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Critical importance of RAB proteins for synaptic function
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ABSTRACT
Neurons are highly polarized cells that exhibit one of the more complex morphology and function.
Neuronal intracellular trafficking plays a key role in dictating the directionality and specificity of
vesicle formation, transport and fusion, allowing the transmission of information in sophisticate
cellular network. Thus, the integrity of protein trafficking and spatial organization is especially
important in neuronal cells. RAB proteins, small monomeric GTPases belonging to the RAS
superfamily, spatially and temporally orchestrate specific vesicular trafficking steps.

In this review we summarise the known roles of RAB GTPases involved in the maintenance of
neuronal vesicular trafficking in the central nervous system. In particular, we discriminate the axonal
pre-synaptic trafficking and dendritic post-synaptic trafficking, to better underlie how a correct
orchestration of vesicle movement is necessary to maintain neuronal polarity and then, to permit an
accurate architecture and functionality of synaptic activity.
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Introduction

Neurons are the most sophisticated cells able to discrimi-
nate and process an enormous variety of events in the
environment, forming a complex network in the nervous
system. The complex morphology and the specialized
compartments, in the form of cell body, multiple den-
drites, one axon and pre- and post-synaptic buttons, are
necessary for synaptic transmission.1,2 The formation
and conservation of the asymmetric domains as well as
the generation and the maintenance of connectivity need
a continuous membrane supply, a correct distribution of
membrane receptors, adhesion molecules and intracellu-
lar mediators.3 Thus, the integrity of protein trafficking
and spatial organization are especially important in neu-
ronal cells, because they crucially determine morphogen-
esis and connectivity, information processing and
synaptic plasticity.4,5

RAB proteins, small monomeric GTPases belonging
to the RAS superfamily, are involved in correct vesicle
sorting, fission, transport, tethering, docking and fusion,
by the interaction with effector proteins.6-8

RAB proteins count for more than 60 members in
eukaryotes and act as a network to orchestrate the trans-
port of specific vesicles both spatially and temporally.9-11

They coordinate this function from the ability to switch
from an inactive Guanosine-50-DiPhosphate (GDP)-
bound state to an active Guanosine-50-TriPhosphate

(GTP)-bound state. To ensure the correct coordination
between GDP release and GTP hydrolysis, accessory
regulatory proteins are necessary to guarantee and accel-
erate the switch:12 RAB GDP dissociation inhibitor
(GDI),13,14 Guanine nucleotide exchange factor (GEF)
and GTPase-activating protein (GAP).15 Additionally,
RAB GTPases are physically associated with specific
organelles,9,16 becoming the first true molecular markers
to discriminate the membrane compartments of the
endocytic and secretory pathway.17 However, the exact
cellular localization and tissue expression profile of
many RABs remain unidentified. To date, 24 RAB pro-
teins are documented to play a role in brain, driving dif-
ferent and sequentially steps of neuronal trafficking.18

In this review we focus on a status update on the
role played by RAB GTPases in intracellular neuronal
vesicular trafficking in the central nervous system.
The intrinsic complexity of RAB family proteins and
the sophisticate neuronal morphology and specialized
compartmentalization, require a systematic descrip-
tion of RAB GTPases-mediated trafficking, from the
cell body, to reach, by traveling through the axon and
dendrites, the final destination, the pre- and post-syn-
aptic compartments for synaptic function. Indeed, a
complete and overall perspective of how RAB
GTPases operate in neurons is crucial for a better
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comprehension of multiple aspects of neuronal physi-
ology and pathophysiology.

RAB GTPases involved in the first steps of neuronal
trafficking: at the cell body

The importance of the entire neuronal trafficking, from
the cell body to the synaptic sites, for synaptic activity
was well described by Waller during a lecture he deliv-
ered at the Royal Institution of Great Britain in 1861: “A
nerve cell would be to its effluent nerve fibers what a
fountain is to the rivulet which trickles from it – a center
of nutritive energy.” The nutritive energy comes from
the protein synthesis that initially occurs in the cell body
where they start their route.

