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A commentary on

Parkinson disease-linked GBA mutation effects reversed by molecular chaperones in human

cell and fly models

by Sanchez-Martinez, A., Beavan, M., Gegg, M. E., Chau, K.-Y., Whitworth, A. J., and Schapira, A.
H. V. (2016). Sci. Rep. 6:31380. doi: 10.1038/srep31380

A recent thorough study by Sanchez-Martinez et al. (2016) highlighted the pathological role of ER
stress in Parkinson’s disease (PD), finding ER stress associated with dopaminergic cell death and
PD-like locomotor deficits in a Drosophila GBA-PD model. Importantly, the authors observed that
motor impairments could be rescued by two pharmacological chaperones that reduced ER stress,
highlighting a route for potential therapeutic intervention.

The endoplasmic reticulum (ER) is a central organelle for protein folding, lipid synthesis, and
calcium storage. Disturbances in ER homeostasis can be caused by multiple factors, including
accumulation of misfolded proteins, oxidative stress, and calcium imbalance, resulting in ER stress.
This leads to the activation of the unfolded protein response (UPR) triggering a cascade of events
aimed at restoring ER homeostasis, or under severe stress activating cell death pathways (Walter
and Ron, 2011).

Emerging evidence supports a pathogenic role for ER stress across many common
neurodegenerative diseases, including PD, Alzheimer’s disease, amyotrophic lateral sclerosis, and
Huntington’s disease (reviewed in Scheper and Hoozemans, 2015). In these conditions, ER stress
has been mostly associated with the accumulation of misfolded proteins, a common characteristic
in neurodegeneration. In PD, ER stress has been confirmed in a variety of models, including post-
mortem brain tissue from sporadic disease (Hoozemans et al., 2007), toxin models of PD (Ryu
et al., 2002; Holtz and O’Malley, 2003), a yeast alpha-synucleopathymodel (Cooper et al., 2006) and
A53T mouse and rat PD models (Colla et al., 2012). More recently, we and others also confirmed
increased ER stress in iPSC-derived neuronal models from PD patients carrying GBA mutations
(Fernandes et al., 2016) and α-synuclein (SNCA) mutations and triplications (Chung et al., 2013).
Taken together, these and other reports suggest a central role for ER stress in PD but the precise
mechanisms leading to pathogenesis are still unclear.

Sanchez-Martinez et al. demonstrated that the expression of human mutant forms of GCase,
commonly associated with PD—N370S and L444P—was abundant in the ER, resulting in the
formation of ER aggregates and swellings associated with increased ER stress. Strikingly, both
mutations resulted in an age-dependent and progressive climbing defect in Drosophila, resembling
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a PD motor-like symptom. Moreover, this was also associated
with a loss of dopaminergic neurons, without affecting life-span
or inducing wide-spread degeneration. This time-dependent and
cell-specific dysregulation is an important aspect of disease
modeling for age-dependent neurodegenerative diseases such
as PD.

By treating N370S and L444P mutant flies with two
pharmacological chaperones which are known to reduce ER
stress the authors confirmed a link to the described motor
deficits. Treatment with ambroxol or isofagomine strongly
reduced ER stress and significantly improved the climbing
deficits caused by human mutant GBA. However, the potential
association between the recovery observed and improved
dopaminergic neuron survival was not investigated. Whilst
isofagomine treatment also significantly increased GCase activity
and protein levels in L444P flies, no improvements were observed
in N370S flies, in contrast to the results from patient fibroblasts.
Similarly, ambroxol rescue effects on GCase activity and protein
levels were modest in flies with either the N370S or L444P
mutation, but striking in fibroblasts. Additional work is therefore
required to elucidate the relative contributions of GCase activity
and GBA trafficking to mutant GBA-induced dysfunction, which
might be cell type specific and genotype dependent.

Overall, although this study highlights a pathological role for
ER stress in PD, it should be also noted that in the fly model,
WT GBA overexpression alone induced ER stress, which might
have not been induced at physiological levels of expression. This
highlights the importance of confirming these results in future
studies using patient iPSC-derived neurons complemented with
gene editing strategies.

Importantly, these results come in strong agreement with
other recent Drosophila studies where human GBA-N370S and
GBA-L444P expression also resulted in ER stress, leading to
dopaminergic cell loss and climbing deficits which could be
rescued by ambroxol (Maor et al., 2013, 2016). The success
of another ER stress reducing agent (salubrinal) in delaying
or attenuating motor abnormalities in SNCA-A53T mouse and
rat models of PD (Colla et al., 2012) further highlights the
therapeutic potential of this approach.

As several reports suggest, ER stress is a pathological PD
feature not limited to GBA mutations, and the mechanisms
supporting other genetic association are now emerging. Very
recently, Celardo et al. (2016) showed that in Drosophila pink1
and parkin PD models, defective mitochondria lead to ER
stress and proposed a neuroprotective mechanism driven by

inhibition of ER stress that was independent of mitochondrial
functional improvement. In addition, α-synuclein has been
shown to modulate UPR and ER stress response by blocking
ATF6 incorporation into COPII vesicles (Credle et al., 2015).
While several other PD genes, including LRRK2, DJ-1, and
ATP13A2 have also been associated with ER stress (reviewed in
Mercado et al., 2013), further mechanistic studies are still needed
to better understand this association.

Notably, most cellular pathways that have been associated
with PD are directly regulated by the ER, including calcium
homeostasis, ER-to-Golgi trafficking, protein folding, autophagy,
mitochondria-associated ER membranes (MAM), oxidative
stress, and lipid metabolism. Together with key pathological
PD features such as α-synuclein aggregation and mitochondrial
dysfunction, most of these pathways have been associated
with ER stress across different models. For some of these
processes however, further work is still required in the
specific context of PD, for which we would highlight the
emerging role of lipid metabolism and the dynamics of
MAM in the interplay between ER stress, mitochondrial
function, and autophagy. Finally, since ER stress is associated
with aging and known to regulate longevity, further studies
on the effect of aging on ER stress in the context PD
would be welcomed, as supported by the age-dependent
neurodegeneration phenotypes presented by Sanchez-Martinez
et al. (2016).

To conclude, the work by Sanchez-Martinez et al.
(2016) supports previous studies in providing strong and
complementary evidence to support a key pathological role of
ER stress across multiple models of PD, which can potentially
be treated therapeutically. Nevertheless, further studies are
still required to better understand the molecular pathways
underlying ER stress across the different mutations and cellular
pathways associated with PD.
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