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Abstract

It has been clearly established that mitogen-activated protein kinases (MAPKS) are important mediators of angiotensin II
(Ang II) signaling via AT1 receptors in the vasculature. However, evidence for a role of these kinases in changes of Ang II-
induced vasoconstriction in obesity is still lacking. Here we sought to determine whether vascular MAPKs are differentially
activated by Ang II in obese animals. The role of AT2 receptors was also evaluated. Male monosodium glutamate-induced
obese (obese) and non-obese Wistar rats (control) were used. The circulating concentrations of Ang I and Ang II, determined
by HPLC, were increased in obese rats. Ang II-induced isometric contraction was decreased in endothelium-intact resistance
mesenteric arteries from obese compared with control rats and exhibited a retarded AT1 receptor antagonist response.
Blocking of AT2 receptors and inhibition of either endothelial nitric oxide synthase (eNOS) or extracellular signal-regulated
protein kinases 1 and 2 (ERK1/2) restored Ang II-induced contraction in obese rats. Western blot analysis revealed increased
protein expression of AT2 receptors in arteries from obese rats. Basal and Ang II-induced ERK1/2 phosphorylation was also
increased in obese rats. Blockade of either AT1 or AT2 receptors corrected the increased ERK1/2 phosphorylation in arteries
from obese rats to levels observed in control preparations. Phosphorylation of eNOS was increased in obese rats. Incubation
with the ERK1/2 inhibitor before Ang II stimulation did not affect eNOS phosphorylation in control rats; however, it
corrected the increased phosphorylation of eNOS in obese rats. These results clearly demonstrate that enhanced AT2
receptor and ERK1/2-induced, NO-mediated vasodilation reduces Ang II-induced contraction in an endothelium-dependent
manner in obese rats.
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Introduction

Angiotensin II (Ang II), the effector peptide of the renin-

angiotensin system (RAS), is a vasoactive peptide that exerts a

variety of vascular actions through activation of at least two

different types of G protein–coupled receptors, the type 1 receptor

(AT1) and the type 2 receptor (AT2) [1–3]. Binding of Ang II to

the AT1 receptor activates a myriad of signaling pathways, among

them the mitogen-activated protein kinases (MAPKS), a family of

serine/threonine kinases which are classically associated with

vascular smooth muscle cell contraction, migration, adhesion,

collagen deposition, cell growth, differentiation, and survival. Of

the main MAPKs, extracellular signal-regulated kinases (ERK1/

2), p38 MAPK, and stress-activated protein kinase/c-Jun N-

terminal kinases (SAPK/JNK) are the best characterized [4–9].

Although Ang II signaling via AT1 receptor has been

extensively characterized, Ang II signaling via AT2 receptors is

still not completely understood. In small resistance vessels,

activation of AT1 receptors promotes vasoconstriction and smooth

muscle proliferation [10], whereas AT2 receptor stimulation

activates an autacoids vasodilator cascade composed of bradykinin

(BK), nitric oxide (NO), and guanosine cyclic 3, 5 -monophos-

phate (cGMP) that mediates vasodilation, counteracting AT1

receptor-induced contraction and providing a protective role

[11,12]. Indeed, AT2 receptor knockout mice have higher blood

pressure and an exaggerated response to Ang II infusion on blood

pressure [13]. Furthermore, AT2 receptor is upregulated in

certain pathological conditions such as hypertension, vascular

injury, and inflammation [14,15]. The significance of AT2

receptor in the establishment of vascular dysfunction in obesity,

however, is not defined.
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Recent studies have demonstrated that Ang II plays an

important role in obesity by promoting changes in energetic

homeostasis and vascular function [16–17]. Increased activation of

MAPKs has also been described to be involved is changes of the

energy metabolism in obesity [18–20]. Moreover, it is now clearly

established that MAPKs are important mediators of Ang II effects

in the vasculature, including vascular smooth muscle cells

differentiation, proliferation, migration, and fibrosis [21,22].

However, evidence for a direct role of these kinases in changes

of the vascular reactivity to Ang II in obesity is still lacking. Here

we sought to determine whether MAPKs activation, in particular

ERK1/2, p38 MAPK, and JNK, are differentially regulated by

Ang II in vessels from obese animals. The role of AT2 receptors

was also evaluated. To address these issues, we used resistance

mesenteric arteries from male monosodium glutamate (MSG)-

induced obese rat, a model of obesity with insulin resistance and

dyslipidemia that may occur without the presence of type II

diabetes or hypertension depending on the age at which the

animals are studied [23], making them a relevant model to

investigate the vascular dysfunction associated with obesity. Our

results showed that activation SAPK/JNK and p38MAPK

pathways contribute to the maintenance of vasoconstriction to

Ang II via AT1 receptors while activation of ERK1/2-eNOS

pathway via AT2 receptors in the endothelium contributes to

counteracting contraction and decrease the response to Ang II in

this experimental model of obesity.

