
were further stratified on the basis of their association with survival of
patients with BCa using publicly available gene expression data sets
containing information on patient outcome. A novel rank-based
method was developed that took into account the degree of enrichment
of the pathways in each of the molecular data sets, as well as its
prognostic potential, to generate a cumulative rank score. This was then
finally used to stratify the pathways for subsequent downstream
validation studies. This systematic stepwise selection enabled us to
identify pyrimidine metabolism as a key biochemical pathway
associated with aggressive BCa in general and with tamoxifen resistance
in patients with luminal BCa. Importantly, using in vitro and in vivo
BCa models, the translational and clinical relevance of pyrimidine
metabolism and the gene associated with one of its key enzymes,
ribonucleotide reductase subunit M2 (RRM2) was established.

Methods

Cell Lines
Breast cell lines (basal-like or mesenchymal breast cancer—BT549,

HS578, MDA MB 231, MDA MB 436, and MDA MB 468; luminal
breast cancer—BT474, MCF-7, MDA MB 453, and T47D) were
purchased from American Type Culture Collection (Manassas, VA; see
Supplementary Table 1 for description of the cell lines). SUM159PT
basal BCa cells were kindly gifted by Dr Ethier (Medical University of
South Carolina (MUSC) Hollings Cancer Center, Charleston, SC).
MDAMB 231,MDAMB 453, HS578T, andMCF-7 L [35,36] were
grown in Dulbecco's modified Eagle's solutin (DMEM)–GlutaMAX
media (Invitrogen Corp, Carlsbad, CA) supplemented with 10% FBS
(Hyclone Laboratories/Thermo Scientific, Rockford, IL) and 1%
penicillin-streptomycin (Hyclone Laboratories). MDA MB 436, and
MDA MB 468 were grown in L15 media (Life Technologies, Grand
Island, NY) supplemented with 10% FBS (Hyclone Laboratories).
T47D, BT 474, and BT549 cells were grown in RPMI (Invitrogen
Corp) media supplemented with 10% FBS (Hyclone Laboratories) and
1% penicillin-streptomycin (Hyclone Laboratories). SUM 159 PT was
grown inHam F12, 5% insulin hydrocortisone (Life Technologies). All
cells were maintained at 37°C and 5% CO2. Before their analyses, cells
were trypsinized, and the pellet was washed thrice with ice-cold
phosphate-buffered saline (PBS), counted into 25 million aliquots, and
stored at −140°C.

For studies to characterize the role of RRM2 in tamoxifen
resistance, MCF-7 parental without treatment (MCF-7 L, parental)
or either treated with tamoxifen for 48 hours [when cells are still
sensitive, TAM sensitive (TAM-S)] or for long term until cells
became resistant and resumed growth [TAM resistant, TAM-R)] as
described earlier by Morrison et al. [35,36] were used. The parental
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cells were grown in RPMI medium as described above. Tamoxifen-
treated cells (TAM-S or TAM-R) were grown in phenol-red–free
RPMI medium (Media Tech, Manassas, VA) containing charcoal
stripped Fetal Bovine Serum, with 10 uM 4-hydroxytamoxifen
(Sigma-Aldrich, St Louis, MO). In addition, xenografts generated
using MCF parental cells (MCF-7 L) that were either untreated
(termed parental) or treated with tamoxifen for ~2 weeks (short-term
treatment and TAM-S) or ~3 months (long-term treatment and
TAM-R), as described by Massarweh et al. were used.
Mass Spectrometry
Unbiased mass spectrometry–based methods were described earlier

[30]. Sample preparation for mass spectrometry–based examination of
metabolome is described in Supplementary Methods. The mass
spectrometry portion of the unbiased profiling platform is based on a
1200 SL Rapid resolution LC and a 6520 Quadrupole Time of Flight
mass spectrometer (Agilent Technologies, Santa Clara, CA). For
unbiased profiling studies, real-time mass correction during mass
spectrometry was achieved by infusion of a standard mixture of
reference ions using an independent 1200 SL Rapid resolution LC
isocratic pump equipped with 100:1 splitter to output a flow rate of
5 ml/min. The samples were independently examined in both positive
and negative ionization modes using a dual electrospray ionization
source. Detailed description of chromatographic methods used for
separation of metabolites is given in Supplementary Methods.

The mass spectrometry portion of the targeted profiling platform
was based on a 1200 SL Rapid resolution LC and a 6430 triple
Quadrupole mass spectrometer (Agilent Technologies). The multiple
reaction monitoring (MRM)–based measurement of levels of 76
metabolites was done using four different methods, which used either a
reverse-phase or normal aqueous-phase chromatographic separation,
before mass spectrometry. Details of the methods, associated
chromatographic conditions, metabolites measured, and their corre-
sponding MRM transitions are given in Supplementary Table 2 and
Supplementary Methods.
Metabolomic Library, METLIN
METLIN (Agilent Technologies) was used to search the unbiased

mass spectral data. METLIN was created using approximately 1800
commercially available compounds whose retention time was defined
using the Reverse Phase (RP) chromatographic method described
above.
Metabolomics Data Analysis
All the downstream processing and data analyses were performed

using R statistical programming software (R Foundation for Statistical
Computing, Vienna, Austria) [37]. After removing the compounds
with more than 40% of missing values, the missing values in the
remaining metabolites in the BCa cell lines were imputed using the
K-Nearest Neighbour (KNN) algorithm (“imputation” package [38],
K = 5). Following the preprocessing, of 673 compounds, the BCa cell
line has 76 were unique metabolites, whereas our recently published
BCa tissue metabolome data set [39] had a total of 219 compounds of
which 168 metabolites were named.