Initially, proteins take on secretory pathway where a
series of RAB GTPases work together regulating antero-
grade, such as RAB1,19 RAB2,20 RAB8,21 RAB39B22 and
retrograde, such as RAB7,23 RAB6,24 RAB33B,25 RAB226

vesicular trafficking/transport. Here, impairments in the
activity of RAB proteins perturb Endoplasmic Reticulum
(ER) and Golgi structures20 leading to alterations in axo-
nal and dendritic outgrowth,2 as well as impacting on a
correct synaptic formation.27-29

Then, traffic though the Golgi compartment is
responsible for secretion of proteins targeted to the
membrane. In particular neurons count several types of
secreted vesicles that are differentially targeted to den-
drites and/or to the axon to maintain cellular polarity.
Dendritic transport polarization is well established
because vesicles containing dendritic proteins are bi-
directionally transported via microtubules in dendrites
but not in axons. Axonal polarization is more compli-
cated because some vesicles containing axonal proteins
undergo toward axon but also dendrites; the polarity is
guaranteed by endocytosis that avoid the accumulation
of axonal proteins of dendritic surface.30,31

For neuronal cells it is important to maintain a well-
regulated dendritic and axonal transport to establish and
preserve the correct polarized morphology. A right cell
polarization is in turn essential for the organization and
maintenance of synaptic activity.5

RAB GTPases involved in axonal trafficking

The secretory process in neurons is strictly similar to
that in other cells but the axon-terminal, the primary
target of secretion, is greatly distant from the cell body
(up to a meter in length). Two types of vesicle traffic
exist in the axon: slow and fast transport.32 Cytosolic
and cytoskeletal proteins move in the anterograde direc-
tion by the slow axonal transport with kinetics of 0.01-
0.001 mm/sec. Instead membranous organelles move in

the anterograde and retrograde direction by fast axonal
transport at 1-5 mm/sec.33 Several RAB GTPases control
protein transport in the axon to guarantee, at first, the
right axonal development and then, a proper pre-synap-
tic functionality.

RAB proteins-mediated trafficking during neuronal
development for axonal polarization

Some RAB proteins are key masters of axonal polariza-
tion and elongation through membrane precursor
vesicles or neurotrophic receptors transport.

RAB10 is involved in regulating activities to induce
axonal polarization and elongation. Following RAB10
release from GDI by Lgl1,34 RAB10 mediates trafficking
from trans-Golgi network (TGN) to the plasma mem-
brane of membrane precursor vesicles by MyosinVb35

and kinesin-depending movement.28 Finally RAB10
binds to Myristoylated Alanin-Rich C-Kinase Substrate
(MARCKS) at the plasma membrane to make the dock-
ing and fusion to the plasma membrane of RAB10-exo-
cytic carriers, resulting in axonal outgrowth.36 It has
been demonstrated that the expression of wild type
(WT) or constitutively active form of RAB10 (RAB10-
Q68L) leads to axonal arborization; in contrast the domi-
nant negative form of RAB10 (RAB10-T23N) inhibits
this process.34,37 Moreover in Rab10 – null mouse, target
disruption of Rab10 leads abnormal endosomes and ER
hyperplasia disturbing the general balance of membrane
trafficking, resulting to early embryonic lethality (from
E9.5).38

RAB33A, a TGN-related RAB protein, mediates
anterograde synaptophysin-positive vesicles trafficking
impacting on axonal outgrowth. In particular, in hippo-
campal neurons RAB33A downregulation negatively
affects neuronal polarization, at contrary the overexpres-
sion of the constitutively active mutant (RAB33A-Q95L)
leads to multi-axonic neurons.39

RAB4 and RAB11 are involved in axonal outgrowth
by working in endosome recycling, which can be classi-
fied in fast and slow routes depending on the presence of
RAB4- and RAB11-positive recycling endosomes,
respectively.8

