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Big data analytics (BDA) is important to reduce healthcare costs. However, there are many challenges of data aggregation,
maintenance, integration, translation, analysis, and security/privacy. The study objective to establish an interactive BDA platform
with simulated patient data using open-source software technologies was achieved by construction of a platform framework with
Hadoop Distributed File System (HDES) using HBase (key-value NoSQL database). Distributed data structures were generated
from benchmarked hospital-specific metadata of nine billion patient records. At optimized iteration, HDFS ingestion of HFiles to
HBase store files revealed sustained availability over hundreds of iterations; however, to complete MapReduce to HBase required a
week (for 10 TB) and a month for three billion (30 TB) indexed patient records, respectively. Found inconsistencies of MapReduce
limited the capacity to generate and replicate data efficiently. Apache Spark and Drill showed high performance with high usability
for technical support but poor usability for clinical services. Hospital system based on patient-centric data was challenging in
using HBase, whereby not all data profiles were fully integrated with the complex patient-to-hospital relationships. However, we
recommend using HBase to achieve secured patient data while querying entire hospital volumes in a simplified clinical event model

across clinical services.

1. Introduction

Large datasets have been in existence, continuously, for
hundreds of years, beginning in the Renaissance Era when
researchers began to archive measurements, pictures, and
documents to discover fundamental truths in nature [1-4].
The term “Big Data” was introduced in 2000 by Francis
Diebold, an economist at the University of Pennsylvania,
and became popular when IBM and Oracle adopted it in
2010 and thereafter in healthcare [5]. Gantz and Reinsel
[6] predicted in their “The Digital Universe” study that the
digital data created and consumed per year will reach 40,000
Exabyte by 2020, from which a third will be processed using
Big Data technologies. Big Data has been characterized in
several ways: as NoSQL key-indexed [7, 8], unstructured
[9] computer interpretations, text, information-based [10],
and so on. With this in mind, Big Data Analytics (BDA)

in healthcare requires a more comprehensive approach than
traditional data mining; it calls for a unified methodology
to validate new technologies that can accommodate the
velocity, veracity, and volume capacities needed to facilitate
the discovery of information across all healthcare data types
of healthcare domains [11].

There are many recent studies of BDAs in health-
care defined according to many technologies used, like
Hadoop/MapReduce [12, 13]. BDA itself is the process used
to extract knowledge from sets of Big Data [14]. The life
sciences and biomedical informatics have been among the
fields most active in conducting BDA research [15]. Kayyali
et al. [16] estimated that the application of BDA to the US
healthcare system could save more than $300 billion annually.
Clinical operations and research and development are the
two largest areas for potential savings: $165 billion and $108
billion, respectively [17].
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TABLE 1: Big Data applications related to clinical services [11-13, 18].

Clinical services Healthcare Applications

(i) Targeted R&D pipeline in drugs and devices, clinical trial design, and patient recruitment to better

R&D match treatments to individual patients, thus reducing trial and failures and speeding new treatments
to market, follow on indications, and discover adverse effects before products reach the market
(i) Targeted vaccines, e.g., choosing the annual influenza strains

Public health (ii) Identify needs, provide services, and predict patients at risk to prevent crises, especially for the

benefit of populations

(i) Combine and analyze a variety of structured and unstructured data-EMRs, financial and operational

Evidence-based medicine

data, clinical data, and genomic data to match treatments with outcomes, predict patients at risk for

disease or readmission, and provide more efficient care

Genomic analytics .
Y medical record

(i) Make genomic analysis a part of the regular medical care decision process and the growing patient

Device/remote monitors

(i) Capture and analyze in real-time large volumes of fast-moving data from in-hospital and in-home
devices, for safety monitoring and adverse prediction

Patient profile analytics

(i) Identity individuals who would benefit from proactive care or lifestyle changes, for example, those
patients at risk of developing a specific disease (e.g., diabetes) who would benefit from preventive care

Research has focused mainly on the size and complexity
of healthcare-related datasets, which includes personal med-
ical records, radiology images, clinical trial data submissions,
population data, and human genomic sequences (Table 1).
Information-intensive technologies, such as 3D imaging,
genomic sequencing, and biometric sensor readings, are
helping fuel the exponential growth of healthcare databases
[12, 18]. Furthermore, the use of Big Data in healthcare
presents several challenges. The first challenge is to select
appropriate statistical and computational method(s). The
second is to extract meaningful information for meaningful
use. The third is to find ways of facilitating information access
and sharing. A fourth challenge is data reuse, insofar as
“massive amounts of data are commonly collected without an
immediate business case, but simply because it is affordable”
[19]. Finally, another challenge is false knowledge discovery:
“exploratory results emerging from Big Data are no less
likely to be false” [5] than reporting from known datasets. In
cancer registries, for example, biomedical data are now being
generated at a speed much faster than researchers can keep
up with using traditional methods [20].

Certain improvements in clinical care can be achieved
only through the analysis of vast quantities of historical
data, such as length-of-stay (LOS); choice of elective surgery;
benefit or lack of benefit from surgery; frequencies of various
complications of surgery; frequencies of other medical com-
plications; degree of patient risk for sepsis, MRSA, C. difficile,
or other hospital-acquired illness; disease progression; causal
factors of disease progression; and frequencies of comorbid
conditions. In a study by Twist et al. [21], the BDA-based
genome-sequencing platform Constellation was successfully
deployed at the Children’s Mercy Hospital in Kansas City
(Missouri, US) to match patients clinical data to their
genome sequences, thereby facilitating treatment [22]. In
emergency cases, this technology allowed the differential
diagnosis of a genetic disease in neonates to be made within
50 hours of birth. Improvement of the platform using Hadoop
reduced the time required for sequencing and analysis of
genomes from 50 to 26 hours [23]. Therefore, a real-time

diagnosis via BDA platform in healthcare to analyze hospital
and patient data was successfully implemented. Yet, Chute
[24] points out that health informatics are biased towards
the classification of data as a form of analytics, largely, in
the case in Canada, because the data standards of the DAD
are primarily set by CIHI for clinical reporting. Proprietary
hospital systems also have certain data standards that are
partly determined by the physical movement of patients
through the hospital rather than just diagnoses and interven-
tion recordings.

Healthcare and hospital systems need BDA platforms to
manage and derive value. The conceptual framework for a
BDA project in healthcare, in essence of its functionality,
is not totally different from that of conventional systems.
Healthcare analytics is defined as a set of computer-based
methods, processes, and workflows for transforming raw
health data into meaningful insights, new discoveries, and
knowledge that can inform more effective decision-making
[25]. Data mining in healthcare has traditionally been linked
to knowledge management, reflecting a managerial approach
to the discovery, collection, analysis, sharing, and use of
knowledge [26, 27]. Thus, the Discharge Abstract Database
(DAD) and Admission Discharge Transfer (ADT) datasets
are designed to enable hospitals and health authorities to
apply knowledge from ad hoc data recording patient num-
bers, health outcomes, length-of-stay (LOS), and so forth
[28]. And such a combination of ADT and DAD in real
time could better link the movement and medical services of
inpatients with treatments and diagnoses.