Methods

Animals, Induction and Characterization of Obesity
All animal procedures were approved by the Ethical Committee

for Animal Research of the Institute of Biomedical Sciences,

University of Sao Paulo, conformed to the Guide for the Care and

Use of Laboratory Animals published by the US National

Institutes of Health (NIH Publication No. 85–23, revised 1996).

Male Wistar rats received subcutaneous injections of MSG (4.0 g/

kg) dissolved in 0.9% NaCl (obese rats) or an equivalent volume of

vehicle (control rats), from the second to sixth day after birth. The

breeding conditions were followed as previously described [23]. All

experimental groups were studied at 16 weeks of age. The water

and food consumption was determined by placing the rats in

metabolic cages. Rats were acclimated for 72 h and data were

collected over the next 24 h.

On the day of the experiment, after food deprivation (5 h),

obese and control rats were weighed, and blood samples were

taken from the descending aorta under sodium thiopental

anesthesia (50 mg/kg, intraperitoneally, Cristália, Brazil), for

biochemical parameters assessment. Glucose levels and the lipid

profile were assessed spectrophotometrically using colorimetric

method (Celm, Brazil). Insulin was determined by radioimmuno-

assay (Linco, USA). The Homeostasis Model Assessment (HOMA-

IR), an index of insulin resistance, was calculated from glucose and

insulin levels, using the equation: fasting insulin (mIU/mL) 6
fasting glucose (mmol/L)/22.5 [24]. Lee’s obesity index was

calculated as follows: body weight1/3(g)/nasal-anal length

(cm)x100. The white adipose tissue (epididymal and retroperito-

neal) as well as gastrocnemius and long digital extensor muscles

were weighted.

The blood pressure (BP) was measured in unanesthetized

animals by indirect tail-cuff method (PowerLab 4/S, ADInstru-

ments, Australia). Rats were maintained at 37uC for 10 min, and

then three consecutive stable BP measurements were averaged.

Plasma Concentrations of Angiotensin Metabolites by
HPLC

Angiotensin peptide measurements were performed as de-

scribed in detail previously [25–27]. A cocktail of protease

inhibitors containing 1 mmol/l p-hydroxy-mercury benzoate,

30 mmol/l o-phenanthroline, 1 mmol/l PMSF and 1 mmol/l

pepstatin A (140 ml per 1 ml of blood) was added to the blood

samples; this mixture was then centrifuged at 1500 g at 4uC for

20 min and stored at 280uC until further analysis.

The plasma samples were concentrated in a C18 Sep-Pak

column activated with sequential washes with methanol (5 ml),

tetrahydrofuran (5 ml), hexane (5 ml), methanol (5 ml) and water

(10 ml). The peptides were eluted with an ethanol/acetic acid/

water (45:2:3) mix. The elutions were then freeze-dried and

resuspended in 500 ml of mobile phase A [5% acetronitrile (50 ml)

in 0.1% orthophosphoric acid (1 ml)]. The peptide was separated

on a reverse-phase column [Aquapore ODS 300 (250 mm6
4.6 mm)] using a gradient of 5–35% of mobile phase B (95%

acetonitrile in 0.1% H3PO4) with a flow of 1.5 ml/min for 40 min

in a Milton Roy System (containing two constaMetric 3000

pumps, a UV detector spectroMonitor 3100, a programmer GM

4000 and a mixer). Synthetic standards were used and peptide

detection was carried out at 214 nm. The results are expressed in

ng/ml.

Vascular Function Studies
Force development in response to a specific experimental

protocol was evaluated in mesenteric arteries from both groups as

previously described [28]. The mesenteric vascular bed was

removed and placed in modified Krebs-Henseleit solution of the

following composition (in mM): 130 NaCl, 14.9 NaHCO3, 4.7

KCl, 1.18 KH2PO4, 1.17 MgSO4?7H2O, 5.5 glucose, 1.56

CaCl2?2H2O, and 0.026 EDTA. Segments (2 mm in length) of

the mesenteric arteries were mounted on 40- mm wires in a small

vessel myograph for isometric tension recording. The vessels were

allowed to equilibrate for about 30 min in modified Krebs-

Henseleit solution, which was gassed with 5% CO2 in O2 to

maintain a pH of 7.4. The relationship between resting wall

tension and internal circumference was determined, and the

internal circumference, L100, corresponding to a transmural

pressure of 100 mmHg for a relaxed vessel in situ, was calculated.

The vessels were set to the internal circumference L1, given by

L1 = 0.9xL100. The effective internal lumen diameter was

determined as L1 = L1/p, and was between 200 and 300 mm.