Imputed data were median centered and Inter Quartile Range
(IQR) scaled following log2 transformation. Two-sided t tests were
performed to identify differential metabolites by comparing luminal
and basal subtypes coupled with False discovery rate (FDR)
adjustment (adjusted P values b .2) using the Benjamini Hochberg
(BH) method [40] along with estimated fold change using the
Differential Expression via Distance Summary (DEDS) package [41].

Analysis of Microarray Gene Expression Data
In this study, we used this gene expression data set (termed National

Cancer Institute data set, GSE37751) for 46 matched BCa tissues
derived from (Affymetrix, Santa Clara, CA, USA) GeneChip
Human Gene 1.0 ST arrays, followed by Robust Mult-chip
Average (RMA) normalization [39,42] found in the R bioconduc-
tor [43] package and differential expressions analysis using FDR-
adjusted (BenjaminiHochberg) two-sided t tests (limma (linear models
for microarray data) package). Heat maps with average linkage based
hierarchical clustering of z-score transformed differentially expressed
compounds and genes, were generated using the gplots [44] package.

Identification of Key Pathways Based on Enrichment Scores
Describing Differential Expression and a Prognostic Value in
BCa Subtypes

Selection of key pathways was accomplished using a two-step process
that considered both the relative enrichment scores on the basis of a
modified enrichment analysis, GSA (proposed by Tibshirani et al.
{(http://www-stat.stanford.edu/~tibs/GSA/), [45,46]} and their
prognostic potential on both the set of metabolites and their Kyoto
Encyclopedia of Genes and Genomes (http://www.genome.jp/kegg/)
(KEGG)–derived associated gene sets across multiple publically
available BCa gene expression data sets (refer to Supplementary Table
3 for the list of metabolites and their associated genes and
Supplementary Table 4 for the description of the data sets).

In the first step, the selection of top significant (enrichment P value)
pathways included a group of 11 pathways that were altered between
basal and luminal subtypes. Next, the gene sets associated with these 11
enriched pathways were obtained from KEGG to derive their pathway-
specific score (averaged gene expression) and examined for their
prognostic value in the publically available gene expression data sets
(refer to Supplementary Table 4 for the list of data sets used) [47,48].
This was done by examining the association between pathway scores
and years of metastasis-free patient survival using a Cox proportional
hazards model. For selected pathway-associated gene sets or individual
genes, correlation with metastasis-free survival was visualized using
Kaplan-Meier (KM) plots. As a comparative reference for the prognostic
analysis, samples in the Kessler compendium and van de Vijver data sets
were also stratified using (GEO data set GEICAM9906) PAM50 and
other known prognostic marker panels [49].

Once the enrichment scores for both expression levels and
prognostic values were obtained for each pathway, they were
combined to generate a combined rank (CR) score, details of which
are described in Supplementary Methods.

Analysis of RRM2 Expression by Immunohistochemistry on
Tissue Microarray of Patients with BCa

Tissue microarray construction. RRM2 protein expression was
measured using a previously developed tissue microarray (TMA)
(Pathology Resource Network, Roswell Park, NY) containing 192
biopsy specimens (each having three replicates). Tissues from patients
who had surgeries performed between 1995 and 2008 at Roswell Park
Cancer Institute (Buffalo, NY) were included in the TMA. Specimens
for controls within the TMA consisted of multiple cores of normal
tissue from 10 different organs including heart, colon, kidney,

http://www-stat.stanford.edu/~tibs/GSA/
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adrenal, ovary, myometrium, brain, thyroid, lung, and prostate,
thereby representing more than 20% of all the cores in a TMA.
Appropriate Institutional Review Board approval consistent with
federal, state, and local requirements was obtained for this project,
and clinical and outcome data were deidentified.
Of the 192 patients whose tissues were arrayed on the TMA, 185 were

ER positives, 5 were ER negatives, and the remaining 2 were not defined
for their subtype. Further among the 192 tissues, 132 were PR positive,
58were PR negative, and the remaining two patients were not defined for
their PR status. Patients were administered with tamoxifen (156),
anastrozole (21), or letrozole (2) or not treated (5). The treatment was
given either in an adjuvant systemic setting (165) or neoadjuvant systemic
setting (16). Two patients received systemic treatment for metastasis, one
received for local recurrence, four did not receive any systemic treatment,
one patient refused treatment, and three patients were not documented
for the treatment modality. In addition, a subset of patients were also
subjected to chemotherapy with the following distribution: AC
(Adriamycin+ Cyclophosphamide (AC) (Sigma, St Louis, MO, USA))
(29), CMF IV (Cyclophosphamide+ Methotrexate+ Fluorouracil /5FU
(CMF) (Sigma, St Louis, MO, USA)) cytoxan (6), AC/Taxol (48),
Adriamycin/Taxotere (4), A-CMF (Adriamycin+Cyclophosphamide+
Methotrexate+ Fluorouracil /5FU(ACMF) (Sigma, St Louis, MO,
USA)) (3), Taxotere (1), CEF (Cyclophosphamide + Epirubicin, + 5-
Fluorouracil (CEF) (Sigma, St Louis, MO, USA)) (Epirubicin, 1).
Seventy-eight patients did not receive any chemotherapy.
Importantly, in this study, the inclusion criteria for evaluating

RRM2 expression in the TMA were that the patient should have ER+
tumors, be treated with tamoxifen in an adjuvant setting and without
chemotherapy. Using these criteria a total of 45 patients were selected,
of which recurrence was seen in 19 patients whereas the rest of the 26
patients were followed for recurrence-free survival for a median time
of 8 years. Furthermore, among these 45 patients, 25 patients were
reported to have died by the end of 8 years of median follow-up, of
which 13 died of the disease, 6 died due to other complications, and 6
died of unknown causes.