L1 Study Objective. The objective was to establish an inter-
active and dynamic framework with front-end and interfaced
applications (i.e., Apache Phoenix, Apache Spark, and Apache
Drill) linked to the Hadoop Distributed File System (HDEFS)
and backend NoSQL database of HBase to form a platform
with Big Data technologies to analyze very large data vol-
umes. By establishing a platform, challenges of implementing
and applying it to healthcare scenarios for clinical services
could be validated by users to visualize, query, and interpret
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the data. The overall purpose was a proof of concept of
Big Data capabilities to stakeholders, including physicians,
VIHA administrators, and other healthcare practitioners.
One working hypothesis was that NoSQL database created
using hospital and patient data in differentiated fields would
accurately simulate the patient data. Another hypothesis was
that high performance could be achieved by using a few nodes
optimized at the core CPU capacity and, therefore, used for
clinical services. Lastly, patient data could be secured from
configurations and deployment of HBase/Hadoop architec-
ture and heavily relied on WestGrid’s High Performance
Computing (HPC). These hypotheses are related to five spe-
cific challenges: data aggregation, maintenance, integration,
analysis, and pattern interpretation of value application for
healthcare [28, 29].

Legality and ethics are a major contender to deal with
within the realm of utilization of large datasets of patient
data in healthcare [30]. Legislation mandates security, con-
fidentiality, and privacy of patient data. The Health Insur-
ance Portability and Accountability Act (HIPAA), as well
as Freedom of Information and Protection of Privacy Act
(FIPPA), requires the removal of several types of identifiers,
including any residual information of patients [31]. These
privacy legislations are a major barrier; however, privacy
concerns can be overcome by using newer technologies, such
as key-value (KV) storage services with somewhat advanced
configurations and technical knowledge for ongoing opera-
tional access and maintenance. For example, Pattuk et al. [32]
proposed a framework for securing Big Data management
involving HBase, called Big Secret, that securely processes
encrypted data over public KV stores. Hence, one method
of ensuring patient data privacy/security is to use indexes
generated from HBase, which can securely encrypt KV stores
[8, 33, 34] with HBase further encryption with integration
with Hive [35].

2. Methods

In a hospital system, such as for the Vancouver Island
Health Authority (VIHA), the capacity to record patient data
efficiently during the processes of ADT is crucial for timely
patient care and the enhanced patient-care deliverables. The
ADT system is referred to as the source of truth for reporting
of hospital operations from inpatient to outpatient and
discharged patients. Among these deliverables are reports
of clinical events, diagnoses, and patient encounters linked
to diagnoses and treatments. Additionally, in Canadian
hospitals, discharge records are subject to data standards
set by Canadian Institute of Health Information (CIHI)
and administered into Canada’s national DAD repository.
Moreover, ADT reporting is generally conducted through
manual data entry to a patient’s chart and then it is combined
with Electronic Health Record (EHR) (adding to further
complications of possibly compromising autopopulated data)
that might consist of other hospital data in reports to
provincial and federal health departments [36]. A suitable
BDA platform for a hospital should allow integration of ADT
and DAD records and to query that combination to find
trends at its extreme volumes.

TABLE 2: Big Data technologies using Hadoop with possible appli-
cations in healthcare [5, 7-9, 11-13, 29, 37-42].

Technologies Clinical utilization
Hadoop Distributed It has .chmcal use because of its high .
. capacity, fault tolerant, and inexpensive
File System (HDFS) L
storage of very large datasets clinical.
The programming paradigm has been used
MapReduce for processing clinical Big Data.
Infrastructure adapted for clinical data
Hadoop .
processing.
spark .Pro.cessmg/ storage of clinical data
indirectly.
Cassandra Key-value store for clinical data indirectly.
NoSQL database with random access was
HBase .
used for clinical data.
Apache Solr Document warehouse indirectly for clinical

data.

Document warehouse not yet in healthcare,
but upcoming for free text query on
Hadoop platform, can be used for clinical
data.

JSON document-oriented database has
been used for clinical data.

Lucene and Blur

MongoDB

Data interaction not yet configured for
Hive clinical data, but SQL layer to cross
platform being possible.

SQL access to Hadoop data not yet

Spark SQL configured for clinical data.
JSON Data description and transfer has been used
for clinical data.
Coordination of data flow has been used for
ZooKeeper .
clinical data.
YARN Resource gll(?cator of data flow has been
used for clinical data.
A workflow scheduler to manage complex
Oozie multipart Hadoop jobs not currently used

for clinical data.

High-level data flow language for
Pig processing batches of data, but not used for
clinical data.

Streaming ingestions were used for clinical

Storm data.

2.1. Big Data Technologies and Platform Services. Big Data
technologies fall into four main categories: high performance
computing, data processing, storage, and resource/workflow
allocator, like Hadoop/MapReduce [37-41] (Table 2). A
high performance computing (HPC) system is usually the
backbone framework of a BDA platform, for example, IBM’s
Watson and Microsoft Big Data solutions [42]. An HPC
system consists of a distributed system, grid computing, and
a graphical processing unit (GPU).

A distributed computing system can manage hundreds of
thousands of computers or systems, each of which is limited
in its processing resources (e.g., memory, CPU, and storage).
By contrast, a grid computing system makes efficient use of
heterogeneous systems with optimal workload management



servers, networks, storage, and so forth. Therefore, a grid
computing system supports computation across a variety
of administrative domains, unlike a traditional distributed
computing system. Furthermore, a distributed Hadoop clus-
ter, with its distributed computing nodes and connecting
Ethernets, runs jobs controlled by a master. “Hadoop was first
developed to fix a scalability issue affecting Nutch, an open-
source crawler and search engine that uses the MapReduce
and BigTable methods developed by Google” [19]. Distributed
computing using MapReduce and Hadoop represents a sig-
nificant advance in the processing and utilization of Big Data
in healthcare [25, 40].

Considering the design and implementation of BDA
systems for clinical use, the basic premise is to construct a
platform capable of compiling diverse clinical data. However,
the process of Ethics and Research Capacity at VIHA for
approval for the entire patient data of the hospital system was
not possible. Secondly, it was not possible to piece together
summarized data specific to health outcomes because this
data has already been summarized. Thirdly, real data in the
data warehouse at VIHA will require several months to review
and develop the solution to use Big Data technologies. Lastly,
performance benchmarking of the platform needs to be
determined with the current data query tools and workflow
at VIHA, which means that simulation at extremely large
volume can prove to be of high performance and usability.
Therefore, the study focused on simulation conducted with
VIHASs real metadata and exchanged knowledge on how the
ADT and DAD could be used in production.

2.2. Healthcare Big Data Analytics Framework. Hadoop/
MapReduce framework was proposed to implement HBDA
and analyze emulated patient data over a distributed com-
puting system that is not currently used in acute patient-
care settings at VIHA and other health authorities in British
Columbia, Canada. The teamed collaboration between UVic,
Compute Canada/WestGrid, and VIHA established the
framework of the HBDA platform. It comprised innovative
technologies like the Hadoop HDFS with MapReduce pro-
gramming and a NoSQL database. The HBase database con-
struct was complex and had many iterations of development
over the past three to four years. HBase is an open-source,
distributed key-value (KV) store based on Google’s BigTable
[43]—persistent and strictly consistent NoSQL system using
HDFS for data storage. Furthermore, with all these technical
components to construct the platform, the build also con-
sidered the workflow at VIHA with their respective clinical
reporting workgroups with the same metadata from real
hospital datasets.