After stabilization, arterial integrity was assessed by stimulation of

vessels with 120 mM KCl. Endothelial function was assessed by

testing the relaxant effect of acetylcholine (ACh, 1 mM) on vessels

precontracted with phenylephrine (1 mM). The failure of ACh to

elicit relaxation of mesenteric arteries (which were previously

subjected to rubbing of the intimal surface with a human hair) was

taken as proof of endothelium removal.

Experimental Protocols
Non-cumulative concentration–response curves to Ang II were

performed in different segments of mesenteric arteries. The curves

were performed on a top of a submaximal tone (30 to 40% of the

maximum response) induced by norepinephrine (NE) to avoid

rapid receptor desensitization in the mesenteric arteries that would

diminish contraction to Ang II [29]. To determine whether the

alterations of Ang II-evoked responses were receptor specific,

cumulative concentration–effect curves induced by the adrenergic

agonist NE were also obtained. To investigate if the contractile

responses were dependent on the intact endothelium, responses

Vascular Reactivity to Angiotensin II in Obesity
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were also assessed in endothelium-denuded arteries. The contrac-

tile responses to Ang II and NE were normalized by expressing

them as the percentage of contraction relative to contractions

induced by KCl in a concentration that produces almost

maximum contraction (120 mM).

The role of specific Ang II receptors in the Ang II-induced

responses was assessed in the presence of the AT1 receptor

antagonist losartan (incubated at the concentrations of 0.3 mM and

10 mM) or the AT2 receptor antagonist PD 123319 (1 mM). In

order to investigate the contribution of NO in the vascular effects

of Ang II, mesenteric arteries were pretreated with Nv-nitro-L-

arginine methyl ester (L-NAME, 100 mM), a NO synthase

inhibitor. To determine the involvement of MAPKs on Ang II-

induced contraction, concentration-effect curves to Ang II and NE

were performed either in the absence (control) or in the presence

of PD98059 (1 mM), a specific MEK/ERK1/2 inhibitor,

SB203580 (1 mM), a catalytic inhibitor for p38 MAPK, or

SP600125 (1 mM), an inhibitor of JNK. To elucidate the

contribution of reactive oxygen species (ROS) in the vascular

effects of Ang II, mesenteric arteries were pretreated with

apocynin (100 mM), a NADPH inhibitor. Each preparation was

tested with a single inhibitor and tissues were incubated with these

agents for 30 minutes prior to the concentration-response curves.

Western Blotting
Mesenteric arteries from control and obese rats were stimulated

with Ang II (0.1 mmol/L) or vehicle for 10 min in the absence or

in the presence of the AT1 receptor antagonist losartan (10 mM),

the AT2 receptor antagonist PD123319 (1 mM), or the ERK1/2

inhibitor PD98059 (1 mM).

After the incubation protocols, vessels were frozen in liquid

nitrogen and proteins were extracted (50 mg) and separated by

electrophoresis on 10% polyacrylamide gels and transferred to

nitrocellulose membranes. Nonspecific binding sites were blocked

with 5% skim milk in Tris-buffered saline solution with Tween

(0.1%) for 1 hour at 24uC. Membranes were incubated with

antibodies (at the indicated dilutions) overnight at 4uC. Antibodies

were as follows: anti-p38MAPK (Thr180/Tyr182), anti-ERK1/2

(Thr202/Tyr204), anti-SAPK/JNK (Thr183/Tyr185), anti-AT1,

anti-AT2, anti-eNOs (1:500, Cell Signaling), anti-phospho eNOs

(1:1000, Cell Signaling), and anti-a-actin (1:20000, Sigma). After

incubation with secondary antibodies, signals were revealed by

chemiluminescence, visualized by autoradiography and quantified

densitometrically. Results were normalized to a-actin expression

and expressed as units relative to the control.

Data Analysis and Statistical Procedures
The contractile responses are expressed as percentage of the

response to KCl. The individual cumulative concentration-

response curves to NE were fitted into a curve by non-linear

regression analysis. pEC50 (defined as the negative logarithm of

the EC50 values) and maximal response were compared by t-tests

or ANOVA, when appropriated. The non-cumulative concentra-

tion-response curves to Ang II were compared by two way

ANOVA. The Prism software, version 5.0 (GraphPad Software

Inc., San Diego, CA, USA) was used to perform the analysis of

these parameters as well as to fit the sigmoidal curves. Data are

presented as mean 6 SEM. N represents the number of animals

used. P values less than 0.05 were considered significant.

Drugs
Sodium thiopental was purchased from Cristália LTDA (São

Paulo, Brazil). Acetylcholine, angiotensin II, apocynin, losartan,

PD98059, SB203580, SP600125, PD123319, monosodium gluta-

mate, norepinephrine and Nv-nitro-L-arginine methyl ester were

purchased from Sigma Chemical Co (St. Louis, MO).

