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1. Introduction

Coronavirus disease 2019 (COVID-19) is the third virus infection in 2 decades after severe acute
respiratory syndrome and the Middle East respiratory syndrome. As these manifestations did not
recognize before is the reason it is known as a novel Coronavirus. The cases were seen by different
nations from November 2019 to the work date. The ailment influences lungs and causes respiratory
ailment with manifestations like seasonal influenza, for example, chills, throat contamination, cough,
fever, and in critical cases, difficulty in breathing. The dynamic time of the novel Coronavirus is
14 days. It is proposed by clinical specialists that one can secure himself/herself by washing hands
frequently, abstaining from contacting the nose, ears, and face, and by keeping up social distancing
(1 m or 3 feet away with others).

Several literature surveys have been conducted on machine learning applied in the prediction of
COVID-19 all around the globe. Two different machine learning models SIR and SEIR are based on
the Akaike Information Criterion of COVID-19 [1]. From the experimental results, it has been seen
that predictions of a confirmed case for SIR model performs much better than an SEIR model. A
simplified weather model of a zone for COVID-19 spread is done by taking the input parameters of
latitude, temperature, and humidity at increased risk [2]. From the experimental result, it has been that
this weather modeling can efficiently predict the higher risk regions of significant community spread
of COVID-19. A predictive model is in the Corona Tracker community to predict and forecast COVID-
19 cases, deaths, and recoveries [3]. There is a live estimating exercise with monstrous possible
ramifications for planning and decision-making forecasts for the affirmed cases of COVID-19 [4]. A
programmed location framework is by utilizing three diverse convolution neural system based models
(ResNet50, InceptionV3, and Inception-ResNetV2) for the discovery of Coronavirus pneumonia
tainted patients utilizing chest X-beam radiographs [5]. From the result, it has been seen that the model
gives the most noteworthy order execution agreeably.
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A smartphone-based app has been proposed to combining the symptoms to predict probable
infection data collected from all the app users [6]. A simple mean-field model is for gathering a
quantitative picture of the epidemic spreading, time of the peak of confirmed infected individuals, and
number infected-recovered-deaths used in a three-country region: China, Italy, and France [5]. An
artificial intelligence’s profound learning techniques separate COVID-19’s particular graphic high-
lights and give a clinical analysis in front of the pathogenic test, hence sparing crucial time for ailment
control [8]. Results show that the result is extremely compelling.

A deep learning model is utilized for recognizing COVID-19 pneumonia on high-resolution X-rays
[9]. Tentatively, it has been seen this model relieves the working pressure of radiologists to the control
the plague. Various viewpoints including prediction outcomes, disease tracking, medical image pro-
cessing, computational biology, and medicines to battle against the COVID-19 crisis [10]. A predictive
machine learning tool selected three biomarkers to identify crucial disease mortality [11]. Results
show a 90% accurate model. An artificial intelligence (AI) algorithm was designed to incorporate chest
CT findings with clinical indications to quickly analyze patients who are positive for COVID-19 [6].
There are three different machine learning techniques: support vector machine, artificial neural net-
works, and regression model to predict the COVID-19 patient’s recovery [13]. From the result, it has
been seen that the patient’s fever, cough, general fatigue, and most probably malaise could not recover
from COVID-19.

A deep learning neural network machine learning method predicts confirmed-negative-released-
death cases of COVID-19 very close to original data. The performance analysis shows a high rate
of accuracy [14]. Machine learning and deep learning models are used for understanding the behavior
of future reachability of the COVID-19 across the nations [15]. A cutting edge investigation of the
progression of machine learning (ML) and deep learning techniques in the determinations and forecast
of COVID-19 was performed [7]. Five ML approaches, logistic regression, partial least squares
regression, elastic net, random forest, and bagged flexible discriminated analysis were used to predict
outcomes of COVID-19 patients [8]. The sensitivity and specificity for the derivation set and validation
set were quite satisfying.

A relative investigation was done of ML and soft computing models to foresee the COVID-19
outbreak as an option in contrast to SIR and SEIR models [9]. There were two different numeric
strategies: long short-term memory and curve fitting for the forecast of the number of recovered cases
and positives cases of COVID-19 cases in India ahead of 30 days [19]. The experimental result also
emphasized how many precautions like social isolation and lockdown affect the spread of COVID-19.
Machine learning is a part of artificial intelligence is often discovering the pattern of the user data in
order to predict the value of the new datasets for which the target value is unknown [20]. The most
common task in the learning process is classification. The main task of classification is to classify the
data into definite classes.

Since COVID-19 symptoms are similar to that of a nasty cold or flu, there has been a rush in the
number of people checking into a doctor’s clinic, leading to panic. Before people go to a doctor or
medical center, experts say that it is best to practice self-quarantine and then take necessary action. The
symptoms that you should be primarily be looking for include breathing difficulties, muscle pain,
respiratory infection, high-grade fever, headache or mild conjunctivitis, and pneumonia.