The functional platform was tested for performance of
data migrations or ingestions of HFiles via Hadoop (HDFS),
bulkloads of HBase, and ingestions of HFiles to Apache
Spark and Apache Drill. In this study performances were
proof-of-concept testing using simulated data with the same
replicated metadata and very large volume. Furthermore, this
study involved six Hermes cores (each core has 12 Computer
Processing Units (CPU) cores). These CPUs accounted for
only a total of 72 cores out of the overall maximum of
4416 cores available at WestGrid-UVic. There were many
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configurations and package components to include in the
build, such as Apache Phoenix, Apache Spark, and Apache
Drill, as well as Zeppelin and Jupyter Notebook interfaces.

2.3. Replication, Generation, and Analytics Process. Metadata
is information about the data that is established in a system
as a structured standard to record and retrieve information
accurately. It is the structure of metadata that allows for data
profiles (i.e., characteristics, sources, and character lengths)
to be established in a database. And in healthcare this means
data is standardized effectively for patient records to be
accurate when retrieved or viewed in an EHR. In the case
of VIHA, the metadata of the ADT system allows for patient
data to be recorded when a patient is admitted to the hospital,
assigned to a bed, and provided other medical services. The
structure itself is not proprietary to the system and does not
contain any real patient data. In the meetings, with VIHA
personnel, the core metadata of ADT/DAD were verified
with questions scripted for the three main groups (Box 1).
With the help from health professionals and providers,
their current fast and reliable queries were revealed, and
unknown and desired health trends, patterns, and asso-
ciations of medical services with health outcomes were
unveiled. The records comprise patient demographics, emer-
gency care, ADT, clinical activities, diagnoses, and outcomes
information.

To accomplish these objectives, Island Health’s partial
core metadata from ADT/DAD systems was obtained via
knowledge transfer in interviews with specific teams working
at Royal Jubilee Hospital (RJH) and Nanaimo Regional Gen-
eral Hospital (NRGH). Knowledge transfer with VIHA per-
sonnel and current reporting limitations were documented,
recorded, and verified in summary after several meeting
iterations.

Information from the informatics architecture team was
composed of DAD dictionary and the selected data elements.
Information on metadata and the frequencies of three core
data elements (i.e., Admin Source, Admin Type, and Encounter
Type) from the BI Data Warehouse team will be the ADT
system database and the core data elements it comprises.
Information from Information Specialist and Clinical Infor-
mation Support will be the metadata relationship between
ADT and DAD at VIHA. Clinical reporting works with
Cerner Person Management tools and Med2020 WinRec
Abstracting on organizing of the metadata before it is stored
in a data warehouse. VIHA' privacy/security team was also
interviewed on data ownership and necessary steps to get
approval when using real data that might require public
disclosure.

Metadata was set at over 90 columns and randomized
based on data dictionary examples and from VIHA inter-
views. For example, metadata for the diagnostic column was
set with standardized metadata of International Classification
of Disease version 10 Canadian or ICD-10-CA codes, and
personal health number (PHN) has ten numerical digits
while the patient’s medical record number (MRN) for that
encounter has nine numerical digits. All data elements and
their required fields, as well as primary and dependent
keys, were recorded for completed trials of the necessary
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Group I - Architect

(i) Focus on the current demographics using standardized metadata of CIHI, hospitalization, and readmission

for BC and VIHA.

(ii) CIHI requests hospitals to submit data based on set data collection targets and standards. Much of the used

collected data is from DAD and some ADT; therefore, combining the 2 databases to form NoSQL database
is representative.

(iii) ADT is location, medical service and inpatient to discharge, so we can add those columns while diagnosis
and procedure are separate and can add those to the patient encounter even though they are separate.

(iv) Requested by and regulated by CIHI all metadata associations can be based on the encounter and MRN at
hospital level with PHN as a primary key.

(v) It is the most important system that holds the patient’s non-clinical information. These are based at the
patient encounter level and are represented by columns and rows in existing database for our NoSQL.

(vi) ADT is collected when patient is still in the hospital, but DAD data is recorded after patient leaves the
healthcare facility. Combining ADT and DAD is already done at the hospital level and can have representation
of hospital system via non-relational database.

(vii) DAD contain the clinical information that is collected ADT is the location, date and time of the visit, and

patient personal information. Data elements for data are based on profiles at the metadata level. And
there is a data dictionary that we can simulate.

(viii) Patients are identified using their PHN, MRN and encounter number. Encounter level queries are important
as well as hospital level patients’ metadata that is possible to represent encounters as rows in database.

Group 2 - Reporting

(i) Produce standard reports hourly, daily, weekly, monthly, and yearly with no errors for reporting, the

metadata are supposed to be standardized at the enterprise architecture. Dependencies in the data can be
simulated with the correct metadata.

(ii) ADT is implemented from vendor and source of truth and automated, DAD is abstraction and utilizes

source; therefore, the 2 databases are already linked. Combining ADT and DAD is possible and representative
of hospital system while supporting clinical reporting and benchmarking our simulations.

(iii) Significant relevance to reporting to CIHI can show similar queries in simulation.

(iv) Standardized reporting is available to show similar queries in simulation.

(v) Primary keys are important for data integrity and no errors while linking encounter to patient. Database
keys need to be represented.

(vi) Encounter level data important to standard reporting and data integrity. Simulation patient encounters
at hospital level to represent clinical reporting.

(vii) Key stores important to index data because foundation of system is based on patient encounter. Need to

utilize technologies to create key stores and unique indexes of the encounters to query the data.

(viii) Important queries need to incorporate as proof of concept with certain fields from hospital systems:

(a) Frequency of Diagnosis (Dx) Code with LOS, Frequency of Diagnosis (Dx) Code with LOS, Diagnosis
Code with Discharge date and Discharge time, Diagnosis Code with Unit Transfer Occurrence, Diagnosis
Code with Location building, Location Unit, Location Room, Location Bed, Discharge Disposition,
Diagnosis Code with Encounter Type and LOS, Diagnosis Code with Medical Services and LOS, Highest LOS
for MRNs with Admit date, Frequency (or number) of Admit category with Discharge_Date,
Provider Service with Diagnosis codes.

(ix) Combining the columns, we need to be able to perform these basic calculations:

(a) [Discharge time/date] — [Admission time/date] = length of stay (LOS) [Current date] — [Birth date] = Age
(b) [Left Emergency Department (ED) date/time] — [Admission to ED date/time] = Wait time in ED

(c) Intervention start date/time = needs to be between [Admission time/date] and [Discharge time/date]

(d) (Intervention) Episode Duration = Should be less than LOS

(e) Transfer In/Out Date = Should be between [Admission time/date] and [Discharge time/date]

(f) Days in Unit = should be less than or equal to LOS.

Group 3 - Data Warehouse

(i) Like key stores, we need dependencies in our database to be representative of existing system relevant to the

hospital operations.

(ii) Certain data elements with standardized metadata are necessary for the data to be accurate. The process
needs to generate same metadata with accurate dependencies.

(iii) Integration is not necessary for system to work but only to query the data ad hoc or correctly, and currently
no real time or streaming data. Integration depends on patient healthcare numbers from system at
each encounter and linkage between ADT and DAD via indexed rows.

