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There are striking similarities between the strategies ant colonies use to forage for food

and immune systems use to search for pathogens. Searchers (ants and cells) use the

appropriate combination of random and directed motion, direct and indirect agent-agent

interactions, and traversal of physical structures to solve search problems in a variety of

environments. An effective immune response requires immune cells to search efficiently

and effectively for diverse types of pathogens in different tissues and organs, just as

different species of ants have evolved diverse search strategies to forage effectively for a

variety of resources in a variety of habitats. Successful T cell search is required to initiate

the adaptive immune response in lymph nodes and to eradicate pathogens at sites of

infection in peripheral tissue. Ant search strategies suggest novel predictions about T cell

search. In both systems, the distribution of targets in time and space determines themost

effective search strategy. We hypothesize that the ability of searchers to sense and adapt

to dynamic targets and environmental conditions enhances search effectiveness through

adjustments to movement and communication patterns. We also suggest that random

motion is a more important component of search strategies than is generally recognized.

The behavior we observe in ants reveals general design principles and constraints that

govern distributed adaptive search in a wide variety of complex systems, particularly the

immune system.
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INTRODUCTION

T cells are key players in adaptive immunity, required for clearance of virally infected cells and
tumor cells. Improved understanding of how T cells search may lead to more effective T cell
vaccine design and cancer immunotherapies. Many types of immune cells search for pathogens
or other targets, but T cell search is especially challenging because T cells are often responding to
novel pathogens. Ant colonies are another distributed adaptive system in which individual agents
search cooperatively, without centralized control, to find targets in unknown locations in a complex
environment. However, ant colonies are simpler and, in some ways, easier to observe than immune
systems. Here we propose new hypotheses about how T cells search suggested by successful search
strategies in ant colonies.
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T cells search for many kinds of targets, at many scales, and
in many different tissues including lymph nodes, infected tissues
and systemic infection in the whole body. Prior to infection, T
cells migrate through the lymphatic network to search within
lymph nodes for potential activating antigen presented by
dendritic cells (1, 2). If a naive T cell finds a dendritic cell bearing
its cognate antigen in the lymph node, the T cell then proliferates
and migrates out of the lymph node through the cardiovascular
network, extravasating at the site of infection in peripheral tissue,
where activated T cells conduct a second search to find and
eliminate target cells (3).

How do the interactions among T cells, host cells, target
cells, and tissue architecture generate the remarkably rapid
and effective immune response to a wide variety of pathogens
and tumors? Computational and mathematical approaches
have described aspects of immune responses (4, 5) including
the T cell repertoire (6), development of the effector and
memory responses (7–11), and T cell responses to infections
including HIV (12), influenza (13), and anti-tumor responses
(14–16) just to name a few. Mathematical models have been
developed to study how T cell movement through lymph
nodes impacts T cell activation (17–22). However, relatively
few mathematical models have connected individual T cell
movement and interactions during search to the broader
outcomes of immune response to infection, particularly in
complex tissue environments (19, 23, 24).

Foraging strategies in ants suggest a framework for
understanding how collective search strategies emerge from
the behaviors of individual agents (25–27). These questions are
difficult to answer experimentally in immunology, especially
at the scale of an entire organ or body. In ant colonies, we can
simultaneously observe the small-scale behavior of individuals
and the large-scale collective, such as shifts in the allocation
of ants to various tasks (28), territorial interactions between
different colonies, (29–31), and the recruitment of searchers to
discovered food (32–34). Thus, extrapolating understanding
about the search strategies of ants to immune responses can
suggest general design principles that can then be tested in the
immune system.