Results

General Characteristics of Monosodium
Glutamate-Induced Obese Rats

General and biochemical characteristics of control and obese

rats are depicted in Table 1. Sixteen-week-old obese rats displayed

higher Lee index, fat mass, serum triglycerides and low density

lipoprotein (LDL) cholesterol. In addition, enhanced HOMA-IR

index and hyperinsulinemia were found in obese rats. No

difference in BP levels was found between the groups.

Plasma measurements of angiotensin metabolites revealed that

obese rats had an increase in both Ang I and Ang II

concentrations when compared with control rats. Plasma levels

of Ang 1–7 were significantly lower in obese rats when compared

with control rats.

Vascular Responses to Angiotensin II and Norepinephrine
The internal diameter of resistance mesenteric arteries (obese

= 236.764.4, n = 34; control = 239.064.4, n = 39) as well as the

contractile response to KCl (force in mN, obese = 10.660.4;

control = 10.860.6) did not differ between obese and control rats.

Ang II induced concentration-dependent contraction in mes-

enteric arteries from both obese and control rats. However, in

preparations with intact endothelium from obese rats this response

was impaired in comparison with the respective preparation of

control rats. After endothelium removal, the response to Ang II

was similar in preparations from obese and control rats

(Figure 1A).

To determine whether the decreased vasoconstriction in obese

rats was specific to Ang II, vascular reactivity to an alternative

vasoconstrictor, NE, was examined. There were no differences in

the contractile responses to NE between control rats and obese in

preparations with or without endothelium (Figure 1B). Consider-

ing this, the studies were carried out with Ang II in endothelium-

intact mesenteric arteries.

Role of AT1 and AT2 Receptors on Angiotensin
II–Induced Contraction

To determine the contribution of the AT1 receptor activation

on Ang II effects in obese and control rats, vessels were pre-

exposed to the selective AT1 antagonist losartan (0.3 mM).

Incubation with losartan slightly reduced Ang II-induced contrac-

tile response in obese rats whereas it almost abolished this response

in control rats (Figure 2A). Higher concentrations of the AT1

antagonist (10 mM) abolished the responses to Ang II in both

groups.

We then examined whether AT2 receptor-mediated vasodila-

tation caused the impaired contraction to Ang II in mesenteric

arteries from obese rats using the AT2 receptor antagonist PD

123319. Pretreatment with this antagonist augmented the

responses to Ang II in preparations from both control and obese

rats. However, force development in response to this peptide

seems to be more dependent on AT2 receptors in preparations

from obese rats since the effect of the antagonist in these rats was

found to increase Ang II-elicited contraction at the three

concentrations tested restoring the impaired contraction back to

control levels, whereas in preparations from control rats only the

response evoked by lower concentration of Ang II was increased

by the antagonist (Figure 2B).

Vascular Reactivity to Angiotensin II in Obesity
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Role of Nitric Oxide and Reactive Oxygen Species on
Angiotensin II–Induced Contraction

To investigate if the decreased response to Ang II in obese rats

was due to increased NO release from the endothelium;

concentration-response curves to Ang II were obtained in the

presence of the NOS inhibitor L-NAME. In the presence of L-

NAME, there was a similar increase in the efficacy of Ang II in

vessels from both control and obese rats. In addition, similarly to

the effects of endothelium removal, in the presence of L-NAME,

no differences between segments of control and obese rats were

observed, suggesting that the decreased response to Ang II in

obese rats was dependent on NO release from the endothelium

(Figure 3A).

Table 1. General characteristics of sixteen-week-old control and obese rats.

Parameter C MSG (n = 10)

Body weight (g) 392.364.92 358.668.26 *

Naso-anal length (cm) 26.0260.29 23.4460.08 *

Lee index (x100) 28.5760.17 30.5060.25 *

Retroperitoneal WAT (g/100 g) 0.7860.05 2.7560.14 *

Periepididymal WAT (g/100 g) 0.6660.073 2.4160.16 *

Soleus muscle (g/100 g) 0.03560.002 0.03660.002

Extensor digitorum longus muscle (g/100 g) 0.03360.002 0.03160.002

Triacylglycerols (mg/dL) 68.5063.29 122.8066.48 *

Total colesterol (mg/dL) 65.2062.85 67.0063.33

HDL-colesterol (mg/dL) 15.4460.84 16.4461.55

LDL-colesterol (mg/dL) 35.162.44 45.564.2 *

VLDL-colesterol (mg/dL) 13.760.66 24.5461.29 *

Glucose (mg/dL) 97.163.49 93.962.69

Insulin (ng/mL) 13.760.97 25.662.52 *

HOMA-IR index 3.3160.29 6.2160.80 *

HOMA-b index 47.4663.63 92.8669.19 *

Angiotensin I (pg/mL) 32.9561.22 81.5465.10 *

Angiotensin II (pg/mL) 17.1962.48 48.7061.57 *

Angiotensin-(1–7) (pg/mL) 87.1468.08 55.0365.4 *

Blood Pressure (mmHg) 113.961.85 112.862.86

WAT, white adipose tissue; HDL, high density lipoprotein; LDL, low density lipoprotein; VLDL, very low density lipoprotein; HOMA-IR, homeostasis model assessment-
insulin resistance; Values are mean 6 SEM. *P,0.05 vs. control. N = 7–10/group.
doi:10.1371/journal.pone.0106029.t001