In Xenopus retinal ganglion cells, RAB4 is recruited to
the endosomes in the growth cone, and RAB4 downregu-
lation or the dominant negative RAB4 mutant (RAB4-
N121I) decrease axonal elongation.40 RAB4 upregulation
was found in patients with Alzheimer’s disease and mild
cognitive disorder,41,42 indicating that deficits in neuro-
nal endosomal sorting may establish these disorders.43

In rat cortical neurons, RAB11 improves axonal elon-
gation following the upstream activation of signaling cas-
cade controlled by cyclin-dependent protein kinase 5
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(CDK5).44 Overexpression of RAB11 WT and the
RAB11 constitutively active mutant (RAB11-Q70L) pro-
mote axonal elongation in rat cultured cortical neurons.
In contrast RAB11 downregulation45 or dominant nega-
tive expression form of RAB11 (RAB11-S25N) in the
striatum and cortex of normal mice lead to decreased
axonal length causing neuropathology and motor dys-
functions.46 Moreover, alteration in RAB11 GDP to GTP
conversion was described in a mouse model for Hunting-
ton’s disease, supporting the idea that defects in vesicle
formation impact on early stages of the synaptic dysfunc-
tions in this disorder.47,48 Indeed Huntington’s disease
phenotype was partially rescued upon enhancing RAB11
activity.49,50 However, in Nerve Growth Factor (NGF)-
stimulated PC12 cells it was described an increase in the
interaction between phosphorylated protrudin and the
inactive GDP-bound form of RAB11.51 This evidence
raises some question on which form of RAB11, the
GDP- or GTP-bound form, impacts on axonal out-
growth. Given that the majority of RAB11 studies have
found that RAB11-GTP enhances axonal elongation, it is
conceivable that protrudin promotes RAB11-GDP to the
cell periphery before its activation.52 Recently, it was
showed that RAB11 works together with RAB25 and
RAB14 in the N2A cells53 in regulating axonal out-
growth, however additional work is necessary to clarify
this mechanism.

RAB5 and RAB7 have been shown to sequentially
mediate the retrograde transport of NGF and neurotro-
phin receptors.40,54,55 After internalisation by clathrin-
mediated endocytosis or micropinocytosis, neurotrophin
receptors are clustered into RAB5-positive early endo-
somes56 thanks to Phosphatidil Inositol 3-kinase (PI3K)
activity. Indeed, PI3K allows a production of Phosphati-
dil Inositol 3-Phospate (PI(3)P)57 which binds the Early
Endosome Antigen 1 (EEA1) tethering factor, which in
turn permits the RAB5-positive endosomes fusion in
order to concentrate cargos58 and consequently the
advance into the RAB7-controlled late endosomal path-
way.55 RAB7 is considered a marker for the axonal retro-
grade transport.54 The expression of RAB7 dominant
negative mutant (RAB7-T22N) allows an accumulation
and a prolonged persistence of internalized neurotrophin
receptors, leading to axonal degeneration.59 Misregula-
tion of both RAB5 and RAB7 were also found associated
with human neurodegenerative diseases, such as Alz-
heimer’s disease and Down Syndrome, leading an enlarg-
ment of the endosomes in neuronal cells, finally causing
the cell death.60-62 In particular they were upregulated in
specific human post-mortem brain regions, as basal fore-
brain, frontal cortex, and hippocampus but not in cere-
bellum and striatum. Upregulation of endosomal vesicle
trafficking is also associated to Parkinson’s disease where

an increased RAB5 was found in the striatal neurons.63

These evidences raised the hypothesis that a tight link
between protein-compartment-marker and the vulnera-
bility of cell types within selective brain regions exists.42

A new role played by RAB7 is in neurite outgrowth,
by interconnecting secretory and endocytic pathway by
permitting repeated late endomoses (LE)-ER contacts.
RAB7, binding the ER protein prodrutin, mediates trans-
fer of vesicles to LE and promotes the microtubule-
dependent translocation of LEs to the cell periphery and
subsequently synaptotagmin-VII-dependent fusion with
the plasma membrane in PC12 cell lines.64 Moreover
expression of mutated forms of RAB7, mutations causing
Charco-Marie-Tooth type 2B (CMT2B) neuropathy,
leads a marked inhibition of neurite outgrowth in PC12
and N2A cell lines.65