Immunohistochemistry
Paraffin sections were cut at 4 μm, placed on charged slides, and

dried at 60°C for 1 hour. Slides were cooled to room temperature,
deparaffinized in three changes of xylene, and rehydrated using graded
alcohols. For antigen retrieval, slides were heated in the steamer for
either 40 or 60 minutes in citrate buffer (pH 6.0) (Biocare Medical,
(Concord, CA) No. CB910), followed by a 20-minute cooldown.
Endogenous peroxidase was quenched with aqueous 3% H2O2 for
10 minutes and washedwith PBS/T (Tween-20). Slides were loaded on
a Dako (X0909, Dako, CA) autostainer, serum-free protein block
(Dako No. X0909) was applied for 5 minutes and blown off, and the
RRM2 antibody (SC-81850, Santa Cruz Biotechnology (Santa Cruz
(Dallas, TX)) was applied at 1:500 dilution for 1 hour. PBS/T was used
to wash slides between each reagent application. Dako Mouse Envision
(K4007) was applied for 30 minutes, followed by DAB (Dako No.
K3468) for 10 minutes. Finally, the slides were removed from the
autostainer, counterstained with hematoxylin, dehydrated, cleared, and
coverslipped. Isotype-specific nonimmune IgG was used as a control to
examine the specificity of RRM2 staining.

Aperio Slide Scanning and Image Analysis
TMA slides were digitally scanned using Aperio ScanScope (Aperio

Technologies, Inc, Vista, CA) with ×20 bright-field microscopy.
These images were then accessible using Spectrum (Aperio
Technologies, Inc), a web-based digital pathology information
management system. Slide images were automatically associated to
a digital slide created in the Digital Slide table in Spectrum.

Once slides were scanned, Aperio ImageScope version 11.2.0.780
(Aperio Technologies, Inc) was used to view images for analysis. Slide
image data fields were populated and images were examined for
quality and were amended as necessary. Care was taken to avoid
including areas of carcinoma in situ and regions with staining
artifacts. When possible, representative areas of tumor were selected
for analysis with a minimum target of 30 tumor cells per TMA core.

A Cytoplasm Algorithm (Aperio, Leica Microsystems, IL) that was
calibrated to analyze DAB staining intensity and calculate the
percentage of cells containing the stain within their cytoplasmic
compartment was used. Staining thresholds were set for calling out
positive stains, and the scores for average cytoplasm intensity for the
selected regions were calculated on the basis of these thresholds. The
staining intensity was stratified into the following four score values: 0,
none; 1 +, weak; 2 +, moderate; and 3 +, strong. Concomitantly, for
each of these staining scores, the percentage of cells that stained was also
calculated. The staining intensity and the percentage of cells in each of
the staining intensity bins were together used to calculate the H score
that reflects the proportion of cells in the cytoplasm of the tumor that
express RRM2 at the various staining intensity thresholds described
above. In other words, the H score was calculated as follows: 1*(%1+) +
2*(%2+) + 3*(%3+), and ranged from 0 to 300 with a score of 300
reflecting 100% of the cells having a staining intensity of 3+. All the
slides were counterstained with hematoxylin to reveal the morphologic
detail of the surrounding tissue and to help identify nuclear and
cytoplasmic compartments of the cells for analysis.

TMA Data Analysis
In this study, we selected tissues from the TMA for RRM2 analysis

that met the following inclusion criteria: ER+ treated with tamoxifen
in the adjuvant setting and no chemotherapy. A total of 45 tissues
passed these criteria among which 19 recurred and the rest did not
show recurrence for a median follow-up time of 8 years. Furthermore,
among the 45 patients, 25 were reported to be dead by the end of the
follow-up period either due to cancer (13) or other causes (12).

For the analysis, the median H score value for each of the samples
was calculated using data from replicate cores. The median H score
was then compared using nonparametric rank sum test for RRM2
expression among patients who were reported to be dead versus those
reported to be alive for the 8-year median follow-up time period.
Furthermore, KM plots using H score were used to examine the
association of RRM2 with recurrence-free survival.

Genetic and Pharmacological Inhibition of RRM2 in TAM-R
Cells and Associated Characterization

TAM-R cells were transfected using either negative control siRNA
(ctrl-siRNA) small interfering Ribo Nucleic Acid (siRNA) or Smart
pools of siRNA against RRM2 (RRM2-siRNA, Thermo Scientific/
Dharmacon RNAi Technologies, Chicago, IL) using Lipofectamine
2000 reagent as described earlier [50]. At 48 hours of posttransfection,
whole-cell extracts were made, and knockdown of RRM2 was verified
using both Quantitative Polymerase Chain Reaction (QPCR) and
immunoblot analysis. Bromodeoxyuridine (BrdU) labeling assay
(Calbiochem/Millipore, Billerica, MA, USA) was used to assess the
proliferation rate per manufacturer's instructions. For cell-cycle gene
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analysis studies, TAM-R cells were transfected with ctrl-siRNA or
RRM2-siRNA as described above. After 48 hours, total RNA was
isolated from TAM-R cells, and cDNA was prepared from total RNA
using iScript cDNA Synthesis Kit (Bio-Rad Laboratories, Hercules,
CA). Transcript levels of cyclin genes were measured by performing
qPCR using SsoAdvanced universal qPCR supermix and gene specific
primers as per manufacturer's instructions (Bio-Rad Laboratories). For
5-azacytidine (aza)–based studies, TAM-R cells were plated onto 96-
well and six-well plates for assessing cell survival and RRM2 protein
levels, respectively. The next day, cells were treated with control vehicle
or aza at 25, 50, and 100 nM concentrations. Following this, after
72 hours, cells were subjected to MTT (Non-Radioactive Cell
A

Figure 1. Metabolomic profiling of BCa cell lines. (A) Overview o
spectrometry–based measurement of the cell line metabolome wa
pathways. These were compared with GSA-enriched metabolic path
metabolome and transcriptome data derived from ~50 BCa tissues (
from each of the three data sets were integrated using a novel rank-ba
These were further curated using a similar rank-based approach for th
survival. Overall, results of this stepwise enrichment were used to n
relevance. (B) Heat map overview of levels of named metabolites acro
and blue represent elevated and reduced levels of metabolites, resp
Proliferation Assay (Promega Corporation, Madison, WI)) assay and
immunoblot analysis.