Figure 1. Effect of obesity on contraction of mesenteric arteries to angiotensin II and norepinephrine. A- Non-cumulative
concentration–response curves to angiotensin II (ANG II) obtained in different segments of endothelium intact and endothelium denuded mesenteric
arteries from control and monosodium glutamate (MSG)-induced obese rats. The curves were performed on a top of a submaximal tone (30 to 40% of
the maximum response) induced by norepinephrine (NE). B- Cumulative concentration–response curves to NE in endothelium intact and
endothelium denuded mesenteric arteries from control and monosodium glutamate-induced obese rats. Each point represents the mean 6 SEM.
*, P,0.05 vs. Control; #, P,0.05 vs. respective group in the absence of endothelium. N = 5–6/group.
doi:10.1371/journal.pone.0106029.g001
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Since Ang II activates NAD(P)H oxidases in endothelial and in

vascular smooth muscle cells to produce ROS, which are involved

in Ang II-induced vascular effects, the participation of these

enzymes was assessed with apocynin, an inhibitor of NAD(P)H

oxidase. Apocynin reduced the response to Ang II in mesenteric

arteries from both obese and control rats. However, differently of

the observed with L-NAME, the decreased response to Ang II in

mesenteric arteries from obese rats was still observed after

apocynin incubation (Figure 3B).

Contribution of MAPKs on Angiotensin II-Induced
Contraction

Incubation of mesenteric arteries with PD98059, an ERK1/2

inhibitor, corrected the reduced Ang II-induced response in obese

without modifying the response to Ang II in control rats

(Figure 4A).

Inhibition of JNK (Figure 4B) or p38 MAPKs (Figure 4C) did

not modify the response to Ang II in control rats and reduced even

more the contractile response to Ang II in mesenteric arteries from

obese rats.

Western Blot Analysis of Vascular AT1 and AT2 Receptors
Western blot analysis demonstrated that the protein expression

of AT1 receptors in mesenteric arteries did not differ between

from control and obese rats (Figure 5A). AT2 receptors were

weakly expressed in mesenteric vessels control rats. However, in

vessels from obese rats, protein expression of AT2 receptors was

significantly increased (Figure 5B).

Effects of Angiotensin II on ERK 1/2 Phosphorylation in
Mesenteric Arteries

As shown in figure 6, similar basal expression of ERK1/2 was

found in vessels from control and obese rats. Ang II increased

ERK1/2 phosphorylation in both groups and the magnitude of

ERK1/2-induced phosphorylation was increased in mesenteric

arteries from obese rats compared with control preparations.

Figure 2. Contribution of angiotensin II receptors activation to the vascular effects of angiotensin. Mesenteric arteries with intact
endothelium from control and monosodium glutamate-induced obese rats were pretreated with the AT1 receptor antagonist losartan (0.3 and
10 mM) (A) or the AT2 receptor antagonist PD 123319 (1 mM) (B), for 30 min and non-cumulative concentration–response curves to angiotensin II
(ANG II) were obtained. Each point represents the mean 6 SEM. *, P,0.05 vs. Control. #, P,0.05 vs. respective group in the absence of blockade.
{, P,0.05 vs. Control + losartan. N = 5–6/group.
doi:10.1371/journal.pone.0106029.g002

Figure 3. Contribution of nitric oxide and NADPH oxidase to the vascular effects of angiotensin. Mesenteric arteries with intact
endothelium from control and monosodium glutamate-induced obese rats were pretreated with Nv-nitro-L-arginine methyl ester (L-NAME, 100 mM),
a nitric oxide synthase inhibitor (A) or apocynin (100 mM), a NADPH inhibitor (B) for 30 min and non-cumulative concentration–response curves to
angiotensin II (ANG II) were obtained. Each point represents the mean 6 SEM. *, P,0.05 vs. Control. #, P,0.05 vs. respective group in the absence of
blockade. N = 6/group.
doi:10.1371/journal.pone.0106029.g003
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To investigate the specific role of AT1 and AT2 receptors

activation by Ang II on ERK1/2 phosphorylation, protein

expression of ERK1/2 was examined in mesenteric arteries

incubated with either losartan or PD123319 previously to the

incubation with Ang II. Blockade of either AT1 or AT2 receptor

attenuated ERK1/2 phosphorylation in mesenteric arteries from

both control rats and obese rats.