The main objective of this study is to present a generic feature from the input data and apply
supervised ML to reduce the generalization error for achieving a more accurate diagnosis. The overall
presentation is summarized as follows:

* Identify the important generic features from the input datasets and process them in the ML
algorithm to predict COVID-infected persons rather than through the traditional healthcare system.
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e Multiple numbers of ML algorithms (bagging algorithm, k-nearest neighbor, and random forest)
are applied on the same processing patient datasets.

* Our work exterminates the need to relook at existing algorithms for handing COVID-19 patient
data.

The rest of the paper is organized as follows: Section 2 gives the proposed problem formulation
containing the risk factor for COVID-19 and precedes datasets. Section 3 describes the ML techniques
utilized in this research. Section 4 presents the experimental results followed by the conclusion and
future work.

2. Problem formulation

There are several known risk factors for the COVID-19 pandemic. Nonetheless, most instances of
COVID-19 cannot be connected to a particular reason. The incubation period refers to the time it takes
for a patient to catch the virus and begin to show the symptoms. In this period, experts say that sus-
pected COVID-19 patients can develop any or one of the symptoms related to the viral disease. It has
been presumed since the infection spreads through respiratory droplets in the air that it can take
anywhere between 3 and 14 days for the symptoms to fully infect, with more prominent symptoms
starting to appear around day 5. A basic simplified ML model is shown in Fig. 25.1.

2.1 Data sets description

To build the model we first needed data. We collected data from the website www.covid19india.org
during data sets taken from January 31 to March 11, 2020 and started working on this in early

Data Pre-

—I\ processing

Relevant
Datasets

Data Collection

Patient
Data

Machine | Features
Leaming Engineering

Identification
of Covid

FIGURE 25.1
Simplified ML model for COVID-19.
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March when India has already entered into phase II, i.e., in local transmission. We got data on
symptoms like age, fever at nominal temperature, cough, headache, mild conjunctivitis, chest
congestion, and high fever (these are the major symptoms). Before we could start building the algo-
rithms, we needed to wait until all the patients recovered or died, so we would know the outcome of
their cases. For this experiment, we took 64 datasets for training purposes.

2.2 Data analysis

Cold, fever, cough, body pain, and malaise: these five were the most common potential symptoms for
COVID, as shown in Table 25.1. Figs. 25.2, 25.3, and 25.4 showed the frequency of different attributes
of the datasets like sex, age, and symptoms for COVID 19. For the data visualization and plotting, we
have used the Matplotlib and Seaborn. Python data visualization library provides a high-level interface
for drawing attractive and informative statistical graphics for COVID-19 patients, as shown in Fig. 25.5.

Table 25.1 Data description.
Column Description Categorical value Type
Id Patient individual id NA Numeric
Gender Patient’s gender male or Female String category
Age Patient’s age NA Numeric
COVID-19 Patient’s nature Yes (=1) or No (=0) Numeric
Symptom 1 Symptoms noticed by Multiple symptoms String category
Symptom 2 the patients noticed by the patients
Symptom 3
Symptom 4
Symptom 5
40
35
30
25
20
15
10
5
0
Male Female
FIGURE 25.2

Sex attributes for COVID-19.
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FIGURE 25.3
Age attributes for COVID-19.
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FIGURE 25.4
Different symptoms for COVID-19.

From the figures, we can easily visualize the cases that we have from the binary datasheet. The
diagonal values show the correctly predicted value that gives the accuracy of the training data set
(divided in the ratio of 70:30). Fig. 25.6 gives the heat map (normalized confusion matrix) repre-
sentation of the binary datasheet. Here, we can visualize the data as a darker value gives the more
correct value of each symptom or the parameters in this case, and the rest of the blocks show the
negative values that are quite a good result for our analysis, as we are focused on analyzing symptoms
as 0 and 1, and then the final output of the result, and this would give the model flexibility to train itself
in a better way, thus producing the expected test results, which could be used to determine the model’s
accuracy.
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Data visualization and plotting of COVID-19 parameters.
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FIGURE 25.6
Heat map of the binary datasets.