(iv) Medical Services is not currently utilized in clinical reporting because it is not DAD abstracted, but could be
utilized in data warehouse. The reason is due to CIHTI’s data standards can integrate medical services and other
metadata from ADT with direct linkage to metadata from DAD.

(v) Transfers are important to ADT and flow of patients in the system as their encounters progress and change.

We can use transfers and locations in the database as simulated metadata of known profiles from hospital.

Box 1: Continued.
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(vi) Combining columns against encounter rows is already implemented at the hospital level; therefore, ADT and

DAD combination is relevant and simulation valuable.

(vii) Groupings allow building and construct of database to add columns progressively based on the encounter.
(viii) Diagnosis is important because it is health outcome of hospital. Groupings important as performance

metrics. Simulating queries based on encounters.

Box I: Information from interviewed groups involved in clinical reporting at Vancouver Island Health Authority (VIHA).

TABLE 3: Use cases and patient encounter scenarios related to metadata of patient visits and its database placement related to query output.

Case

Clinical Database

Uncontrolled type 2 diabetes & complex comorbidities

(i) DAD with diagnosis codes, HBase for IDs

TB of the lung & uncontrolled DM 2

(i) DAD and ADT columns with HBase for patient IDs

A on C renal failure, fracture, heart failure to CCU, and stable DM 2

(i) DAD and ADT columns with HBase for patient IDs

Multilocation cancer patient on Palliative

(i) DAD and ADT columns with HBase integrating data

together
1 cardiac with complications (i) DAD and ADT columns with HBase integrating data
together
1 ER to surgical, fracture, readmitted category for 7 days and some complication (i) DAD and ADT columns with HBase integrating data
after together

1 simple day-surg. with complication, admitted to inpatient (allergy to

medication)

(i) DAD and ADT columns with HBase for patient IDs

1 cardiac with complications and death

(i) DAD and ADT columns with HBase integrating data
together

1 normal birth with postpartum hemorrhage complication

(i) DAD and ADT columns with HBase integrating data
together

1 HIV/AIDS patient treated for an infection

(i) DAD and ADT columns with HBase for patient IDs

Strep A infection

(i) DAD and ADT columns with HBase integrating data
together

Cold but negative Strep A. Child

(i) DAD and ADT columns with HBase integrating data
together

Adult patient with Strep A. positive

(i) DAD and ADT columns with HBase for patient IDs

Severe pharyngitis

(i) DAD and ADT columns with HBase integrating data
together

Child, moderate pharyngitis, throat culture negative, physical exam

(i) DAD and ADT columns with HBase for patient IDs

Adult, history of heart disease, positive culture for Strep A.

(i) DAD and ADT columns with HBase integrating data
together

Adult, physical exam, moderate pharyngitis, positive for strep A. culture and

positive second time, readmitted

(i) DAD and ADT columns with HBase for patient IDs

columns to generate the emulation of aggregated hospital
data. The generator included all important data profiles and
dependencies were established through primary keys over
selected columns (Table 3).

At VIHA, health informatics architecture has direct
relation to the DAD abstracting, as it is a manual process and
dependent on Admit Type and Admit Source obtained from
Cerner’s hospital system. The emergency system is separate
from the ADT, and there are also planned procedures in
the triage that are not part of the ADT system. Doctors
and Nurses refer to the patient encounter as the source of
“truth” of patient encounters in the ADT system. Each patient
can have multiple encounter numbers with overall one
million encounters annually registered at VIHA. In contrast,
DAD is an attribute of the encounter, mostly diagnosis and

discharge, while ADT represents a person’s relationship to the
hospital system with medical services and patient location(s).
However, this study did include patient movement in hospital
(which is currently not queried at large levels) and patient
transfers. A transfer is a change in the encounter that is not
always represented by digital documentation; for example, a
patient may be transferred to NRGH in Nanaimo and then
receive a new encounter after being discharged from RJH, and
vice versa.

The data warehouse team working with health profession-
als for clinical reporting can rely on comma-separated value
(.csv) formats when importing and exporting data. Therefore,
this study opted to use the ingested .csv files directly for
analytics instead of HBase, which had previously been used
on this platform along with Apache Phoenix and its SQL-like
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code [44]. Three data sizes (50 million and one and three
billion records) were used as benchmark checks of how
different packages (Apache Spark and Drill) scaled with data
size for clinical use.

It is important to note that this study is about perfor-
mance testing of ADT/DAD queries of a distributed filing
system (Apache-Hadoop) with a processing (MapReduce)
configuration on an emulated NoSQL database (HBase) of
patient data. The platforms tested the totally randomized
generated data with replicated duplicates for every 50 mil-
lion patients’ encounters with that of replicated groupings,
frequencies, dependencies, and so on in the queries. The
pipelined process included five stages or phases that coin-
cided with the challenges outlined in Section 1 and the overall
study’s objectives.

2.3.1. Data Acquisition

(a) Data Emulation Using HBase. In the emulated dataset,
each row represented encounter-based patient data, with
diagnoses, interventions, and procedures specific to that
patient, that the current ADT system has in its database
schema linked to a bigger data warehouse (refer to Table 3 for
clinical cases). This patient-specific structure in the database
allowed for active updates for accurate patient querying
over the platform, simulated throughout the lifetime of that
person. Chawla and Davis [33] showed that utilization of
ICD diagnosis codes over a patient-centered framework
allowed for a seamless integration with a variety of data
from electronic healthcare systems with patient-centric ADT;
this method could accurately query readmission rates and
quality of care ratings and demonstrate meaningful use
and any impact on personal and population health. There-
fore, the platform used a similar methodology to establish
the structure of the data model of combining encounter-
based ADT with standardized diagnosis; every encounter
has a separate diagnosis, procedures, and most responsible
provider.

All necessary data fields were populated for one million
records before replication to form one and three billion
records. The recorded workflow provided a guideline to
form the NoSQL database, as a large distributed flat file.
The patient-specific rows across the columns according to
the existing abstraction were further emulated; HBase estab-
lished a wide range of indexes for each unique row, and each
row contained a key value that was linked to the family of
qualifiers and primary keys (columns). The HBase operations
were specific to family qualifiers at each iteration; therefore,
the data was patient-centric combined with certain DAD data
(from different sources of metadata) in the rows and columns,
such that summary of diagnosis or medical services could be
queried.

(b) Data Translation. Since the performance tests of queries
on the platform relied on data emulation, as a proof of
concept, the usual high-speed file transfer technologies (such
as SCP and GridFTP) were used to transfer data to the
HPC parallel file system (GPFS). When the pharmaceutical
data was ingested on the Hadoop/MapReduce framework, it

showed the same results as benchmarked data. The Hadoop
and HBase were then used as NoSQL database bulkload
utilities to ingest the data. To establish data structure, the
EncounterID was set as a Big Data integer (so that it can reach
billions of integers itemized sequentially without limitation)
and indexed based on that integer via HBase for each unique
row at every iteration that followed. This indexed-value
column, unique for every row, causes MapReduce to sort the
KV stores for every one of the iterations that can increase
the integrity of the data and increase its secured access once
distributed.