Effects of Angiotensin II on eNOS Phosphorylation in
Mesenteric Arteries

Phosphorylation of eNOS was increased in vessels from obese

rats compared to control rats in basal conditions. Stimulation with

Ang II failed to induce eNOS phosphorylation in mesenteric

arteries from both control and obese rats. Incubation of mesenteric

arteries with the ERK1/2 inhibitor (PD98059) before Ang II

stimulation increased eNOS phosphorylation in control rats,

whereas it significantly decreased the phosphorylation of this

enzyme in vessels from obese rats (Figure 7).

Discussion

Cellular mechanisms and signaling pathways involved in the

vascular dysfunction present in obesity are currently subjects of

intensive investigation. In the present study, we highlighted the

importance of AT2 receptors and MAPKs in the functional and

molecular processes underlying the changes of vascular reactivity

to Ang II in obesity. Major findings in the present study

demonstrate that although MAPKs do not constitute the main

mechanism involved in the vasoconstriction in control rats, these

proteins are differentially regulated by Ang II in resistance

mesenteric arteries from obese rats. While SAPK/JNK and

Figure 4. Involvement of MAPKs on angiotensin II-induced contraction. Mesenteric arteries with intact endothelium from control and
monosodium glutamate-induced obese rats were pretreated with PD 98059 (1 mM), a specific MEK/ERK1/2 inhibitor (A), SB-203580 (1 mM), a catalytic
inhibitor for p38 MAPK (B), or SP 600125 (1 mM), an inhibitor of JNK (C) for 30 min and non-cumulative concentration–response curves to angiotensin
II (ANG II) were obtained. Each point represents the mean 6 SEM. *, P,0.05 vs. Control. #, P,0.05 vs. respective group in the absence of blockade.
N = 6/group.
doi:10.1371/journal.pone.0106029.g004

Figure 5. Effect of obesity on angiotensin II receptors protein expression in mesenteric arteries. Panels show densitometric analysis of
the Western blots for AT1 and AT2 protein expression in endothelium intact mesenteric arteries from control and monosodium glutamate-induced
obese rats. In A and C, Western blots for AT1 and AT2 receptors, respectively. Results were normalized to a-actin expression and expressed as units of
change from the control. Data are expressed as mean 6 SEM. *, P,0.05 vs. Control. N = 5/group.
doi:10.1371/journal.pone.0106029.g005
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p38MAPK pathways contribute to the maintenance of vasocon-

striction to Ang II via AT1 receptors, activation of ERK1/2-

eNOS pathway via AT2 receptors in the endothelium contributes

to counteracting contraction and decrease the response to Ang II

in obese rats.

In the present study, Ang II dose-dependently contracted small

arteries from control and obese rats. However, responsiveness in

vessels from obese rats was significantly lower than in control rats.

This alteration appears to be receptor specific, because contraction

induced by the adrenergic agonist NE was not affected in obese

animals. Underlying mechanisms for the changes in Ang II–

induced response in obese rats could be due to alterations in

systemic levels of this peptide. In fact, enhanced activity of the

RAS, represented by increased circulating angiotensinogen, renin,

aldosterone, and angiotensin-converting enzyme activity has been

reported in obesity [30–32]. Accordingly, an important finding in

the present study is that circulating concentrations of Ang I and

Ang II peptides were markedly increased in obese rats. Thus, the

reduced contractile response to Ang II in these animals could

represent a compensatory mechanism to counteract the increase in

the synthesis and/or release of components of local and systemic

RAS.

Since its discovery, the RAS has been considered an important

component of the disturbances in the cardiovascular system.

Several experimental data have demonstrated that Ang II is not

the only biologically active component of the tissue and circulating

RAS. Besides Ang II, several other angiotensin peptides have

biological activity and are critically involved in the regulation of

vascular function with important pathological implications.

Among these is Ang-(1–7), a heptapeptide formed from Ang I or

Ang II by either a carboxypeptidase called conversion enzyme or

by tissue endopeptidases [33]. Ang-(1–7) exerts vascular relaxing

actions mediated by activation of the proto-oncogene MAS

product, stimulating similar pathways as AT2 activated by Ang

II. The relaxing effect evoked by Ang-(1–7) results from both the

potentiation of the dilating effects of bradykinin and the inhibition

of angiotensin converting enzyme (ACE). Through these multiple

pathways, Ang-(1–7) is considered an important component of a

counter-regulatory axis within the RAS, comprised by ACE2/

Ang-(1–7)/Mas receptor, which constitutes an intrinsic mechanism

to induce vasoprotective actions by counter-regulating the ACE/

Ang II/AT1R axis [34]. Indeed, the heptapeptide Ang-(1–7) has

been described to have many beneficial effects in the vasculature

that modulate the cardiovascular risk in obesity [35–37].

Accordingly, our findings that plasma levels of this peptide were

decreased in obese rats point to a possible shift towards decreased

activity of the ACE2/Ang-(1–7)/Mas receptor axis and increased

ACE/Ang II/AT1R axis in mesenteric arteries as a causal

mechanism for vascular dysfunction in obesity.