The anterograde transport of neurotrophin receptors,
in particular of TrkB, is regulated by RAB27B. Given to
the generation of LacZ-Rab27b knockout mouse,
RAB27B was found to be the isoform of RAB27 higher
expressed in mammalian neurons.66 RAB27B together
with Slp1/CRMP-2 complex directly moves TrkB-con-
taining vesicles to the neuronal membrane, by Kinesin-1
dependent transport. Downregulation of RAB27B
decreases the axonal membrane targeting of TrkB,67

however the Rab27b mouse model shows a normal
development and behavior.66

RAB35 has a role also in neurite outgrowth in PC12
cell line. It determines the localization of MICAL-L1, a
multiple RAB-binding protein, to Arf6-positive recycling
endosomes. In turn MICAL-L1 functions as a scaffold
for the recruitment of RAB8, RAB13 and RAB26.68 In
particular RAB35 permits axonal elongation in rat pri-
mary neurons thanks to Microtubule-associated protein
1B (MAP1B) which, interacting with p53-related protein
kinase (PRPK), protects RAB35 from ubiquitin-protea-
some degradation pathway.69

RAB13, as mentioned before, supports neurite out-
growth in PC12 and DRG cell lines, regulating the trans-
port of membrane-containing vesicles from TGN to
recycling endosomes.70 In cultured Dorsal Root Gan-
glion (DRG) neurons, RAB13 co-localizes with the
Growth Associated Protein 43 (GAP43) in neurites and
in the growth cones. Expression of the constitutive active
form of RAB13 (RAB13-Q67L) promotes neurite exten-
sion in the PC12 cell line when stimulated with NGF.71

At contrary the downregulation of RAB13 by RNA inter-
ference inhibits neurite outgrowth in NGF-treated PC12
cells.72 In particular RAB13, together with Corinin1b, is
required for axonal regeneration in mice following the
transcriptional regulation control of the tumor suppres-
sor p53.70 Indeed after facial nerve axotomy, a model for
neuronal regeneration,73 p53 null mice did not show
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expression of Coronin1b and RAB13 in axonal sprouts in
regenerating facial nuclei as in WT mice.72

RAB proteins-mediated trafficking for pre-synaptic
function

At last, a proper pre-synaptic functionality is ensured by
the organelles trafficking including vesicles of the consti-
tutive secretory pathway, synaptic vesicle precursor
membranes, mitochondria and elements of smooth ER
and in particular neurotransmitters. Neurotransmitters
are packaged into synaptic vesicles (SVs) and clustered
at the pre-synaptic membrane in the axon-terminal, on
the pre-synaptic side of a synapse. In response to a local
transient increase in Ca2C concentration at the active
zone following the arrival of an action potential, SVs,
that enclose neurotransmitters and are properly docked
and primed, fuse with the pre-synaptic membrane and
release the content in the synaptic cleft.74 The recycling
of SVs by endocytosis ensures the refilling of SV reserve.
For any SV cycling step, there are specific RAB GTPases
that guarantee the timing and the correct directionality
for vesicles.

SV docking and exocytosis are controlled by RAB3
subfamily and RAB27B.

RAB3 subfamily is composed of RAB3A, RAB3B,
RAB3C and RAB3D. They are highly expressed in the
murine brain74 and it is the first group of RAB GTPases
associated with a neuronal specific pathway.27 RAB3A,
the most investigated RAB of RAB3 subfamily, is
required for the assembly and transport of vesicles in
fast anterograde axonal transport by a Kinesin1-depen-
dent transport.75 One of the RAB3 known effector pro-
tein is RIM1, considered the core component of the
active zone. It forms a trimeric complex with RAB3 and
MUNC1376 recruiting SVs to the active zone and orga-
nizing them for release.77 Single, double, triple and qua-
druple Rab3 KO mice were generated and they
succumb when one of deleted RAB3 is RAB3A. In par-
ticular quadruple Rab3 KO mice, that are born alive
and die to respiratory failure, show no apparent changes
in synapse structure or brain composition except for a
mild reduction of 30% in neurotransmitter release.78