We use the understanding of ant foraging gained from
experiments and models to provide insight into T cell search
processes. We find that there are significant parallels between
how ants forage for food and how T cells search for pathogens.
First, both T cells and ants combine random movement with
directed movement to produce an effective search strategy
across a wide variety of environmental conditions. Both ants
and T cells search for targets whose positions are unknown,
dispersed, and can be both mobile and ephemeral, thus ants
and T cells need random elements in their strategies to
flexibly adapt to dynamic conditions and varied environments.
Second, ants and T cells both use communication to improve
search efficiency by following chemical signals to the locations
of their targets; additionally, direct agent-agent interaction
may provide a direct form of communication to increase
search efficiency. Third, physical structures, such as nest
and trail structure for ants and the lymphatic network and
the stromal cell network in tissues, provide spatial networks

embedded in the search space that can guide the movement
of searchers.

Studies of ant foraging reveal that effective search strategies
incorporate an appropriate balance of movement that is random,
guided by signals and agent interaction, and mediated by
traversal of physical structures. We focus on how the appropriate
balance depends on two factors. First, the best search strategy
depends on the distribution of targets in time and space. Second,
the best strategy depends on whether the objective of the search
is to be fast (finding targets as quickly as possible) or complete
(finding all available targets), or some combination of the two.
Search strategies from ant foraging suggest specific hypotheses
that can be tested to reveal novel search strategies taken by T
cells in complex tissue environments leading to more efficient
immune responses.

ANT FORAGING AS A MODEL FOR T CELL
SEARCH

Ant colonies are a canonical example of collective intelligence,
demonstrating strategies for effective distributed search in varied
ecological spaces in almost every terrestrial habitat on Earth.
Each of the 14,000 species of ants has evolved in a particular
environment, leading to diversity among species in how they
move, interact with each other and use physical structures as
they forage for food. Ecological and evolutionary studies show
a correspondence between foraging behavior and the dynamics
of the resources that a species uses (34–37). The Lanan review
thoroughly catalogs a remarkable diversity of foraging strategies,
including different forms of movement, recruitment and trail
formation, and shows that different environmental conditions
faced by different species generate predictable regularities in
these foraging strategies.

FIGURE 1 | Target distributions showing a range of clusteredness from a

single pile of 1280 targets to 1280 targets distributed at uniform random. Each

shows the number of piles and the number of targets per pile. The power law

distribution has a mix of pile sizes with the number of piles inversely related to

pile size.
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A key feature that influences search strategy is the distribution
of resources in time and space (36, 38–40). Targets can be patchy,
clustered into one location, or dispersed uniformly at random
through the entire search area. Figure 1 shows examples of spatial
distributions from highly clustered to highly dispersed, as well
as a power law distribution with both clusters and dispersed
targets. Models of ant foraging have demonstrated that the speed
of target collection changes dramatically depending on how
targets are distributed [Figure 2, discussed in section IV, (39, 41)].
For example, when resources are patchy, foragers recruit each
other to the location where resources have been found. One
mechanism for recruitment is chemical pheromone trails that, by
inducing one ant to follow another, generate information about
the location of food (34, 40, 41). By contrast, when resources are
scattered or ephemeral, pheromone recruitment is pointless, and
ants do not guide each other in any particular direction [instead
regulating whether or not to forage at all, (42)].

The objective of the search also plays a role in determining the
most effective search strategy. We highlight two such objectives.
Fast detection weights detection speed of the first targets most
heavily, while for complete detection the goal is to find all of
the targets. Some searches combine these objectives, i.e., finding
all targets as quickly as possible, but in many instances either
speed or completeness is deemphasized. Our computational
models show that the nature of the search problems matters:
successful strategies for complete detection differ from those for
fast detection (43–45).

Ant colonies provide several examples of fast detection. In
foraging by desert seed harvester ants (one of most well-studied
ant groups), the goal is to collect as many resources as possible in
a fixed time window. The foraging window is limited because ants
lose water rapidly while foraging in the hot sun (46), so the search
must be fast. However, seeds remain on the ground and in the soil
for a long time, so it is not important to collect all available seeds
immediately, as they will be available later. Ourmodels, described
below, show that ants that recruit each other to a single pile may
also achieve complete collection of that pile, but when resources
are dispersed among many piles, the ant strategies we model fail
to achieve complete collection, for example taking much longer
to find the last 10% of targets than the first 90% (43).