2.3.2. Data Maintenance and Troubleshooting. The emulated
data was stored and maintained in the HPC parallel file
(~500 GB) and over the BDA platform under HDFS. The
replication factor for HDFS was set to three for fault tolerance.
The large volume of datasets was reutilized to test the
performance of different use cases or queries conducted by
the analytics platform. This required innovation, in an agile
team setting, to develop stages in the methodology unique to
BDA configurations related to healthcare databases.

2.3.3. Data Integration (Clinical). This step was very impor-
tant because the SQL-like Phoenix queries had to produce the
same results as the current production system at VIHA. All
results were tested under a specific data size and comparable
time for analysis, whether the query was simple or complex.
The data results also had to show the exact same columns
after the SQL-like queries over the constraint of the family
qualifiers (as primary keys). Over a series of tests, certain
columns were included or excluded as qualifiers in the SQL
code for constraints. Once the results were accurate and were
the same as those benchmarked, those qualifiers remained for
each of the iterations run via Hadoop, to generate the one
billion totals.

2.3.4. Data Analysis. In this step, the study conducted a
proof-of-concept analysis of task-related use cases specific to
clinical reporting. The queries were evaluated based on the
performance and accuracy of the BDA framework over the
one billion rows. For example, a task-based scenario for the
analysis included the following.

(a) Analysis Questions/Scenarios. A typical analysis scenario
was as follows: clinicians suspect that frequent movement of
patients within the hospital can worsen outcomes. This is
especially true in those who are prone to confusion due to
changes in their environment (i.e., the elderly).

(b) Analytic Algorithms and Tools. To handle intensive com-
putation, simplified algorithms were applied and distributed
over database nodes. For instance, there was some default
MapReduce-based a priori data-mining algorithm to find
associated patterns in the dataset. The customized MapRe-
duce templates were tailored to be used via Phoenix (later,
in a separate part of this study, similar algorithms were also
tested via Apache Spark and Apache Drill) on the HBase
database nodes. For developing some of the software pipeline,
the plan was to establish and engineer alternative products



with Spark such as Jupyter and Zeppelin to work over Hadoop
and establish a query GUI interface to interactively run all test
queries simultaneously and display all durations to generate
results. Apache Drill was also selected because the same
queries tested in Phoenix and Spark can be used plus its
interface can be integrated over Hadoop.

(c) Pattern Validation and Presentation. The study undertook
more than five phases of the configuration process (over
several months and years) to query the data distributed. The
initial aim of assessing how well the models will perform
against a large dataset was first carried out with publicly
available annual (2005-2006) inventory of pharmaceuticals
(~5MB). Once the pharmaceutical data ingested on the
Hadoop/MapReduce framework showed the same results
benchmarked. Simulated queried results from the platform
were to follow the DAD reporting for health outcomes at
the hospital level and each row was deemed to represent
one patient encounter. For this to succeed, domain experts
and physicians were involved in the validation process and
interpretation of the results and end users’ usability of the
query tools. Since the data was randomized at one million
records and replicated iteratively at 50 million to one billion
and then to three billion, the data results were already known
beforehand; therefore, the trends detected will be randomized
data clusters only.

2.3.5. Data Privacy Protection. The established framework
of the platform used WestGrid’s existing security and the
privacy of its supercomputing platform while reviewing and
identifying regulations for eventually using real patient data
over the platform (external to the hospital’s data warehouse).
The following method was applied, which included four steps.

Step 1. HBase creates indexes for each row of data that
cannot be queried with direct access, and queries can only
be generated when accessing the deployment manager (DM)
on the platform. That is, the data cannot be viewed at all by
anyone at any time or for any duration; only queries can show
the data that is HBase-specific and nonrecognizable without
Hadoop and HBase running, as well as the correct scripts to
view it.

Step 2. Executing data replication, as a generator over the
platform, worked in conjunction with business/security ana-
lysts to identify the masking or encryption-required algo-
rithms that represented optimal techniques to replace the
original sensitive data.

Step 3. Review was carried out with the related regulations
regarding privacy protection regulations and principles, such
as the HIPPAA, Freedom of Information and Protection of
Privacy Act (FIPPA), Personal Information Protection Act
(PIPA), and the use of the public KV stores established in
semipermanent databases of HBase distributed by Hadoop.

Step 4. Test of the replicated dataset was executed by an
application process to test whether the resulting masked
data could be modified to view. A real dataset (large annual
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inventory of pharmaceuticals) was tested and verified firstly,
since studies have shown that the distribution of data using
Hadoop has many inherent processes that restrict access to
running ingestions [43, 44].

2.4. Implementing Framework for Clinical Use. In this sec-
tion, the steps and experiences implementing the technical
framework and application of a BDA platform are described.
The established BDA platform will be used to benchmark
the performance of end users querying of current and
future reporting of VIHA’s clinical data warehouse (i.e., in
production, spanning more than 50 years of circa 14 TB).
To accomplish this, Hadoop environment (including the
Hadoop HDES) from a source was installed and configured
on the WestGrid cluster, and a dynamic Hadoop job was
launched.

The construction and build of the framework with HBase
(NoSQL) and Hadoop (HDES) established the BDA platform.
This construct coincided with and is enforced by the existing
architecture of the WestGrid clusters at UVic (secure login
via LDAP directory service accounts to deployment database
nodes and restricted accounts to dedicated nodes). It was
initially running the architecture of the platform with five
worker nodes and one master node (each with twelve cores)
and planned to increase the (dedicated) nodes to eleven and
possibly to 101, as well as incorporating a nondedicated set of
virtual machines on WestGrid’s OpenStack cloud.

The queries via Apache Phoenix (version 4.3.0) resided
as a thin SQL-like layer on HBase. The pathway to running
ingestions and queries from the build of the BDA platform
on the existing HPC was as follows:

.csv flat files generated — HDFS ingestion(s) —
Phoenix bulkloads into HBase — Apache Phoenix
queries.

This pathway was tested in iteration up to three billion
records (once generated) for comparison of the combination
of HBase-Phoenix versus Phoenix-Spark or an Apache Spark
Plugin (Apache Phoenix, 2016), under this sequence and after
loading the necessary module environments for Hadoop,
HBase, and Phoenix and testing initial results linked to the
family qualifiers and HBase key-value entries [28, 29].

Performance was measured with three main processes:
HDFS ingestion(s), bulkloads to HBase, and query times via
Phoenix. One measurement of ingestion time in total for
iterations and overall was established to achieve the total
desired number of records, that is, one billion and three
billion from 50 million replicated [29]. We also computed
the ingestion efficiency (IE) and query efficiency (QE) of one
billion compared to 50 million records using the following
formula:

1(3) Bx T, (50M)
50M x T; (1(3)B)’

IE,QE = )

where T;(N) is the time it takes to ingest N records to either
HDES or HBase.

Apache Spark (version 1.3.0) was also built from source
and installed to use on HBase and the Hadoop cluster. The
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FIGURE I: Big Data Analytics (BDA) platform designed and constructed as patient encounter database of hospital system.

intent was to compare different query tools like Apache
Spark and Drill, implemented over the BDA platform, against
Apache Phoenix using similar SQL-like queries. The entire
software stack used in the platform has at its center HDFS
(Figure 1).

3. Results

Data profiles, dependencies, and the importance of the
metadata for reporting performance were also emulated
and verified. Current reporting limitations were recorded if
the combinations of the DAD and ADT were done in one
distributed platform running parallel queries. A total of 90
columns were confirmed as important to construct necessary
queries and to combine ADT data with DAD data in the
Big Data platform. Additionally, the queries derived were
compared with clinical cases and how that interacted with the
performance of the platform was representative of the clinical
reporting at VIHA.