2.3 Data preprocessing

In the data preparation section, the dataset consists of columns named like date, string, and numeric
type as well as some categorical variables. In the data preprocessing section, we convert all the datasets
into numeric form, so in the next stage, we can apply the different ML classification techniques. This
should be possible by replacing a number to each special unmitigated value in the column. The dataset
comprises various missing values supplanted by “NA.” In certain patient datasets, “death” and “re-
covery” columns contain missing values; they have been isolated from the primary dataset and used as
a test dataset, while the rest of the records have been used as training dataset for designing the ML
classifier. The dataset also consists of data columns, which are not for direct use, and feature engi-
neering has been applied.
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2.4 Evaluation metrics

The analytic part of any classifier has most of the parts controlled by the receiver operating charac-
teristic (ROC) curve and confusion matrix [10]. In the field of AI and ML, the confusion matrix is also
known as the error matrix. The fundamental diagram of the confusion matrix has been shown in
Fig. 25.7A, where true positive (TP) and true negative (TN) are the positive and negative cases where
the classifier correctly identified them. False positive (FP) are the negative cases where the classifier
incorrectly identified them as positive, and the false negative (FN) are the positive cases where the
classifier incorrectly identified them as negative. By using these properties, supervised ML measures
performance of a classifier as recall, precision, accuracy, and fl-score, represented in Egs.
(25.1)—(25.4).

TP: Cases when classifier predicted TRUE (they have the disease), and the correct class was TRUE
(patient has a disease).

TN: Cases when classifier predicted FALSE (no disease), and the correct class was FALSE (patient
does not have the disease).

FP (Type 1 error): Cases when classifier predicted TRUE (they have the disease), and the correct
class was FALSE (patient does not have the disease).

FN (Type 2 error): Cases when classifier predicted FALSE (no disease), but the correct class was
TRUE (patient does have the disease).

TP +TN
Classification accuracy = (IP + TN) (25.1)
(TP + TN + FP + FN)
FP+FN
Misclassication rate(Error Rate) = (FP+ FN) (25.2)

(TP + TN + FP + FN)

Predicted class Comparing ROC curves
P N |
True
. False g
2 o Positives | | Negatives E 0.6
o (TP) (FN) 2 o4
= 2 ‘ sl Poor
g o 0.2 —— (o0d
- - False True c —&— Exccllent
* | Positives | | Negatives = o
(FP) (TN) 0 0.2 04 0.6 0.8 !
False positive rate
(a) (b)
FIGURE 25.7

Basic framework of confusion matrix and ROC [11].
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.. .. P
Precision = TP/Total TRUE Predictions = ———
(TP + FP) (25.3)
(When model predicted TRUE class, how often was it right?)
TP
Recall =TP/Actual TRUE = ————

(FN + FP) (254)

(When the class was actually TRUE, how often did the classifier get it right?)

The values of the TP, TN, FP, and FN can be collected from the heat map and can be substituted to
get the table for precision, recall, F1-score, and support (misclassification rate).

A ROC is a graphic measuring tool plotting the TP rate against the FP rate at different threshold
points [10]. The predictability of any classifier is determined by the area under the curve (AUC) of
ROC. A higher value of AUC indicates more superiority of a classifier. Fig. 25.7B represents ROC
curves based on a theoretical dataset. The area under the blue ROC curve is half of the concealed
square. Thus, the AUC under the blue ROC curve is 0.5. The area under the black ROC curve is
occupied more prominently than half of the shaded rectangle, so it is better than the blue ROC. Red
ROC occupied the maximum area of the shaded rectangle; that is why red ROC is superior to the other
two previous classifiers.

3. ML

For the most part, two kinds of Al are applied in various fields: supervised and unsupervised ML. In the
supervised learning algorithm, both the calculated and target output datasets are given. Info and yield
information are marked for the arrangement to give a learning premise to future information prepa-
ration. Supervised ML can be further categorized into two parts: regression and classification issues. A
regression analysis dataset may have discrete or continuous values, while in classification problem, the
output variable is two discrete values, O or 1. There is a notable ML algorithm used in different medical
fields, as show in Table 25.2.

In an unsupervised ML algorithm, the datasets are not perfectly organized and allow the compu-
tation to catch up on that information without any direction. In this research, the outcome variable is a
dependent variable: either COVID-19 positive or negative. That is two discrete levels, so we utilized a
classification algorithm of supervised learning. In the present research, we have used three different
types of classification algorithms in ML:

1. nearest neighbor
2. random forest classification
3. bagging algorithm

3.1 kNN (k-nearest neighbor)