Results
Figure 1A shows the overall approach used in this study. Mass
spectrometry was used to measure the relative levels of 673
compounds (includes 60 metabolites measured using targeted
assays) across 10 BCa cell lines (luminal n = 4 and basal n = 6;
see Supplementary Table 1 for description of cell lines), each
analyzed as biologic triplicates. Metabolites from predefined liver
pools (n = 26) were extracted in parallel and examined as process
controls. Internal standards were spiked in during the extraction
B

f metabolomic profiling and the integrative methodology. Mass
s followed by GSA-based identification of enriched biochemical
ways derived from an independent set that consisted of matched
46 specimens for transcriptome data). Pathway enrichment results
sed method to nominate a set of 11 commonly enriched pathways.
eir clinical significance, i.e., association with time to metastasis-free
ominate pathways on the basis of both their biologic and clinical
ss luminal and basal/mesenchymal BCa cell lines. Shades of maize
ectively (see color scale).
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process to assess process variation. Mass spectral data were used to
calculate differential metabolites that distinguish basal and
luminal BCa cell lines. To obtain a pathway perspective, the
metabolite data were enriched using GSA [34]. In parallel, the
same strategy was used on matched pre-existing BCa tissue–
derived gene expression and metabolic data to determine clinically
relevant biochemical pathways. Subsequently, commonly enriched
pathways in both the cell line and patient data sets were
determined and evaluated for their association with BCa-specific
survival. A novel rank-based scoring method incorporating
information on both the biologic (enrichment in clinical tissue
data sets) and clinical (prognostic) significance of the pathways
was developed and employed to select key biochemical pathways
for downstream validation studies. This method allows us to
define key biochemical pathways associated with cancer progres-
sion, by integrating data from diverse omics data sets containing
well- annotated clinical data.

Metabolic Profiles Associated with BCa Cell Lines
Before the analysis of the cell line data, the process controls, i.e.,

matrix-free internal standards and liver pools were evaluated for
their variability. The range of coefficient of variation (% CV) for
the eight internal standards in liver pool was 0.09% to 6%. A total
of 76 named metabolites were measured across the luminal and
basal BCa cell lines (Supplementary Figure 1 and Supplementary
Table 1). Of these, 42 metabolites (FDR-adjusted P value b .2)
were differentially altered between the luminal and basal subtypes
(Figure 1B). Luminal BCa cell lines showed elevated levels of
amino acids, like phenylalanine, tryptophan, and tyrosine, and
branched chain amino acids like leucine, lysine, and valine, as well
as higher levels of lauric acid and oleic acid. In contrast, levels of
nucleotides like guanine, adenine, thymine, uracil, xanthine, and
guanosine were elevated in basal BCa cells compared to the
luminal counterparts.

Enrichment Analysis to Define Pathways Associated with Cell
Line Metabolomics Data
To obtain better insight into the subtype-specific biochemical

pathways distinguishing luminal from basal BCa cell lines, we applied
GSA on the cell line–derived metabolomics data as described under
the Methods section. As a first step in this process, all the named
metabolites identified in cell lines (n = 53) were mapped to 200
biochemical pathways using the KEGG database (Supplementary
Table 2) [51]. These pathways were then used for GSA-based
enrichment analysis. Following this, we ranked the pathways on the
basis of their FDR-corrected enrichment P value and selected 30
pathways (P value b .15; Supplementary Table 5) for subsequent
integrative analysis with pathways obtained from tissue data sets. The
enriched pathways in the cell line data include those that describe
metabolism of purine, pyrimidine, glutamate, alanine-aspartate,
glycine-serine-threonine, butanoate, β-alanine, taurine-hypotaurine,
valine-leucine-isoleucine biosynthesis, pantothenate-CoA (Coenzyme
A) biosynthesis and lysine degradation.

Enrichment of Biochemical Pathways in Luminal Basal-
Like BCa Tissues
We used matched transcriptomic and metabolomic data sets for

human breast tumors that were generated earlier by our group
[39]. Metabolomics data were available for a total of 50 matched
benign-tumor pairs that included 33 luminal and 17 basal-like/TN
tumors. Here, a total of 219 compounds were measured, of which
98 metabolites were mapped to ~200 biochemical pathways in
KEGG. Supplementary Figure 3A shows the overall heat map for
the metabolites in luminal and basal-like BCa tissues. A total of 44
pathways were enriched (P value b .15) using GSA on the tissue
metabolic data set that were subsequently ranked on the basis of
their P value and used for integrative analysis with cell line–
derived biochemical pathways (Supplementary Table 5 lists the
enriched pathways).

The transcriptomic data, published by our group earlier [39],
contained measurements for ~20,000 genes that were measured using
Affymetrix ST arrays across 46 BCa tissues (ER+ n = 31 and basal
like/TN, n = 15; see Supplementary Figure 3B, GEO Accession No.
GSE39004/GSE37751). Among these, ~2100 genes were mapped to
the same 200 KEGG biochemical pathways described above and used
for GSA-based enrichment analysis. Supplementary Table 5 shows
the list of the 69 pathways enriched using the gene expression data
(P value b .15) that distinguish luminal versus basal BCa. These
pathways were also ranked on the basis of their FDR-corrected
enrichment P value and used for subsequent integrative analysis.