3.1. Technical Implementation. HBase (NoSQL version
0.98.11) was composed of the main deployment master (DM)
and failover master, the RegionServers holding HBase data,
and a ZooKeeper of five nodes to orchestrate the ensemble,
called RegionServers. HBase consists of unique rows and each
row contains a key value. A key-value entry has five parts:
row-key (row), family (fam), qualifier (qua), timestamp (ts),
and value (val) denoted as KEY := row || fam || qua | ts
[28]. Additionally, to establish the HBase key-value entries,
there are four operations:

(1) put, which inserts data

(2) get, which retrieves data of a specific row

(3) delete, which removes a data row

(4) scan, which retrieves a range of indexed rows.

The steps carried out to run Hadoop modules are shown
in Box 2.

The platform worked as expected after modified config-
urations of Hadoop’s hdfs-site.xml. Additionally, the number
of replicas was set to three in the xml with connection to
InfiniBand or ib0. To interact with HDFS, command scripts
were run to automate the ingestion step (generating data
replication in the exact format specified by SQL script to the
nodes).

The Map part of MapReduce on the platform showed high
performance at 3-10 minutes, but the Reduce took 3-12 hours
(Figure 2). Apache Phoenix (version 4.3.0), a thin layer on top
of HBase, was used as ingestion structured file and schema-
based data into the NoSQL database.

To improve the ingestion of the one billion rows and 90
columns to attempt to generate 1-10 billion rows, local hard
disks of 40 TB in total were physically installed on the worker
nodes. After local disks were installed on five (worker) nodes,
a set of shell scripts was used to automate the generation
and ingestion of 50 million records at each of the iterations
via MapReduce. The maximum achieved was 3 billion due
to operational barriers, workflow limitations, and table space
because key stores almost tripled the amount of space used
for each of the ingestions (Table 4). In total, including all the
testing, about 6-9 billion rows were ingested to the local disks
in iteration of which three billion were correctly indexed and
could be accurately consistently queried.

Other findings of Big Data technology limitations in-
stalled on WestGrid’s architecture were ongoing manual
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(2) l/global/software/Hadoop-cluster/-ltr
hdp 2.6.2, hb 0.98.16.1, phoenix 4.6.0
(3) module load Hadoop/2.6.2

(5) module load HBase/. ..
(6) module load phoenix/. ..

(8) hdfs dfsadmin -report

(1) module load Hadoop/2.6.2

(2) module load HBase/0.98.16.hdp262
(3) module load phoenix/4.6.0

(5) hdfs dfs -mkdir/data

(6) hdfs dfs -put “$localFileName”/data/

(7) hdfs dfs -1s/data
(8) sqlline.py hermes0090-ib0 DAD.sql

#psql.py -t DAD localhost all.csv
(C) Ingest All Using d_runAllsh

DAD.sql (for old)

hdp262|||module load phoenix/4.6.0
(5) Use the d_runAll.sh to ingest them all at once.

the/scratch/JOBID on the nodes).

(A) Steps to Access Head Node at WestGrid to Start PBS Job
(1) gsub -I -1 walltime = 72:00:00, nodes = 6: ppn = 12, mem = 132 gb

(4) setup_start-Hadoop.sh f (f for format; do this only once...).

(7) (actually check the ingest.sh script under ~/bel_DAD)

(9) djps (command displays the JVMs, Java services running with PIDs)
(B) Process to Ingest the File into Phoenix/HBase Database

(4) localFileName = “The CSV file containing your data”

(9) export HADOOP_CLASSPATH = /global/software/Hadoop-cluster/HBase-0.98.16.1/lib/HBase-
protocol-0.98.16.1.jar:/global/software/Hadoop-cluster/HBase-0.98.16.1/1ib/high-scale-lib-
1.1.Ljar:/global/scratch/dchrimes/HBase-0.98.16.1/34434213.moab01.westgrid.uvic.ca/conf

(10) time Hadoop jar/global/software/Hadoop-cluster/phoenix-4.6.0/phoenix-4.6.0-HBase-0.98-client.jar
org.apache.phoenix.MapReduce.CsvBulkLoadTool —table DAD -input “/data/$localFileName”

(1) First decide which file to use, then check the correctness of its column names. DADV2.sql (for v2) and

(2) Create the database table using sqlline.py as illustrated above (sqlline.py hermes0090-ib0 DAD.sql)
(3) Make sure all the modules loaded: module load Hadoop/2.6.2|||module load HBase/0.98.16.

(4) Generate the rest of data (we need 10 billion and monitor Big Data integer in the database).

(6) If a problems happen (persists) check the logs in different location (/global/scratch/dchrimes/and/or on

Box 2: Configuration and command scripts run across BDA platform.

intervention (over three-five months) which was required
to constantly fine-tune the performance of bulkloads from
MapReduce to HBase. Hadoop had ingestions exhibiting
high performance, for circa three minutes to complete task
for 258 MB or each 50 million rows. Sometimes HDFS was
unbalanced and had to be rerun to rebalance the data to the
nodes or when the local disk at 500 GB did not failover to
2 TB disks installed, the entire ingestions had to start all over
again because HBase could not reindex them, and, therefore,
its queries were invalid with no indexes, which drastically
slowed performance when not operational. There were some
findings on optimized performance of the platform. CPU
usage needs to be maxed, which is during mid-May to Octo-
ber 2016; it pinged at 100% but did not stay due to running
compaction after each of the ingestions took over 4 hours
(Figure 3). And, the IO disk usage needs to reach the best
possible throughput provided or closest to 100% CPU, which
showed 160 MB/s was achieved and pinged at approximately
the same time at the peak performance of the corresponding
ingestions.

3.2. Clinical Analytics and Visualizations. The deployment
of the Hadoop environment on the nodes was carried out
behind the backend database scenes via a sequence of setup
shell scripts that the user can then adjust configurations to
match the needs of the job and its performance. There were
22 SQL-like queries tests for querying reports, instances,
and frequencies in the ADT/DAD data over the 50 million
to 1-3 billion rows. Ten queries were categorized as simple
while others were complex; these included more than three
columns and three primary keys across the 90 possible
columns. All queries, simple (linear) and complicated (expo-
nential and recursive), were less than two seconds for one
billion and almost the same for three billion when the nodes
were, eventually, balanced by Hadoop; however, some queries
were more than three seconds and less than 4 seconds
for three billion with unbalanced nodes. There were no
significant differences between simple and complex query
types and possible two-second increase when nodes were
unbalanced. Caching did not influence the query times. There
was no significant difference in the performance of simple
versus complex queries. The performance speed, even at one
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TABLE 4: Operational experiences, persistent issues, and overall limitations of tested Big Data technologies and components that impacted
Big Data Analytics (BDA) platform.