This may be due to role played by RAB27B, which is
structurally tight related to RAB3. RAB27B localization
partially overlaps with RAB3 wherewith shares regulator
and effector proteins.79,80 Overexpression of constitutive
active (RAB27B-Q78L) or inactive (RAB27B-N133I)
RAB27B mutants in murine neurons causes a strong
reduction in SV recycling,79 however the mechanism
has to be further investigated.

Recycling of SVs by endocytosis is directed
through several pathways. One is identified as kiss-

and-run and vesicles are undocked and recycled
locally. Three mechanisms of SV retrieval consist in
full fusion of vesicles with the plasma membrane: cla-
thrin-mediated endocytosis (CME), which retrieves
SVs during mild synaptic stimulation,81 clathrin-inde-
pendent bulk endocytosis (CIE), which permits invag-
ination of a large region of the plasma membrane
during an intense stimulus,82 and ultra-fast endocyto-
sis, which retrieves single, large endocytic vesicles
next to the pre-synaptic densities (speed: 50-100 ms)
in response to a single stimulus or during mild
stimulation.83,84

Endocytic events are regulated by RAB4, RAB5,
RAB10, RAB11, RAB14, RAB35 and RAB7.29,85

RAB5 localizes to a subset of SVs and it is principally
involved in SV retrieval, recycling and SV uniformity
size control: it orchestrates early endosomes by step-wise
recruitment of effector proteins (Rabaptin5/Rabex5/PI
(3)P/Vps34/EEA1/Rabenosyn5) to endosomal micro-
domains.86-88 Alterations in RAB5 affect formation and
composition of endosomal compartment at the nerve
terminal and impair SV recycling leading to altered syn-
aptic transmission in Drosophila.87 In rat hippocampal
neurons overexpression of RAB5A reduced the recycling
pool size by 50%.89

A functional screen on Drosophila90 and C. ele-
gans91,92 models to assess the impact of a battery of
constitutively active RABs on SV cycling, identified
RAB35, RAB7, RAB11 and RAB10 as putative regula-
tors of post-endosomal trafficking of SVs. RAB4,
RAB5 and RAB11 collaborate in regulating different
steps of the endosome recycling80 RAB7, driving LE-
positive vesicles from RAB5-positive EE, participates
in several steps of the autophagic pathway: from mat-
uration to the trafficking process of autophagosomes
and amphisomes.93 RAB10 and RAB14 are implicated
in clathrin-coated traffic and recycling path-
ways.80,94,95 RAB35, previously described having a
role in axonal and neurite outgrowth, is important
for regeneration of new SVs, indeed the expression of
the constitutively active RAB35 mutant or loss-of-
function of its GAP, TBC1D24/Skywalker, allows a
recovery of SVs via endosomal intermediates and
increases synaptic transmission.2,90 However, how
these RABs operate in mammalian pre-synaptic but-
tons remains to be investigated.85

RAB35 also plays a role in SV degradation and turn-
over. In cultured rat hippocampal neurons GTP-RAB35
recruits the Endosomal Sorting Complex Required for
Transport (ESCRT)-0 protein Hsr to SV pools to initiate
ESCRT complex formation, then mediating the degrada-
tion of SV integral membrane proteins SV2 and
VAMP2.96
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Recent studies provided the link between SV-associ-
ated RAB26 and the autophagic pathway. RAB26 binds
the autophagosomal markers ATG16L1, the complex
was found in a subset of Synaptobrevin and RAB3A-pos-
itive vesicles suggesting that RAB26 covers the gap

between recycling and autophagic pathway.29,85,97 More-
over, RAB26 overexpression leads to SV clustering and
engulfment by autophagosomes. RAB33B, ubiquitously
presents in murine organs, shares the binding to
ATG16L1 with RAB26 regulating autophagosomes

Figure 1. (For figure legend, see page 150).
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formation.39,98,99 If RAB26 and RAB33B overlap their
role or sequentially work in regulating SV recycling and
autophagy, remain to be demonstrated.