The stability of targets over time also influences both fast
and complete detection. For example, recruitment of agents to a
particular location is useful only if targets persist long enough in
one place for other searchers to find the targets when they arrive
(34, 40). Consequently, ants that forage for resources that are
both clustered in space and persistent in time evolve strategies
for recruitment, and ants that forage for randomly dispersed
resources do not.

T CELL SEARCH MUST BE FAST, AND
OFTEN MUST BE NEARLY COMPLETE

Our characterization of ant search suggests new ways to interpret
search behaviors of T cells. T cells in the lymph node search for
antigen presented by dendritic cells. To succeed in initiating the
adaptive immune response quickly, this searchmust be fast rather

than complete. Speed is important because pathogen replication
is an exponential process. However, because multiple antigens
can be presented tomultiple T cells, T cells do not need to interact
with every possible DC. Instead, T cell search in the lymph node
needs to detect only enough antigen to initiate activation. This
search problem resembles our models of ants conducting fast, but
not complete, searches for dispersed seeds.

In contrast, for T cell search in the periphery, thoroughness, or
complete detection, is crucial in some cases. T cells must detect
and eliminate virtually all pathogens. In influenza, for example,
successful control requires finding and eliminating all, or nearly
all, influenza virus in the lung. Similarly, in immunotherapy, the
goal is for effector CD8T cells to identify and kill all viable tumor
cells. Our ant models quantify how this complete detection task
becomes easier when targets are clustered in one or a few places
and becomes more challenging when they are dispersed broadly.

Some immunological studies have described target
distributions (10, 47, 48); however, models of the immune
response rarely consider how effective different search strategies
are at finding targets with different spatial distributions. Very
little is known about how long different targets such as pathogens
or tumor cells might persist in specific tissue locations or how
mobile pathogens might be within tissues. Our ant foraging
models suggest that understanding target distribution in tissues
may be an important determinant of effective T cell search and
immune responses.

ANT-INSPIRED HYPOTHESES ABOUT T
CELL SEARCH

Random and Directed Motion Combine to
Produce Effective Search
Ants foraging for food often use a form of random search
called a correlated random walk (CRW) (49–51). In a CRW,
the angle of each successive turn is correlated with that of
the previous one, and movement patterns are straighter and
less convoluted than in Brownian motion. CRWs are more
dispersive than Brownian motion, thus increasing the physical
extent of the search area while decreasing its thoroughness by
minimizing repeated sampling of the same area. In models
designed to maximize the speed at which seeds are detected by
foraging ants, a high degree of correlation among steps (leading
to more straight-line ballistic motion) appears optimal for fast
detection (39, 52, 53).

When the location of targets is known with sufficient
probability, ants can move directly toward the location de-
emphasizing random movements. For example, ants use a
process called site fidelity to return repeatedly to the location
of a previously found a seed (54, 55). Beverly et al. found that
when an ant finds a seed, it returns directly to that location with
over 90% probability. Other species use site fidelity to search for
resources that are clustered, even if those clusters are small or
variable in size. Recruitment through olfactory interactions based
on pheromones is a well-knownmechanism by which ants attract
other ants to locations where food is abundant or persistent.
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FIGURE 2 | The number of targets found in a 1 h simulation given different search strategies and target distributions (shown in Figure 1). For the most clustered

distribution, pheromone recruitment to piles vastly outperforms random search (a CRW). The relative performance of pheromone recruitment compared to random

search declines as targets are more dispersed. Site fidelity performs better than random search but not as well as pheromones in all of the clustered distributions. All

strategies perform approximately equally for targets dispersed uniformly at random (1280 x 1). In the full CPFA, searchers choose whether to use random search, site

fidelity or pheromone recruitment depending on the size of the piles they sense while searching. It is the most effective search strategy across all distributions, and it

most clearly outperforms other strategies given intermediate pile numbers and sizes (e.g., 80 × 16) and the power law distribution which has mixed pile sizes.