Selection of Robust Omics-Derived Pathways
Having determined the enriched biochemical pathways and their

respective ranks in the metabolome (cell line and tissue) and
transcriptome (tissue) data sets, we next asked which of these metabolic
processes were consistently enriched across all the three data sets. A total
of 11 pathways distinguishing luminal versus basal BCa were uniformly
enriched at a P value threshold b .15 in each of the three data sets
(Figure 2, A–C). These 11 pathways included those that describe
metabolism of purine, pyrimidine, glutamate, alanine-aspartate,
glycine-serine-threonine, butanoate, β-alanine, taurine-hypotaurine,
valine-leucine-isoleucine biosynthesis, pantothenate-CoA biosynthesis,
and lysine degradation (Supplementary Figure 2). Supplementary
Figure 3 shows the heat maps for the expression of the genes associated
with the 11 biochemical pathways in luminal and basal breast tumors
from our BCa tissue–derived transcriptomic data set [39].

Integration of Omics-Based Enrichment and Prognostic Ranks
to Select Clinically Relevant Biochemical Pathways

The biochemical pathways that were consistently enriched across
the different omics data sets were further filtered for their clinical
relevance by examining their prognostic potential in publicly available
BCa gene expression data sets having at least 10 years of clinical
follow-up information. An in silico analysis was performed to
investigate the association of each of the 11 metabolic pathways
with patient survival using 10 independent gene expression data sets
(refer to Supplementary Table 4). Among these, eight data sets (all on
Affymetrix platform) are included in the Kessler compendium [48].
The additional two data sets include the van de Vivjer data set
(containing gene expression data on 295 patients with BCa [47] and
the NCI transcriptome data set (GEO data set GSE39004) (used for
integrative analysis above [39]. For the analysis, both the expression
value and directionality of expression for each gene associated with the
11 commonly enriched pathways (described in Figure 2, A–C) were
obtained from each of the above gene expression data sets. This
information was then used to generate an average gene expression
score for each pathway, which was then examined for association with
years of metastasis-free patient survival using a Cox proportional
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hazards model. The prognostic value of the top ranked pathway was
visualized using KM plots across all samples in the Kessler
compendium. Figure 2D shows the individual as well as integrated
P values for each pathway obtained across all BCa tissues using all the
10 data sets described above.

Notably, only pyrimidine metabolism had a P value b .1 for the
CR Score, indicative of its biologic and clinical relevance in BCa
(Table 1). In addition, pyrimidine metabolism was also significantly
enriched in a subset of BCas with documented ER status
A B

F G

D

(Supplementary Table 6). Consistent with all of this, KM plots also
showed higher expression of pyrimidine metabolism pathway genes as
being associated with shorter metastasis-free survival, across all BCa
(Figure 2E, N = 1340, log-rank P value = .0004) as well as within the
subset of ER+ tumors (Figure 2F, N = 686, log-rank P value = .003).
In addition, higher expression of pyrimidine metabolism genes,
correlated well with PAM50 [52], defined basal-like, Her-2–enriched,
and luminal B tumor subtypes whereas being lower in luminal A
tumors (Figure 2G). Higher cumulative expression of pyrimidine
C

E



Table 1. Individual and Combined P Values for Biochemical Pathways Nominated by Integrative Analysis in BCa Data Sets

Pathway ↓

NCI.
Tranc
riptome

NCI.
Meta
bolome

BCL.
Meta
bolome

NCI.
Survival
ER+(31); 
ER-(15)

van de
Vijver
ER+(226);
ER-(69)

Chin 
ER+(75); 
ER-(43)

Desmedt
ER+(134);
ER-(64)

Loi
ER+(211);
ER-(24) 

Minn
(2005)
ER+(57);
ER-(42)

Minn 
(2007)
ER+(0);
ER-(58) 

Schmidt
ER+(0);
ER-(0) 

Wang
ER+(209);
ER-(77)

Zhang
ER+(0);
ER-(0) 

Combined
Rank
Score 
(CRS)

Purine 0.01 0.06 0.0002 0.46 0.03 0.69 0.59 0.19 0.16 0.25 0.05 0.28 0.77 0.27

Pyrimidine 0.03 0.07 0.007 0.17 0.001 0.89 0.39 0.003 0.62 0.04 0.009 0.10 0.35 0.07

Glutamate 0.03 0.04 0.06 0.04 0.52 0.35 0.34 0.26 0.40 0.70 0.05 0.93 0.35 0.59

Alanine and aspartate 0.003 0.07 0.07 0.04 0.07 0.39 0.69 0.25 0.85 0.02 0.72 0.47 0.65 0.59

Glycineserine and threonine 0.007 0.06 0 0.81 0.008 0.26 0.92 0.53 0.63 0.28 0.75 0.01 0.03 0.29

Valine leucine and isoleucine 0.12 0.06 0 0.02 0.47 0.55 0.69 0.13 0.65 0.37 0.06 0.07 0.84 0.58

Lysine degradation 0.06 0.007 0.02 0.50 0.09 0.76 0.61 0.15 0.60 0.37 0.59 0.002 0.03 0.23

beta-Alanine 0.13 0.04 0.10 0.26 0.10 0.03 0.0004 0.22 0.70 0.49 0.21 0.03 0.03 0.41

Taurine and hypotaurine 0.09 0.07 0 0.02 0.44 0.51 0.61 0.14 0.52 0.82 0.17 0.007 0.51 0.45

Butanoate 0.09 0.08 0.10 0.28 0.50 0.01 0.01 0.05 0.70 0.64 0.81 0.15 0.10 0.72

Pantothenate and CoA 0.12 0.12 0 0.65 0.69 0.80 0.26 0.37 0.52 0.94 0.23 0.82 0.80 0.99

Kessler Compendium

p values →

Red denote significant correlation with worse outcome.
Blue denote significant correlation with better outcome.
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metabolism genes also overlapped with expression patterns of MKi67
[53], Oncotype Dx [54], Mammaprint [55], and genome grade [56]
(Figure 2G). In contrast to the above, genes belonging to the
methionine and glutathione pathways showed opposing expression
patterns in basal-like and Her-2–enriched tumors (Figure 2G).