All the RAB GTPases described to be involved in axo-
nal and pre-synaptic trafficking are essential for a correct
synaptic activity formation and maintenance. Indeed,
mutations and physiological abnormalities affecting syn-
aptic RABs, and their regulator and effector proteins, lead
to neurodevelopmental and neurodegenerative disorders.

RAB GTPases involved in dendritic trafficking

Neuronal dendrites play a critical role in integrating synap-
tic inputs, so that they may determine an action potential.
For these reasons it is important, at first, to study how the
dendritic outgrowth is regulated and maintained. Dendrites
are specialized compartments that receive signals from the
axonal termini of other neurons; this occurs where pre-syn-
aptic buttons contact dendritic spines, situated through the
dendritic tree.100,101 Indeed, dendrites are strewed with
spines that exhibit different types of Ligand-Gated Ion
Channels classified into three families: Cys-loop receptors,
ionotropic receptors and Adenosine Tri-Phosphate (ATP)-
gated channels.102 In the brain, most excitatory transmission
is mediated by a-Amino-3-hydroxy-5-Methyl-4-isoxazole-
Propionic Acid (AMPA)-type ionotropic glutamate recep-
tors; they have the highest influence on the strength of the
synaptic response and are crucially involved in synaptic
plasticity and learning andmemory processes.103

RAB proteins-mediated trafficking during neuronal
development for dendritic polarization

One of the first studies on this issue described the role of
RAB8 in dendrite-specific transport. It has two different
isoforms, RAB8A and RAB8B, which compensates for each
other.104 RAB8 localizes in neurites of cultured hippocam-
pal neurons in early developmental stages; in mature neu-
rons it localizes in dendrites, but not in axon.27,105,106 RAB8
regulates membrane precursor-vesicle trafficking from
TGN to the plasmamembrane playing a crucial role in neu-
rite outgrowth. In neuronal cells, downregulation of RAB8
inhibits anterograde formation and transport of vesicles
and avoids neurite outgrowth.106,107 However Rab8 knock-
out mouse model dies prematurely, not for alterations in its
role in neurons but, for its role played in the development
of intestinal epithelial cells triggering its ubiquitously tissue
expression.104 A recent study described that RAB8 shares
its GEF Rabin8 with RAB10 and RAB11 in regulation of
neurite outgrowth. However Rabin8 regulates Rab10 and
Rab11 by a GEF-dependent and -independent mechanism,
respectively.108

It was reported that RAB11 also controls dendritic
arborisation in rat hippocampal neurons, regulating the
trafficking of TrkB via MyosinVb. In particular, it per-
mits the TrKB retention in dendrites, increasing the local
signal needed for arborisation. Indeed, the overexpres-
sion of the constitutively active form of RAB11 (RAB11-
Q70L) leads to increase dendritic branching, with an
accumulation of TrkB in dendrites.109