The overwhelming complexity of the immune system reflects
the different kinds of problems it is required to solve. For
example, in some cases immune cells must search broadly for
rare targets, and in other cases it must search thoroughly to
find all targets. We used models of random and directed motion
developed for ants to analyze how T cells move, building on
existing studies of T cell motion in tissues. Initial work suggested
that naive T cells in lymph nodes move randomly, and models
of T cell movement assumed Brownian motion of T cells to
estimate how many T cells are required to find DCs (8, 56).
More recently, researchers hypothesized that T cell movement
is characterized by Levy walks, another form of random motion
in which cells move in random direction for multiple time steps
drawn from a power law distribution (57). We demonstrated that
prior to infection, both CD4 and CD8T cell movement in the
lymph node is random, but does not follow idealized Brownian
or Levy movement patterns (58). Instead, our models show
that T cells can disperse more quickly compared to Brownian
motion, leading to more effective search for DC targets in lymph
nodes. Our model predicts that the particular movement pattern
we observe in T cells (a CRW with step lengths drawn from
a lognormal distribution) balances thorough search in a small
region with extensive search in a broader area. We hypothesize
that these ant-like movement types affect how quickly T cells
encounter rare vs. abundant antigen in the lymph node.

T cell motion in infected tissues varies according to the
requirements of the task being performed. It is clear that
migration of effector T cells into infected tissue is signal

dependent and directional toward areas of inflammation,
including in skin (24), brain (57), lung (59), vaginal tract, and gut
(3). However, some studies suggest that once T-cells reach skin
tissue their movement within the tissue is not highly directional
toward the foci of infection (24). Our work found that effector
T cells in inflamed lung also move in a CRW, similar to naive T
cells in lymph node, suggesting random motion. In the lung, the
T cell CRW is combined with a stop-and-gomode of intermittent
motion, which enables effector T cells to search a larger area while
also interacting with potential target cells (60). In contrast to cells
in the lung, Harris et al. found that effector T cells in the brain of
Toxoplasma infected animals move with a Generalized Levy walk
(57). And, there is no evidence in brain or lung tissue that effector
T cells move directionally toward sites of infection. Ant search
models suggest one hypothesis to explain the lack of directional
movement: if sites of infection are usually dispersed in space, for
example, in tissues, T cells may have evolved search strategies to
explore broadly for new sites of infection rather than focusing on
exploiting already detected foci of infection.

Physical Structures for Effective Search
Networks provide physical structures that can increase search
efficiency, minimizing the distance traveled to explore large
spaces. Ants use environmental structures to extend their search.
For example, turtle ants create trail networks within the network
of vines and branches in the canopy of the tropical forest (26, 27).
In some ant species, ants search along edges such as cracks in
sidewalks and search from thesemain trails (61), apparently using
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environmental structures to explore the environment but not
necessarily moving directly toward food sources. We suggest that
one role of structural networks is to enhance the scalability of
search to larger physical spaces.

Recent work imaging T cells in intact tissues suggests that
T cells may also use structural networks to mediate motion.
At the organism scale, cardiovascular and lymphatic networks
disperse immune cells throughout all tissues to enhance response
to infection anywhere in the animal. Effector cells in skin were
shown to move along collagen fibers (62), and effector T cells in
inflamed lung move along vasculature (60). Within the lymph
node, T cells use fibroblastic reticular cells (FRC) as guidance
cues (63, 64). The FRC network in the lymph node has the
topological structure of a small world network, which likely
enhances the robustness of T cell responses to damage to the
network (65, 66). Small world networks with many local and a
few long-distance connections significantly increase scalability,
cohesion, and efficiency of exploration via the network (67).