Higher Expression of RRM2 is Associated with Tamoxifen
Resistance in BCa
We examined the genes within the pyrimidinemetabolic pathway that

were most highly altered in basal versus luminal BCa using our tissue-
derived transcriptome data [39] Both uridine pyrophosphorylase 1
(UPP1, Supplementary Figure 4) and RRM2 (Figure 3A) were
significantly (P = .0004) elevated in basal-like BCa compared to luminal
tumors. Ribonucleotide reductase has three isoforms, M1 (RRM1), M2
(RRM2), and M2b (RRM2b), all of which are key enzymes in the
process of DNA replication and catalyzes the conversion of UDP and
cytidine diphosphate (CDP) to their respective deoxygenated versions
(dUDP/dCDP), which are then used for DNA synthesis. Furthermore,
higher levels of RRM2 but not RRM1 (refer to Supplementary Table 7)
were associated with poor survival in the Kessler compendium (log-rank
P = 3.6E-09; Figure 3B) as well as theWong, Loi, and van de Vivjer data
sets, each of which contains a significant number of luminal A patients
(Figure 3C) [47,57] who are conventionally treated with endocrine or
hormone therapy. In light of the above finding, we askedwhether RRM2
could distinguish luminal patients on the basis of their response to
tamoxifen (TAM), a widely used endocrine agent for ER-positive BCa.
Figure 2. Gene expression signature analysis of metabolism-associate
enriched pathways obtained using GSA on cell line–derived metabolom
the y- and x-axis, respectively. The circumference of each circle in the plo
GSA. (B) Same as in A, but for pathways obtained using GSA on tiss
obtained using GSA on tissue-derived transcriptomics data. The circum
the pathway used for the GSA. (D) Associations with distant metastasi
pathway-associated genes, for each of the indicated breast tumor gene e
between combined expression of pyrimidine metabolism–associated
Kessler compendium (tumors binned by top third, bottom third, and m
associated genes andmetastasis-free survival across 686 ER+BCa tissu
the 11 enriched pathways in the Kessler compendium of breast tumo
signatures MKI67, Oncotype Dx, Mammaprint, and Genomic grade are
Our analysis using the Loi data set (that contains 149ER+ node-negative
patients treated with TAM), showed that RRM2 by itself was able to
distinguish patients who exhibit intrinsic resistance to TAM treatment
and hence relapse within 2 to 5 years after starting the therapy (log-rank
P value = .002; Figure 3D).

Consistent with this, a KM plot (Figure 3D) showed that about
70% of the patients who had low expression of RRM2 (bottom third)
in this data set showed significantly longer metastasis-free survival,
compared to about 50% who expressed higher levels of this
pyrimidine metabolic gene (top third) and displayed worse outcome.
Furthermore, RRM1 was not altered between tamoxifen responders
and nonresponders in this data set, whereas RRM2b was not
measured. Consistent with all of the above, in the Loi data set,
pathway-centric enrichment of gene expression data stratifying
patients into TAM responders versus nonresponders also significantly
enriched pyrimidine metabolism (Supplementary Table 8).

We next verified the association between RRM2 overexpression and
TAM resistance using TMA. Here, we restricted our analysis to ER+
BCa tissues from patients treated with only TAM in the adjuvant setting
and followed up for tumor recurrence and survival for a median time
period of 8 years. To begin with, the specificity of RRM2 antibody for
the protein was established using an isotype nonimmune IgG control
(Supplementary Figure 5). Following this, TMA staining using RRM2
antibody revealed significantly higher expression of the protein in
patients who did not respond to TAM (Figure 3E). Consistent with this,
patients who were reported to have died by the end of the follow-up
d pathways in human breast tumors. (A) Graphical representation of
ics data. The enrichment P values and pathway ranking are given on
t correlates to the number of metabolites in the pathway used for the
ue-derived metabolomics data. (C) Same as in A, but for pathways
ference of each circle in the plot correlates to the number of genes in
s-free survival (by univariate Cox P value) involving combined sets of
xpression data sets are presented. (E) KM plots show the association
genes and metastasis-free survival across 1340 BCa tissues in the
iddle third of scores). (F) Same as in E, for pyrimidine metabolism–

es. (G) Heatmaps showaverage expression of genes associatedwith
r expression profiles (N = 1340). Relative expression for prognostic
also shown.
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D F G
Tamoxifen-treated patients Tamoxifen-treated patients

Figure 3. Pyrimidinemetabolism–associatedRRM2 is differently expressed in breast cancer subtypes and is a predictor of outcome. (A) Box
plot shows the relative expression of RRM2 in basal and luminal BCa tissues. (B) KM plot showing the association of RRM2 expression with
time to metastasis-free survival in patients with BCa (N = 1340). Higher expression of RRM2 was significantly (log-rank P = 3.6E-09)
associated with poor survival in BCa. (C) Table shows results of univariate Cox P values of RRM2 in each of the publically available data sets
and its association with distant metastasis-free survival. (D) KM plot shows the association of RRM2 expression with time tometastasis-free
survival in patients with tamoxifen-treated BCa (Loi data set, N = 149). Higher expression of RRM2 was significantly (log-rank P = .002)
associated with tumors having intrinsic tamoxifen resistance and poor survival in this patient group. (E) RRM2 protein expression was
generally higher in patients who did not respond to TAM compared to those who responded to the treatment. (F) RRM2 expression was
significantly higher (Wilcoxon rank sum, P= .04) in patients whowere reported to be dead versus thosewhowere alive, post-TAM treatment
for a median follow-up time of 8 years. G) KM plot confirms significant association (log-rank test, P = .04) of RRM2 expression with early
tumor recurrence.
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period expressed significantly higher RRM2 (Wilcoxon rank sum
P = .04) compared to those who reported to be alive (Figure 3F). In
addition, higher RRM2 expression associated significantly with earlier
tumor recurrence (log-rank test, P = .04; Figure 3G), confirming
the prognostic value of RRM2 in patients with luminal BCa treated
with TAM.