Figure 1. (see previous page) RAB GTPases orchestrate different neuronal trafficking steps. Graphical representation of RAB GTPase-
mediating intracellular vesicular trafficking steps in different neuronal cell compartments. Section A (in red) represents the cell body
compartment with RAB GTPases that mediate ER-Golgi pathway and vice versa. RAB1, RAB2, RAB8, RAB39B are involved in anterograde
traffic and RAB7, RAB6, RAB33B, RAB2 play a role in retrograde transport. Section B (in blue) shows RAB proteins involved in dendritic
vesicle trafficking. RAB8, RAB10, RAB11 controls constitutive Membrane Precursors Vesicle (MPV) trafficking in secretory pathway from
cell body to the cell periphery. RAB17 acts at early neuronal developmental stage in secretory pathway through MPV for dendritic mor-
phogenesis. RAB21 controls the exocytic vesicle transport to the cell periphery. A specialized function is showed for RAB11 in TrkB recep-
tor (white rectangle) internalisation leading to local receptor signal increase for dendritic arborisation. Section C (in yellow) recapitulates
RAB GTPases involved in axonal vesicle trafficking. Transport vesicles (TV) and recycling endosomes (RE) are involved in axonal out-
growth. RAB10, RAB33A and RAB27B mediate TV trafficking. RAB10 controls the vesicle transport from TGN to the plasma membrane.
RAB27B regulates the anterograde transport of neurotrophin receptors and RAB33A mediates anterograde synaptophysin-positive
vesicles. RAB4, RAB11, RAB35 and RAB13 are involved in RE pathway. RAB4 and RAB11 control RE fast and slow recycling route, respec-
tively. RAB25 and RAB14 collaborate with RAB11. RAB35 permits neurite and axon elongation together with RAB8, RAB13 and RAB26.
RABs reported in italic, represent the finding of their presence on RE without a well-defined role in neuron. RAB5 and RAB7 have been
shown to sequentially mediate the retrograde transport of NGF and neurotrophin receptors from RAB5-positive Early Endosomes (EE) to
RAB7-positive Late Endosomes (LE), leading to axonal degeneration. Section D recapitulates RAB proteins involved in pre- (green) and
post- (orange) synaptic functions. At pre-synaptic site, RAB3 and RAB27B play a role in specific steps of SV docking and exocytosis at the
pre-synapse. Recycling of SVs by endocytosis is directed through several pathways, represented are kiss-and-run and clathrin-mediated
endocytosis (CME). The first step of CME is mediated by RAB5, RAB10 and RAB14. Then, RAB10 and RAB14 control the SVs direct path-
way and RAB5 directs the endosomal pathway via RE. RAB5-mediated RE trafficking involves at the end, RAB4, RAB11 and RAB35 in SV
regeneration. RAB7, driving LE-positive vesicles from RAB5-positive EE, links endosomal-recycling pathway to the autophagic process.
RAB26, RAB33B and RAB35 are involved in SV degradation via the autophagic pathway. At the post-synaptic site, RAB17 controls kinate
receptor (white triangle) surface expression. RAB39B and RAB8 are involved respectively, in GluA2/GluA3- and GluA1-AMPA receptor
(white ellipse) trafficking and delivery. RAB11 is the mediator of recycling endosomes and contributes with RAB8 to AMPAR delivery.
RAB5, controlling EE, is involved in a clathrin-dependent receptor internalization. Through RAB4 and RAB11receptors are recycled to the
plasma membrane, and through RAB7-dependent late endosomes they are transported toward lysosomes.
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Dendritic outgrowth is also regulated by RAB17 and
RAB21. RAB17 is specifically expressed in dendrites of
mouse hippocampal neurons, it localizes at dendritic
growth cones, shafts, filopodia and mature spines.110

RAB17 mediates the dendrite growth and branching
thanks to its GEF Rabex-5,111 found to be also one of
RAB5 GEF, suggesting an inter-play between these
RABs. Downregulation of RAB17, by shRNA technology,
decreases synaptic branching in mouse hippocampal
neurons.111

RAB21 controls the exocytic vesicle transport to the
cell periphery in mouse hippocampal neurons through
its GEF protein VARP and the non-canonical SNARE
Vesicle-Associated Membrane Protein 7 (VAMP7).112

RAB proteins-mediated trafficking for post-synaptic
function

RAB8, RAB11 and RAB17, previously described to play a
role in dendrite outgrowth, participate also in receptor
trafficking and recycling.