T cell movement along tissue structures resembles that of
ants traveling along branches. T cell movement along structures
such as collagen, vasculature, and FRCs does not obviously lead
to targets (64). There is also no evidence that effector T cells
in lung and skin, where directional motion is important, use
structural guidance to travel toward targets. Instead of providing
directional guidance toward targets, we suggest that movement
along networks may instead enhance scalability and maximize
exploration of large spaces.

Distributed Communication: Soluble
Signals and Direct Agent Contact
A striking similarity between ant colonies and immune systems
is the use of chemical signals for communication. It is well-
established that both systems use chemical cues to signal the
presence of danger: alarm pheromone in the case of ants,
cytokines in the case of immune systems. Both systems also
use chemical signals to recruit other agents to search more
effectively: immune cells can follow chemokine gradients to sites
of infection, much like ants can follow pheromone trails to food.

Ants use pheromones to create dynamic maps. They do so by
laying pheromone trails from locations with abundant food back
to the nest, a form of communication through the environment,
known as stigmergy (68). Such pheromone trails encourage
other ants to travel directly to the food source, reinforcing the
trail if they find food successfully. Once the food is depleted,
the ants stop reinforcing the pheromone trail, and over time
it dissipates and ceases to attract new ants to that location.
This process is well-studied both experimentally in laboratory
and field studies of various ant species, and in mathematical
and computational models [as reviewed in (69)]. It is also the
basis of a popular computational problem-solving heuristic called
Ant Colony Optimization (70). These studies reveal the benefits
and limits of pheromone communication in search problems,
providing a roadmap for immunologists to understand how
chemokines influence search.

A variety of chemical signals guide movement of immune
cells, particularly to sites of infection. For example, chemokines

provide migration and localization signals to dendritic cells,
neutrophils, monocytes, T cells, and B cells. Other chemical
cues including metabolic intermediates may also play a role.
While it is clear that chemokines lead leukocytes to sites of
infection, chemokines appear to have different effects on T cells.
For example, neutrophils use the chemokine LTB4 as a signal
to move directly toward a site of sterile injury (71). In contrast,
the effect of chemokines on T cell movement seems to be less
directional than LTB4 effects on neutrophils. In lymph nodes,
T cells respond to the chemokines CCL21 and CCL19 by high
speed random motion (chemokinesis) rather than directional
movement (chemotaxis) (21, 58, 72, 73). Within infected tissue,
chemokines appear to increase T cell speed (57, 60) but with
only a slight bias toward infection foci (24). Interestingly, we
found that the pattern of T cell movement in the lung, at least
when infection is not present, does not appear to change when
chemokine receptor signaling is inhibited (60).

In social insects, direct agent-agent interaction is an easy
and effective way to transmit information. Ants use interaction
networks to regulate behavior. Each ant can respond to the rate
at which it experiences brief antennal contacts, in which one ant
smells the other (74), and rates of brief olfactory interactions
influence ant behavior (75). For example, we showed that in an
active forager population, the rate of encounter with returning
ants determines the probability that an outgoing forager leaves
the nest to forage (76, 77). This feedback, based on direct
ant-ant interaction, matches current foraging activity to the
availability of seeds. Another example is ant-ant interaction
leading to regulation of density. It seems that an ant can adjust
its movement pattern in response to encountering another ant
(78). We found that this change in motion regulates the density
of ants in a specific area, enabling ants to spread out if they
are too crowded. Rate sensing in ants through direct ant-ant
communication provides an additional level of regulation to
enhance foraging success. Similarly, direct bee-bee interaction
has also been demonstrated to downregulate recruitment to less
preferred food locations (79, 80).