Next, to determine the role of RRM2 in TAM resistance,
RRM2-associated metabolites were measured in MCF-7 L cells that
were treated with TAM either for a short-term (TAM-S) or longer time
period (TAM-R) [58,59], as well as xenograft tumors [58] generated
using MCF-7 L cells that were treated in vivo with TAM for 2 weeks
(TAM-S) or 3 months (TAM-R). As expected from our earlier findings,
in both cell lines and xenograft tumors, the ratio of the metabolite
product:metabolite substrate for RRM2 (dUDP/UDP and dCDP/
CDP) were significantly higher in TAM-R cells (P b .01; Figure 4,A and
B, TAM-Cell lines and Figure 4, C and D, TAM-Xenograft),compared
to TAM-S controls. A similar profile was also obtained for TAM-R
cells when compared with parental untreated controls (MCF-7 L,
Figure 4, A and B). Corroborating these findings, both protein
(Figure 4E; refer to Supplementary Figure 6 C and D, C and D, for
data using untreated parental cells) and mRNA levels (Figure 4F) of
RRM2 were higher in TAM-R cells compared to TAM-S controls.
Furthermore, transcript levels of RRM2 were also elevated in TAM-R
xenograft tumors compared to TAM-S counterparts (Supplementary
Figure 7). To further substantiate the association of RRM2 with TAM
resistance, siRNA-based knockdown of the gene was carried out
(immunoblot for Knock Down (KD) in Figure 4G) in TAM-R cells. As
expected, siRNA-mediated KD of RRM2 expression in the resistant
cells resulted in a significant decrease in cell proliferation compared to
nontarget siRNA controls (Figure 4H). Consistent with this, the
transcript levels for cyclins regulating G1-S transition Cyclin D2
(CCND2) and Cyclin E1 (CCNE1) were significantly (P b .05)
reduced in the KD cells with no change in the mRNA and levels of S-
phase– or G2-phase–associated cyclins (CCNA1 and CCNB1)
(Figure 4I).

Having garnered substantial evidence on the association of RRM2
with TAM resistance, we next evaluated the ability of the DNA
methyltransferase inhibitor aza to sensitize TAM-R cells to TAM
treatment. This was motivated by a recent report that showed down-
regulation of RRM2 transcript and protein levels by aza in leukemic
cell lines [60]. Consistent with the reported findings, treatment with
25 to 100 uM aza completely abolished RRM2 protein expression in
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Figure 4. Elevated expression ofRRM2 is associatedwith acquired tamoxifen resistance inBCa and could be targeted to sensitize the tumors
to tamoxifen treatment. (A–D) Box plot shows the relative ratios of product:substrate for RRM2, i.e., dUDP/UDP and dCDP/CDP, in TAM-R
(n=3biologic replicates) andTAM-S (eachn=3biologic replicates) cell lines (A andB) and xenograft tissues (CandD), (TAM-R, n=3biologic
replicates; TAM-S, n = 2 biologic, each in n = 2 technical replicates). The relative ratios for the product:substrates of RRM2 were higher in
tamoxifen-resistant (TAM-R) cells (P= .04 and .19) and tissues (P= .002 and .001), compared to their parental counterparts. (E) Immunoblot
analysis shows levels of RRM2 protein expression in TAM-R and TAM-S cells. β-Actin was used as a loading control. (F) Transcript levels
of RRM1, RRM2, and RRM2B relative to 18S RNA in TAM-R and TAM-S cells are presented. (G) Immunoblot analysis to verify RRM2 KD in
TAM-Rcells.β-actinwasusedasa loadingcontrol. (H) RRM2KD inTAM-Rcells resulted in a significant decrease inproliferation (rank sumP=
.0001) compared to control siRNA-treated cells, as assessed byBrdU assay. (I) Transcript levels of CCND2, CCNE1, CCNA1, andCCNB1were
measured after 48 hours of post-RRM2 siRNAorCtrl siRNA treated cells. (J) Immunoblot analysis of aza-treated TAMRcells shows reduction
in RRM2 expression. (K) TAM-R cells were treated with increasing concentrations of aza, and after 72 hours, an MTT-based assay was
performed to determine the cell growth and survival.
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TAM-R cells (Figure 4J). Furthermore, aza-treated TAM-R cells
showed a significant reduction in the cell proliferation as assessed
using BrdU assay (Figure 4K).

Discussion
To delineate the biochemical processes altered in BCa, we adopted a
strategy wherein we started by defining the metabolic alterations in
luminal and basal-like BCa cells that have been well characterized for
their subtype gene expression and routinely used in laboratory studies
[33]. The metabolic profiles were analyzed to generate pathways that
were then examined for their relevance using clinical specimens. The
caveats that argue against using cell line models for profiling studies
include the alteration in their molecular profiles caused by culture
conditions [61] and the lack of the intratumoral heterogeneity in cell
lines [62]. In contrast, the challenge of using clinical specimens for
translational research lies in interpatient variability as well as the
heterogeneous nature of tumor-associated cell types. In spite of these
potential confounders, it is encouraging to find a subset of metabolic
pathways that were consistent between cell lines and patient tumors
and distinguish luminal from basal-like BCa. The novelty of our
integrative approach lies in identifying these commonly altered
biochemical pathways using a pathway-centric rank-based method that
takes into account both the degree of enrichment (which is a reflection
of their biologic importance) of the pathway in patient-derived omics
data and its association with patient prognosis (reflection of their clinical
relevance). In this regard, ourmethodology is distinct from the ones that
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rely on either a single data type (for example, gene expression, [63]) or
combined data sets using concordance-based integrative methods [64].
However, our approach is comparable to the metabolome-centric
method described by Imielinski et al. [65], with refinements that
incorporate a strong patient-centric connotation to calculate the CR
Score. This is exemplified in our results, wherein pyrimidine was ranked
as the top pathway among the 11 possible contenders on the basis of
both its quantity in patient tumors and its association with patient's
clinical outcome.