Technology component Clinical impact to platform

(i) Did not reconfigure more than 6 nodes because it is very difficult to maintain
clinical data

(ii) Had to add additional 2-4 TB for clinical data

(iii) The clinical data needed large local disks

Hadoop Distributed Filing System (HDES)

(i) Totally failed ingestion
(ii) Clinical index files must be removed from node

MapReduce (iii) Extremely slow performance when working with clinical data
(iv) Clinical data need more advanced algorithms
(i) RegionServers needed to form the clinical database
HBase (11) Ongoing monitoring and log checking
(iii) Run compaction
(iv) Ran only 50 million rows of clinical data
(i) Extremely slow performance when ZooKeeper services are not running properly
ZooKeeper & YARN for both, but additional configuration minimized this limitation with few issues for
YARN
(i) To maintain a database schema with current names in a file on the nodes, such
that if the files ingested do not match, it will show error, and to verify ingested data
Phoenix exists within the metadata of schema while running queries
(ii) This occurred zero times while ingesting files but many times at first when
running queries
Spark (i) Slow performance
(i) 30-minute delay before running queries which takes the same amount of time as
Zeppelin with Jupyter
(ii) No fix to this issue
Jupyter (i) Once the Java is established, it has high usability and excellent performance
. (i) It is extremely fast but has poor usability
Drill - . . . .
(ii) Some integration to other interface engines
80000 with the queries. Health data that was involved with hospital
outcomes and clinical reporting was combined to form a
70000 L.
database and distributed over nodes as one large file, up to
— 60000 ] 30 TB for HBase. All the pertinent data fields and much more
i 50000 I were used.
g ] ] The results showed that the ingestion time of one billion
8 40000 {if |1 { i i records took circa two hours via Apache Spark. Apache Drill
g i | E A i outperformed Spark/Zeppelin and Spark/Jupyter [29]. How-
5 30000 . ,i\ 1 ;' VI H I h ,xi [ NEAEN ever, Drill was restricted to running more simplified queries
& 20000 “{" H H} I t' V’i\f M\i kif ¥ ‘Ii\lﬁ\ff\i i and was very limited in its visualizations that exhibited poor
P % t Y usability for healthcare. Zeppelin, running on Spark, showed
10000 ease-of-use interactions for health applications, but it lacked
0 . . . - } . the flexibility of its interface tools and required extra setup
0 5 10 15 20 25 30 35 40 45 50 55 60

time and 30-minute delay before running queries. Jupyter
on Spark offered high performance stacks not only over
the BDA platform but also in unison, running all queries

Iterations with replications

FIGURE 2: Performance (seconds) of 60 ingestions (i.e., 20 replicated

3 times) from Hadoop HDFS to HBase files, MapReduce indexing,
and query results. Dashed line is total ingestion time and the dotted
line is time to complete the Reducer of MapReduce. The bottom
dashed-dot lines are the times to complete Map of MapReduce and
the duration (seconds) to run the queries.

to three billion rows for complex queries, was extremely
fast compared to the 50 million rows queried. It did require
months of preparation to get to the task of testing the platform

simultaneously with high usability for a variety of reporting
requirements by providers and health professionals.

Drill did perform well compared to Spark, but it did
not offer any tools or libraries for taking the query results
further. That is, Drill proved to have higher performance
than Spark but its interface had fewer functionalities. More-
over, algorithms (as simple as correlations between different
columns) were time-demanding if not impossible to express
as SQL statements. Zeppelin, on the other hand, offered the
ability to develop the code, generate the mark-down text,
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FIGURE 3: A year of varied iteration and CPU usage (at 100%) on
Hemes89 node reported from WestGrid showing variation in the
duration of the ingestion of 50 million records over each of the
iterations. The graph shows the following: user (in red), system (in
green), IOWait time (in blue), and CPU Max (black line).
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FIGURE 4: Zeppelin interface with Apache Spark with multiple
notebooks that can be selected by clinical users.

and produce excellent canned graphs to plot the patient
data (Figure 4). Combined with the richness of Spark and
Pyspark, Zeppelin provided a canned visualization platform
with graphing icons. The plots under Zeppelin, however,
are restricted to the results/tables obtained from the SQL
statements. Furthermore, the results that were produced
directly from the Spark SQL context did not have any
visualization options in Zeppelin. Generating results from
queries via Zeppelin took much longer (over 30 minutes).
Establishing the platform to run queries on the interface
and generate results via Zeppelin took longer than Jupyter
[29].

With Jupyter, more configurations with the data queries
were tested. It exhibited similar code to ingest the file (Fig-
ure 5), the same Spark databricks initialized in the interface,
and its SQL to query as Zeppelin, but at the expense of
writing the visualization code, using the matlplotlib Python
package in addition to other powerful tools, such as Pandas,
that is, a powerful Python data analysis toolkit. The local
host was added to Hermes node to access Jupyter via the
BDA platform to compensate for the lack of visualization
options via the Zeppelin interface. Jupyter supplied more
visualization defaults and customization than Drill for its
distributed mode and its interface to run the query (Figure 6)
was severely lacking usability of any visualization tools.
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FIGURE 5: Spark with Jupyter and SQL-like script to run all queries
in sequence and simultaneously.
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FIGURE 6: Drill interface customized using the distributed mode
of Drill with local host and running queries over WestGrid and
Hadoop.

4. Discussion

The ultimate goal of the study was to test the performance
of the Big Data computing framework and its technical
specifications cross platform against all challenges specific
to its application in healthcare. This goal was accomplished
by combining ADT and DAD data through ingestions
over the Hadoop HDFS and the MapReduce programming
framework. High performance over the BDA platform was
verified with query times of less than four seconds for 3
billion patient records (regardless of complexity), showing
that challenges of aggregation, maintenance, integration, data
analysis, and interpretative value can be overcome by BDA
platforms.

4.1. Modeling Patient Data of Hospital System. There are
analytical challenges in many Canadian healthcare systems
because of separated silos of aggregations. There are complex
and unique variables that include “(1) information used; (2)
preference of data entry; (3) services on different objects;
(4) change of health regulations; (5) different supporting
plans or sources; and (6) varying definition of database field
names in different database systems” [45]. Big Data in health-
care can cover tens of millions or billions of patients and
present unprecedented opportunities. Although data from
such sources as hospital EHR systems are generally of much
lower quality than data carefully collected by researchers
investigating specific questions, the sheer volume of data may
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compensate for its qualitative deficiencies, provided that a
significant pattern can be found amid the noise [14, 46].
Ultimately, it was designed not only to replicate data but to
simulate the entire volume of production and archived data
at VIHA, and possibly the Province of British Columbia,
such that real patient data from hospitals will be approved
to utilize the platform. Therefore, the messiness of the data
and its influence on the simulation were not tested, although
this could potentially affect accuracy and performance when
querying real data.