It is currently not known whether T cells searching for
pathogen infected cells use direct T cell-T cell contact as a
mechanism to detect cell density or signal target location.
Heterologous cell contacts in the immune response are clearly
important, for example, direct contact between T cells and DCs,
and T cell-B cell interactions are crucial for an immune response.
However, a potential role for homologous cell-cell contact such
as T cell-T cell interaction has not been carefully investigated.
T cell-T cell interactions have been shown to be important for
downregulation of the T cell response through fratricide: Fas-
FasL interactions between effector T cells can lead to fratricidal
T cell killing, effectively downregulating the T cell response as
antigen load decreases (81). Direct T cell-T cell interactions were
recently shown to be important in the first phases of T cell
activation (82). In the context of T cell response in tissues, little is
known about whether T cell—T cell interaction might impact T
cell movement.

Thus, although T cells are capable of generating and
responding to indirect communication via chemokines and
cytokines and direct cell-cell contact with other T cells, it is
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unclear what the role of direct and indirect communication
is in effector T cell search for infected cells (or tumors) in
peripheral tissue. Our understanding of search in ants suggests
that T cells might use both chemokine-cytokine communication
as well as direct cell-cell communication to lead T cells to
sites of infection, while also balancing this exploitation of
known infection locations with exploration to find new sites
of infection.

Effective Search in Unknown Environments
Requires Complex Search Strategies
We illustrate how ant search strategies may vary with the spatial
location of resources with a computational model, comparing
four foraging strategies in ants (Figure 2): (1) CRW alone
(CRW-pink), (2) CRW combined with pheromone recruitment
to previously found clusters (pheromone-orange), (3) CRW
combined with site fidelity (each individual forager returns
to the cluster that it previously found)(site fidelity-blue), and
(4) an adaptive strategy known as the Central Place Foraging
Algorithm, CPFA, (43) (CPFA-green). CPFA incorporates CRW,
site fidelity, pheromone recruitment and the ability to choose
among these behaviors based on the density of targets that
the searcher senses in the locations immediately adjacent to
the searcher.

The CPFA and the foragingmodel are described inmore detail
in Hecker and Moses (39). The model represents ants as points
that move through space (without collisions and able to detect
targets only in the cell in which it is located in and those directly
adjacent), and seeds are represented as as points in a grid cell.
All ants start at a central nest location, search using the specified
strategy for 1 h, and each ant returns each individual seed that
it finds directly to the nest (which is at a location known by
every ant), carrying one seed at a time. The model uses unitless
representations of velocity and length, and the size of the search
area was chosen so that complete collection of all seeds is possible
in the 1-pile case (Figure 2, column 1).

Figure 2 shows the percentage of the 1,280 seeds that are
collected for each spatial distribution. Each search strategy is
tested on each of the spatial distributions shown in Figure 1.
Figure 2 shows the search performance of simulated ants using
different strategies to search for different target distributions.
The box plots show the median and interquartile range of 100
replicates for each target distribution, with the seeds placed at
random locations drawn from the specified distribution. Where
notches in the box plot overlap, the results are statistically
indistinguishable (as is the case for pheromone and CPFA in the
1 pile case and randomly dispersed case; all other comparisons
are statistically different at the p = 0.05 level). As the spatial
distribution of targets varies from being concentrated in a single
cluster (Figure 1, 1 × 1280) to being more dispersed (Figure 1,
1280 × 1), pheromones become less valuable (compare Figure 2
“pheromone” vs. “CRW” from 1 × 1280 to 1280 × 1). When
targets are dispersed at uniform random (1280× 1), pheromones
provide no benefit to foraging at all (and are actually detrimental
as they attract ants to locations where a target once was but has
been removed). Site fidelity is consistently more effective than

random search alone unless resources are completely dispersed,
in which case random search is the best strategy.

In the CPFA, searchers decide whether to use random search,
site fidelity or pheromone recruitment to a location based on how
many targets are there. In highly clustered situations, the CPFA
and pheromone are similar in target identification efficiency (1
× 1280), because the CPFA selects a search strategy that relies
almost entirely on pheromone search (39). However, the ability
of agents to assess and adapt to the environment and choose the
appropriate foraging strategy in the CPFA is particularly effective
when resources are clustered in many intermediate size piles (16
× 80 or 80× 16) or in piles with variable sizes such as the power
law (compare pheromone and CPFA efficiency).