Pyrimidine metabolism signifying the proliferative ability of tumor
cells was also reflected by its elevated presence in PAM50-defined
basal, Her-2–enriched and luminal B tumors. RRM2 is a key gene in
pyrimidine metabolism and has been earlier shown to be elevated in
aggressive BCa [66]. In combination with other proliferative markers,
RRM2 has also been found to have prognostic relevance in BCa [67].
Consistent with this, in our study, RRM2 expression by itself was able
to distinguish good versus poor survivors within the entire group of
patients with BCa that included a significant proportion of luminal A
subtype. Importantly, from the clinical standpoint, luminal A patients
are typically considered to have a better survival outcome. The clinical
value of molecular predictors like PAM50 [68], Oncotype Dx [54],
Mammaprint [47], and other prognostics stems from their ability to
distinguish a subset of aggressive tumors within this so-called
clinically indolent patient population. In light of this, it is remarkable
to note that the prognostic value of RRM2 alone was comparable to all
the above panel of markers, setting the stage for future prospective
validation of this gene in independent patient specimens. Furthermore,
in the setting of tamoxifen treatment that is routinely administered to
ER+ patients, RRM2was able to distinguish patients whowere resistant
to treatment from those who responded to the therapy. This is verified
by higher expression and activity of RRM2 in TAM-R cell lines and
xenograft models [58,69]. Furthermore, a significantly larger propor-
tion of TAM-treated patients who died of BCa showed higher RRM2
protein expression, a novel finding that was further validated using
TMA. Importantly, this finding does not imply a causal role for RRM2
in the onset of TAM resistance. Furthermore, the findings on higher
RRM2 expression both in tumors with poor prognosis irrespective of
the subtype and in TAM-R ER+ tumors warrant additional studies to
establish the role of the protein in these patient populations.

RRM2 belongs to the family of ribonucleotide reductase that has two
other isoforms, RRM1 and RRM2b. The three together catalyze the
conversion of uridine/cytidine containing nucleotide triphosphates to
their deoxygenated counterparts, a key step in DNA synthesis. It is
important to note that the expression of RRM2 but neither RRM1 nor
RRM2b was consistently and significantly elevated in tamoxifen-
resistant cell line and xenograft samples as well as in publically available
clinical data sets (Figure 4, E and F, and Supplementary Figure 7). In
light of these findings and our observation that the ratio of the dNTP:
NTP (deoxynucleotide triphosphate: nucleotide triphosphate) is higher
in TAM-R in vitro and in vivo samples, we allude to the possibility that
TAM resistance could be a reflection of increased RRM2 activity.
However, other biochemical mechanisms, including a role for RRM1
and RRM2B, cannot be ruled out and need further examination. A
recent report showed the induction of RRM2 by overexpressed AKT in
TAM-R cells [70]. As AKT is known to promote proliferation and cell
growth in multiple cancers, elevated expression of RRM2 could portray
increased rate of DNA synthesis to support AKT-induced proliferation
demand. Yet another possibility regarding role of RRM2 in the context
of TAM resistance stems from our in silico findings (Supplementary
Table 9) that suggest a potential regulation by estrogen receptor 1α
(ESR1). Activating mutations of ESR1 have been reported by multiple
groups to be associated with endocrine resistance [71,72]. These
findings point to the possibility of increased RRM2 expression as being
a downstream consequence of activated ESR1 in patients, a hypothesis
that needs to be validated. In addition, a recent report in melanoma
suggests that RRM2 could induce cellular senescence [73] and hence
create a mechanism for the tumors to escape cytotoxic effect of the
therapy. This is an interesting possibility that needs to be examined in
the context of TAM resistance.

Importantly, a strong association between RRM2 expression and
TAM resistance led us to test potential inhibitors whose activity has
been reported to reverse RRM2 expression. Azacytidine, a well-known
DNA methyltransferase inhibitor, was recently reported to decrease
mRNA and protein levels of RRM2 in leukemic cell lines although its
mechanism of action was not reported ([60]). Consistent with their
findings, RRM2 protein expression in our hands was significantly
reduced on treatment of TAM-R cells with aza. In line with this, aza-
treated TAM-R cells showed significantly decreased rate of proliferation
in the presence of TAM, indicative of potential resensitization to the
TAM treatment. Although preliminary, these findings set the stage for
additional experiments to determine the optimal concentration of aza
required to supplement tamoxifen and to understand the mechanism(s)
that drive this synergy.

Conclusions
Taken together, we have developed a novel bioinformatics method to
integrate metabolomics and gene expression data from cancer cell lines
and tissues to nominate key pathways that are altered and have
prognostic value. RRM2, a key gene in pyrimidine metabolism, was
found to be associated with aggressive breast tumors as well as TAM-R
luminal BCas, and its pharmacological or genetic knockdown sensitized
tumors to TAM. In summary, the study nominates RRM2 as a key
marker for aggressive BCa including TAM-R tumors. In light of this
finding, RRM2-associatedmetabolites could be developed as prognostic
markers for BCa. In addition, the combination of aza with TAM could
be explored in a preclinical setting to treat TAM- resistant BCas.
Appendix A. Supplementary data
Supplementary data to this article can be found online at http://dx.

doi.org/10.1016/j.neo.2014.05.007.
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