The ADT data are very difficult to emulate because they
are from Cerner System, which uses a kernel to create alias
pools for ~1000 different tables in the database. Simply
creating one flat file cannot emulate the complex metadata
relationships and does not guarantee that the data are treated
uniquely for each encounter row when the encounters can
change over time or several are linked to the same patient.
However, if the data is extracted from the automated hospital
system and it is confirmed that the columns are correct with
unique rows, it should be possible to combine it with DAD
data with similar unique keys and qualifiers. The complex
nature of HBase means that it is difficult to test the robustness
of the data in emulations based on real data. Several steps
were required to prepare the DAD database alone for statisti-
cal rendering before it was sent to CIHI. The actual columns
used in this study are the ones used by VIHA to derive the
information accurately in a relational database, which ensures
the data is in alias pools and not duplicated for any of the
encounters. Other research reviews (e.g., [5, 30, 47, 48]) have
stressed the importance of patient data modeling with Big
Data platforms in healthcare, indicating that a lack of BDA
ecosystems is one of the reasons why healthcare is behind
other sectors in utilizing current technologies to harness Big
Data. Nelson and Staggers [5] noted that nursing informatics
and data from nurse progress notes are underutilized in hos-
pital systems. Wang et al. [47] also compare bioinformatics
with healthcare and Big Data applications. Bioinformatics can
match extremely large libraries of genetic data to libraries of
medications or treatments; however, such matching cannot
be performed at the scale of large hospital systems, and
patient-centric frameworks and current traditional practices
of storing relational data make it difficult to replicate for
other database types, especially Big Data. Chawla and Davis
[33] and Kuo et al. [48] argue that even structured data lack
interoperability among hospital systems, so that no solutions
could possibly link all data. At VIHA, for example, it is
difficult to link the DAD and ADT data on encounters,
because the DAD data on diagnosis and intervention are not
stored together or integrated or have relational dependencies
in an all-in-one data warehouse, while the ADT automatically
links the data to encounters [5, 48]. Therefore, more vali-
dation is required to match corresponding medical services
in ADT to patient diagnosis in that admission time and
source.

It was more complicated to validate the simulated data in
Spark and Drill with real data. Scott [49] indicated that the
battlefield for the best Big Data software solutions is between
Spark and Drill and that Drill can emulate complex data much
more efficiently than Spark because Spark requires elaborate
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Java, Python, and Scala coding to do so. Nonetheless, both
Spark and Drill were significantly faster than HBase in
ingesting files directly into Hadoop via Drillbits (Drill) with
ZooKeeper and MapReduce and RRD transformations with
MapReduce (Spark). The tools used totally different processes
across the nodes, and without indexing there is a lack of
encrypted data (which patient data requires); those processes
did, in the end, produce the same query, but that is because
the platform was set to ingest the already-indexed files into
Spark and Drill. Absence of indexing increases the risk of
inaccuracies (even though the framework was more fault-
tolerant when running Spark and Drill). Therefore, the Big
Data tools and inherent technologies highly influence the
clinical services of the data established and resulting data
from queries.

Wang et al. [50] support this study’s claim in their state-
ment that nonrelational data models, such as the KV model,
are implemented in NoSQL databases. Wang et al. [47] fur-
ther stated that NoSQL provided high performance solutions
for healthcare, being better suited for high-dimensional data
storage and querying and optimized for database scalability
and performance. A KV pair data model supports faster
queries of large-scale microarray data and is implemented
using HBase (an implementation of Google’s BigTable storage
system). The new KV data model implemented on HBase
exhibited an average 5.24-fold increase in high-dimensional
biological data query performance compared to the relational
model implemented on MySQL Cluster and an average 6.47-
fold increase on query performance on MongoDB [25]. The
performance evaluation found that the new KV data model,
in particular its implementation in HBase, outperforms
the relational model currently implemented and, therefore,
supports this study’s NoSQL technology for large-scale data
management over operational BDA platform of data from
hospital systems.

4.2. HBase Database for Clinical Reporting. There are many
alternative solutions for Big Data platforms; choice of the
best solution depends on the nature of the data and its
intended use (e.g., [51]). In practice, while many systems
fall under the umbrella of NoSQL systems and are highly
scalable (e.g., [51, 52]), these storage types are quite varied.
However, each comes with its unique sets of features and
value propositions [53]. For example, the key-value (KV) data
stores represent the simplest model of NoSQL systems: they
pair keys to values in a very similar fashion to how a map
(or hash table) works in any standard programming language.
Various open-source projects have been implemented to
provide key-valued NoSQL database systems; such projects
include Memcached, Voldemort, Redis, and Basho Riak [25].
Another category of NoSQL systems is document-oriented
database stores. In these systems, a document is like a hash,
with a unique ID field and values that may be any of a
variety of types, including more hashes. Documents can
contain nested structures, so they provide a high degree of
flexibility, allowing for variable domains such as MongoDB
and CouchDB [25]. These other categories could be used for
hospital data; however, in this study HBase was chosen as
the database type and technology because it simplified the
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emulation of the columns using the metadata in each column
rather than the data types and the actual relationships among
the data.

HBase also has a dynamic schema that can be uploaded
via other Apache applications; therefore, the schema can be
changed and tested on the fly. If HBase had not been used,
more complex data models would have been needed to map
over the Hadoop/MapReduce framework. Another benefit of
using HBase is that further configurations can be accom-
plished for multirow transactions using a comma-separated
value (.csv) flat file [51, 54]. Additionally, the longer these
identifiers are, the bigger the KV of data storage in HBase
will become; therefore, identifier length was standardized in
this study as the minimum required depicting the data profile.
Problems appeared while creating corresponding row keys in
HBase. The ingestions were not evenly distributed, and the
increasing keys in a single region may have contributed to the
Reduce being slow [25].

Our study showed that compaction on HBase improved
the number of successful runs of ingestion; however, it did
not prevent failure of the nodes, a finding that is supported
by other studies, (e.g., [39, 55-58]). However, the platform
used in our study had ran into the problem of HBases
RegionServer hitting the InfiniBand correctly and fully, and
the settings to run compaction after each ingestion did not
always compact the files correctly, which caused the entire
operational iteration of ingestion to fail.

4.3. HBase with Security/Privacy. In Canada, population
health data policy relies on legislative acts for public disclo-
sure of the data accessed externally outside health authority’s
boundaries [59]. Our BDA platform utilized existing archi-
tecture at WestGrid at UVic external to VIHA. WestGrid
does maintain a secure environment for restricted access to
accounts, and our Hadoop/HBase ingestion processes cannot
be accessed by anyone other than the current authorized
user. Thus, the BDA platform is highly secure. However, we
showed that to replicate from source to HBase to form at least
one billion required one week timeframe. Therefore, the data
needs to be stored before running the queries, as Moselle [60]
stated that if the data is stored with some permanency even
over a few hours, public disclosure is required.

5. Limitations and Future Work

Advantage of using Apache Spark or Drill over Phoenix is
less reliance on MapReduce, which speeds up performance;
however, then there is major limitation of data not accurately
representative of clinical events, and data is less encrypted.
Therefore, there is a performance trade-oft. A further limita-
tion of this study was on linkage between the technologies
and representations of the patient data for clinical use;
HBase at large volumes did not achieve fully integrated
complex hospital relationships. Without complete validation,
the technologies cannot be certified by the health authority.
More work on using key-value storage for BDA should be
considered in simplified clinical event models across many
clinical services.

Computational and Mathematical Methods in Medicine

There is a need to further explore the impact of Big Data
technologies on the patient data models of hospital systems.
Additionally, it was initially set out to test security and privacy
of the interactive and functional BDA platform. However,
due to the limitations of MapReduce, it was determined that
its Java code would remain as is and it was determined
not to add encrypted patient identifiers for personal health
number, medical record number, and date of birth. Tang et al.
[61] have implemented advanced indexed data of extralarge
data sets with good performance after major adjustments
to MapReduce programming. Further investigations need to
not only test the use of MapReduce to encrypt the data, but
also test querying the data afterwards on HBase.
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