This searchmodel supports the hypothesis that observed types
of directed and randommotion in searchers reflect differences in
how targets are distributed in different environments. The results
in Figure 2 show how different search strategies perform in a fast
detection task when searching for static targets. The CPFA has
been shown to be effective at collecting up to ∼90% of static
targets, but ineffective at complete collection (43), particularly
when targets are dispersed. Although efficient strategies for
complete search or search for mobile or replicating targets may
be different (39, 52, 53), our model demonstrates that effective
searchers require both a variety of search behaviors and the ability
to sense the environment to determine which type of search
behavior is best to use in a given time and place.

CONCLUSIONS FOR T CELL SEARCH

Each ant species is tailored to the particular habitat in which
it evolved, but T cells search in wide variety of tissues for a
wide variety of targets. T cells demonstrate a variety of search
behaviors, including directional movement using chemokine
gradients, random motion using CRW, and movement along
physical networks. As T cells do not know a priori about
target distribution and require the capacity to counter unknown
future threats, this adaptation and scalability for search in
multiple tissues may be particularly important for maintaining
effective immunity. Very little is currently known about how
effector or memory T cell subsets move in infected tissue. Our
observations and models of ants suggest the possibility that
effector T cells move directionally toward infected areas in
some circumstances (possibly following chemokine gradients,
or more speculatively, responding to direct cell-cell contact)
and move randomly in others, e.g., to search larger areas when
infection has spread broadly or during the memory phase. We
hypothesize that different classes of T cells (e.g., central memory
cells, tissue resident memory cells and effector cells) have evolved
different patterns of movement and responses to external signals
and structures, varying with different search goals and target
distributions in space and time.

In contrast to T cells moving randomly in tissues, neutrophils
appear to move in a highly directed manner toward sites of
infection (71). Neutrophils are rapidly recruited to sites of
infection, so there is high fidelity between the actual location
of infection and the signals, such as chemokines and cytokines,
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that are produced at sites of infection. Neutrophils moving
directionally to foci of infection could be exploiting the close link
between timing and spatial distribution early in an infection. The
T cell response, on the other hand, develops over many days, with
T cells often entering sites of infection 3–5 days post infection.
Spatial distribution of the pathogen and related signals may no
longer be spatially contained, as earlier in the infection cycle.
We suggest that different immune cells (for example, T cells and
neutrophils) respond differently to chemokine signals to promote
effective immunity at different phases of the immune response
with potentially different target distributions.

Understanding the parallels between search strategies in ants
and T cells helps illuminate one of the central themes in
immunology: how the enormously complex system of trillions
of cells, signals, and structures are self-organized into a coherent
immune response. As ants and ant search strategies have been
studied in detail both experimentally and computationally, we
have identified key concepts from ant foraging that suggest new
concepts for understanding T cell search to clear infection. Like
ants, T cells incorporate many strategies, including directional
and random movement, direct agent-agent contact, and use of
physical structures. Our proposal is similar to the “No Free
Lunch” theorems (83), which posit that there is no single best
search or optimization strategy for all computational problems,
but that specific solutions can be tailored to specific types of
search problems. We posit that there is no one best search
strategy that can be used for all search problems in the immune
system; instead searchers change how they move and interact
with each other and the physical environment in response to
specific search problems in specific environments.

Ant foraging strategies have served as inspiration for search
heuristics in computer science (70) and as a model of search
in a wide variety of complex adaptive systems (39, 84, 85).
As we review here, there is increasing evidence that there is
no single effective ant search strategy, but rather a repertoire
of search behaviors that includes varied ways of moving,
communicating, and using environmental structures to form an
effective response to environmental conditions. Understanding

the multiple components of effective ant search, and how they
are combined into different strategies to respond to varied and
dynamic environments can translate to new approaches for
understanding the even more complex search processes of the
immune system.
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