Ang II effects are thought to be regulated by the balance of AT1

and AT2 receptors expression. The AT1 receptor serves as a

control point for regulating the ultimate effects of Ang II on its

target tissues. Acutely, increased levels of Ang II may induce an

increased activation of AT1 receptors; however, chronic exposure

to high levels of Ang II evokes down regulation of AT1 receptors

and/or upregulation of AT2 receptors [38,39]. In this study, we

Figure 6. Effects of angiotensin II on ERK 1/2 phosphorylation in mesenteric arteries. Panels show densitometric analysis of the Western
blots for ERK1/2 protein expression in endothelium intact mesenteric arteries from control and monosodium glutamate-induced obese rats. Vessels
from both groups were stimulated with ANG II (0.1 mmol/L) or vehicle for 10 min in the absence or in the presence of the AT1 receptor antagonist
losartan (0.3 mM, 30 min), the AT2 receptor antagonist PD 123319 (1 mM, 30 min) or the ERK1/2 inhibitor PD98059 (1 mM, 30 min) and the
phosphorylation of ERK 1/2 was examined. Total protein levels are shown as loading controls. Data are expressed as mean 6 SEM. *, P,0.05 vs.
Control. N = 5–6/group.
doi:10.1371/journal.pone.0106029.g006
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demonstrated that obesity is accompanied by abnormal AT2

receptor upregulation in endothelium-intact mesenteric arteries,

which most likely reduces Ang II-induced contraction even with

no significant change in AT1 receptors expression. Consistent with

our current findings, the upregulation of AT2 receptors and the

role of this receptor mediating a reduced response to Ang II have

been observed in other studies in the brush-border and basolateral

membranes in obese Zucker rat [40], in the mesenteric arteries of

young SHR [41], and in the thoracic aorta of SHR [42] and Goto-

Kakizaki rat [14], a model of spontaneous normotensive type 2

diabetes. In fact, results from our study demonstrated that the

selective AT2 receptor blocker PD123319 corrected the reduced

response to Ang II in obese rats. Taking the above findings

together, we speculate that in an early phase of obesity, AT2

receptor-mediated signaling pathways play a major role counter-

acting the effects of Ang II–mediated vasoconstriction as a

consequence of the increased plasma levels of this peptide and

the decreased levels of Ang-(1–7). Selective blockade of the AT1

subtype receptor with losartan antagonized the constrictor actions

of Ang II in control group whereas it slightly decreased this

response in obese rats. These data indicate that in control rats,

Ang II–induced vasoconstriction in resistance mesenteric arteries

is mediated exclusively via AT1 receptors, whereas in obese rats

Ang II effects are associated with AT1- and PD123319-sensitive

receptors, which may be AT2 receptors, as demonstrated by our

findings.

It is well known that the endothelium plays an important role as

a target of a variety of cardiovascular risk factors, including obesity

and hypertension. Considering that Ang II is shown to induce the

release of NO [43,44], a role of endothelium and endothelium-

derived NO on Ang II-induced vasoconstriction was determined

in the isolated mesenteric arteries from control and obese rats. It is

interesting to note that the endothelium removal or addition of L-

NAME, an NOS inhibitor, not only increased Ang II-induced

contraction per se in both control and obese rats, but made the

contractile response to Ang II in mesenteric arteries from obese

rats to be comparable to that of control rats. These findings lead us

to postulate that the increased AT2 receptors expression is

accompanied by eNOS upregulation in mesenteric arteries from

obese rats, which depresses Ang II-induced contraction due to

simultaneous stimulation of AT2 and eNOS. In fact, the

pharmacological findings are supported by molecular data, where

mesenteric arteries from obese rats displayed increased eNOS

phosphorylation, probably contributing to attenuate the contrac-

tile response to Ang II in obese rats.

Interestingly, although basal expression of phosphorylated

eNOS was augmented in vessels from obese rats, pretreatment

with Ang II did not induce further increase in the activation of this

enzyme, indicating that constitutively high enzymatic activity of

eNOS appears to increase basal production of NO in obese rats,

leading to attenuation of the vasoconstrictor effect of Ang II. In

fact, this is supported by our findings that pretreatment with the

ERK1/2 inhibitor restored the increased phosphorylation of

eNOS and more importantly, that Ang II evokes ERK1/2

activation via both AT1 and AT2 receptors (as demonstrated by

our western blotting studies, figure 5), indicating that the Ang II-

induced augmented activation of ERK1/2 in vessels from obese

leads to high enzymatic activity of eNOS.