RAB8 is involved in GluA1-AMPA receptors traffick-
ing from ER to the Golgi complex, and their delivery at
the post-synapse.113,114 In central neurons RAB8 works
in accordance with RAB11, present at the base of the
dendritic spines.115 RAB11 is well known as the mediator
of recycling endosomes: interestingly it also mediates the
activity-dependent delivery of GluA1-containing AMPA
receptors to synapses.116 Neuronal activity-dependent
insertion or removal of AMPA receptors from the post-
synaptic plasma membrane triggers the phenomenon of
synaptic plasticity, translated in the experimental mani-
festation of long-term Potentiation (LTP) and long-term
Depression (LTD).27 Dominant negative form of RAB11
(RAB11-S25N) is able to block AMPA receptor recycling
and LTP.116

RAB17 promotes GluK2-kinate receptor surface
expression thanks to syntaxin-4 in mouse hippocampal
neurons. Indeed, RAB17 downregulation leads to syn-
taxin-4 redistribution away from dendrites and reduc-
tion of surface expression of GluK2-kinate receptors,
while overexpression of the constitutively active form of
RAB17 (RAB17-Q77L) endorses an accumulation of
syntaxin-4 in dendrites and an increase of dendritic sur-
face insertion of GluK2-kainate receptors.117

AMPA receptor internalization is controlled by
RAB5 in Cornus Ammonis 1 (CA1) hippocampal neu-
rons: it drives the internalization of AMPARs in a cla-
thrin-dependent manner. In fact RAB5 is rapidly and
transiently activated during N-Methyl-D-Aspartate
(NMDA)-dependent LTD induction.118 AMPARs recy-
cling is controlled by RAB4. It binds the neuronal spe-
cific GRIP-associated proteins 1 (GRASP1) performing

a key role in the coordination of recycling endosome
maturation in dendrites: in particular it plays a role in
AMPARs recycling and in connecting early and late
recycling endosomal compartments.119,120 Conversely,
the transport of AMPA receptors, via RAB7-dependent
late endosomes, ensures receptor removal from the syn-
aptic membrane toward lysosomes.121 Another RAB
GTPase involved in AMPA receptor trafficking is the
neuronal specific protein RAB39B. It coordinates the
secretory pathway of the AMPA receptor hetero-tetra-
mer formed by GluA2-GluA3 subunits, leading to a cor-
rect AMPA receptor composition at the post-synaptic
site. The downregulation of RAB39B in murine hippo-
campal neurons leads to an increase in Ca2C-permeable
GluA2-lacking AMPA receptors at the neuronal surface,
allowing impairments in excitatory post-synaptic cur-
rents.22 Moreover loss- or gain-of-function mutations in
RAB39B cause Intellectual Disability122-124 and early
onset Parkinson’s disease.125-127

Finally, a correct orchestration by RAB proteins of
dendritic and post-synaptic trafficking is essential for
the architecture and maintenance of synaptic plasticity.
In fact mutations in human RAB GTPases are described
to cause neurodevelopmental and neurodegenerative
disorders.

Conclusive remarks

The knowledge about the expression profile and the con-
sequent role of RAB GTPases has considerably grown in
recent years. In particular the isolation of RAB regulators
and their effector proteins is providing the opportunity
to understand, at first, their subcellular localization and
consequently how RAB proteins work together.

In this review it well emerges how RAB GTPases com-
municate with each other thanks to common effectors,
even if they localize in different neuronal compartments,
and then how they efficiently coordinate the several steps
of vesicular trafficking building up the cellular conditions
for a correct synaptic function. A summary of described
RAB proteins, that play a role in formation and mainte-
nance of polarized neuronal synaptic architecture in the
central nervous system, is schematically showed in Fig. 1.

The models used from different work-groups gave the
opportunity to start to explore the role of several RAB
GTPases in intracellular trafficking of central neurons,
where the complexity of cellular morphology and activity
is translated in a sophisticated and intricate coordination
of vesicular traffic. It remains essential to generate animal
models of different RAB proteins to better comprehend,
not only the expression profile but also, the specific role of
RABs in different tissues of the central nervous system. In
particular the exact definition of multiple intracellular
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trafficking steps in neurons raises the groundwork in
understanding the mechanisms involved in several neuro-
pathological conditions. These open the way to the devel-
opment of effective therapeutic strategies.
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