Figure 7. Effect of angiotensin II on eNOS phosphorylation in mesenteric arteries. Panels show densitometric analysis of the Western blots
for eNOS protein expression in endothelium intact mesenteric arteries from control and monosodium glutamate-induced obese rats. Vessels from
both groups were stimulated with ANG II (0.1 mmol/L) or vehicle for 10 min in the absence or in the presence of the ERK1/2 inhibitor PD98059 (1 mM,
30 min) and the phosphorylation of eNOS was examined. Total protein levels are shown as loading controls. Data are expressed as mean 6 SEM.
*, P,0.05 vs. Control, #, P,0.05 vs. respective group in the presence of ANG II. N = 5–6/group.
doi:10.1371/journal.pone.0106029.g007
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We further probed the mechanisms leading to vascular

activation of eNOS by Ang II. The observation that ERK1/2

inhibition with PD98059 before Ang II stimulation decreased

eNOS phosphorylation in mesenteric arteries from obese rats

indicates that ERK1/2-mediated eNOS phosphorylation contrib-

utes to decrease the response to Ang II in obese rats. Ang II has

been shown to activate signaling cascades that activate MAPKs,

including ERK1/2, JNK, and p38MAPK, which are implicated in

VSMC differentiation, proliferation, migration, and fibrosis [4–6].

The ERK1/2 pathway is the best characterized of the MAPK

pathways. Recent data implicates ERK1/2 in Ang II-mediated

vascular smooth muscle contraction. Touyz et al. [45] showed that

in vascular smooth muscle cells from human peripheral arteries,

the ERK1/2 signaling cascade plays a role in Ca2+ pathways,

which ultimately cause cell contraction. Enhanced activation of

vascular ERK1/2 by Ang II has also been implicated in

hypertension [46,47]. Here we identify the ERK1/2 pathway as

a putative mechanism counteracting contraction and decreasing

the response to Ang II in obese rats. This is supported by our

findings that incubation of mesenteric arteries with PD98059, an

ERK 1/2 inhibitor, corrected the reduced response to Ang II in

mesenteric arteries from obese rats without modifying the response

to this peptide in control rats.

Additional evidence for a role of ERK1/2 mediating the

reduced response to Ang II in obese rats was provided by western

blotting experiments showing that Ang II-induced ERK1/2

phosphorylation is augmented in mesenteric arteries from obese

rats. Interestingly, incubation with the AT2 receptor antagonist

corrected the increased ERK1/2 phosphorylation in obese rats,

indicating a dependence of AT2 receptors on Ang II-induced

ERK 1/2 activation.

Besides activating ERK1/2, Ang II also stimulates JNK and

p38MAPK, which are amongst the family of stress-induced kinases

that influence cell survival, apoptosis, and differentiation. JNK and

p38MAPK have also become known as important mediators of

vascular contraction [48,49]. However, no studies have so far

attempted to investigate the role of JNK and p38 MAPK on Ang

II-induced vascular contraction in mesenteric resistance arteries

and their contribution to the changes of the vascular reactivity to

Ang II in obesity. The findings of the present study provide

evidence for a role of these MAPKs in vascular dysfunction in

obesity. This is supported by the observations that inhibition of

JNK and p38 MAPK further reduced the contractile response to

Ang II in mesenteric arteries from obese rats but did not modify

the Ang II-induced contraction in control rats. These results

indicate that while SAPK/JNK and p38MAPK is not involved in

contraction of mesenteric vessels from control rats, they contribute

to the maintenance of vasoconstriction to Ang II in obese rats.

An increasing body of evidence has implicated oxidative stress

in the vascular dysfunction present in insulin-resistant states,

including diabetes, hypertension, and atherosclerosis. In this

regard, the role of ROS production by NADPH oxidases in Ang

II signaling, as well as a role for ROS in the development of

different diseases in which Ang II is a central component has been

extensively studied. Ang II activates NAD(P)H oxidases in

endothelial cells and in vascular smooth muscle cells to produce

ROS, such as superoxide and hydrogen peroxide (H2O2), which

are involved in the pleiotrophic effects of Ang II [50]. The fact that

inhibition of O2
2 production by the NOX inhibitor apocynin,

decreases vascular reactivity to Ang II in both control and obese

rats, indicate that NOX-derived O2
2 is importantly involved in

the signaling pathways resulting in Ang II-induced vasoconstric-

tion in mesenteric arteries. However, it is not involved in the

changes of the vascular reactivity observed in obese rats.

Conclusions

Our results demonstrate that MAPKs activity is differentially

regulated by Ang II in resistance mesenteric arteries from obese

rats. While SAPK/JNK and p38MAPK pathways contribute to

the maintenance of vasoconstriction to Ang II, probably via AT1

receptors, activation of ERK1/2-eNOS pathway via AT2

receptors in the endothelium contributes to counteracting

contraction and decrease the response to Ang II. These findings

highlight the importance of local alterations in the RAS, rather

than systemic effects, in mediating changes of the vascular function

in obesity and also provide important information regarding the

vasoconstrictor effects of Ang II that may be involved in vascular

dysfunction associated with obesity.
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