k-Nearest neighbor classification is the closest neighbor classifiers that depends on the possibility that
an object ought to be anticipated to have a place with a similar class as the items in the preparation set
with the greatest likeness [32,33]. To utilize kNN grouping, it is required to have an appropriate
comparability search framework in which the preparation information is put away. The arrangement is
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Table 25.2 Notable ML methods for outbreak prediction.
Si Year Outbreak
No | published Paper infection Algorithm used
1 June2020 [12] COVID-19 Logistic regression, decision tree, random forest, support
vector machine (SVM), AdaBoost and stochastic gradient
boosting multinomial Naive Bayes (MNB), bagging
2 April 2020 [13] COVID-19 Decision tree, random forest, XGBoost, AdaBoost, bagging,
and light GBM
3 July 2020 [14] COVID-19 random forest classification
4 June 2020 [15] COVID-19 random forest, k-nearest neighbor, Naive Bayes, logistic
regression, decision tree, support vector machine (SVM)
5 December [16] Breast cancer Support vector machine, neural network, logistic regression,
2019 linear discriminant analysis, Naive Bayes, decision tree
6 2017 [17] Cerebral Decision tree, k-nearest neighbor, Naive Bayes
infarction
7 2018 [18] Diabetes Decision tree, Naive Bayes, support vector machine
8 2018 [19] Heart disease k-Nearest neighbor, random forest, support vector machine
9 2018 [20] Heart disease Linear regression, random forest
10 2017 [21] Heart disease Logistic regression, random forest
11 2018 [22] Heart disease Logistic regression, support vector machine
12 2017 [23] Heart disease k-Nearest neighbor, Naive Bayes, random forest, support
vector machine
13 2017 [24] Heart disease Logistic regression, random forest
14 2017 [25] Heart disease Decision tree, k-nearest neighbor, Naive Bayes, random
forest, support vector machine
15 2018 [26] Heart disease Neural network, Naive Bayes, support vector machine
16 2017 [27] Heart disease Decision tree, k-nearest neighbor, Naive Bayes,
17 2018 [28] Liver disease Neural network, support vector machine, logistics regression,
random forest
18 2017 [29] Lung cancer Support vector machine, decision tree, random forest
19 2018 [30] Prostate Naive Bayes, decision tree, support vector machine
cancer
20 2013 [31] Type 2 Support vector machine, multifactor dimensionality
diabetes reduction, k-nearest neighbor, logistic regression

finished by investigating the consequences of a kNN inquiry. The least complex approach to decide a
characterization after the effect of a kNN classifier is the dominant part rule. The objects in the
question result are meant each class and the class having the dominant part check is anticipated to be
the class of the test object. Another technique is to think about the separations of the item to gauge the
effectiveness of each neighboring object. In this manner, a nearby object contributes more to the choice
than an object having a huge separation. kNN classifiers utilize the class fringes of the items inside the
preparation set, and along these lines, we need not bother with any preparation or model structure
apriority. Therefore, kNN classifiers cannot be utilized to increase unequivocal class information to
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FIGURE 25.8
A simplified illustration of the kNN [11].

dissect the structure of the classes. KNN grouping is otherwise called a lazy learning algorithm. The
boundary that decides the neighborhood size, k, is critical to the order precision accomplished by a
kNN classifier. If k is picked excessively small, the order will in general be extremely delicate to
clamor and anomalies. Then again, a too huge incentive for k may expand the outcome set of the k
closest neighbor by objects that are excessively far away to be like the classified object. Since kNN
classification works on preparation information, the characterization time relies upon the proficiency
of the basic closeness search framework. On account of enormous preparing datasets, a direct hunt
turns out to be wasteful. Appropriate record structures can offer a superior solution for the model [32,
34]. Erasing irrelevant objects from the preparation dataset likewise helps in accelerating the kNN
arrangement calculation [32]. kNN classifier algorithm can be accelerated by building the centroid for
the objects of each class and utilizing just the centroids and closest neighbors characterization [35].
This methodology is fairly basic. However, it gives a precise order for text information. In Fig. 25.8, it
is seen that K = 3, and K = 5 are classifiers in which a sample object (“star”) is classified as “black” or
“red” depending upon the number of votes it gets.

3.2 Random forest (RF)

A random forest is a supervised ML classifier that comprises a treelike structure {h(x, (k) k=1, 2,
....}, unique independent vector {0(k)}, and input for most famous class of x [36—38]. In random
forest, to produce each single tree, researcher Breiman followed the following advances. In the
bootstrap test, in N number of preparation datasets, N number of records are examined aimlessly by
using substitution from the first information. This is the first stage for developing the tree. On the off
chance that there are M input factors, a number m << M is chosen with the end goal that at every
node, m factors are chosen at random out of M, and the best split on these m credits is utilized to part of
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Dataset
Random subset Random subset Random subset
Ye 0
Yes Yes No  Ye No
(Class A (Class B)(Class A) (Class B (Class A) (Class B)(Class A) (Class A (Class B)(Class A) (Class B

FIGURE 25.9

An illustration of a random forest [11].

the node. The estimation of m is held steady during forest development. Each tree is developed to the
largest degree of divide. Along these lines, various trees are actuated in the forest; the quantity of trees
is prechosen by the boundary Ntree. The number of factors (m) chosen at every hub is likewise alluded
to as mtry or k in the literature (Fig. 25.9).

The profundity of the tree can be constrained by a boundary node size (for example, number of
occurrences in the leaf node), which is generally set to 1. When the woodland is prepared or worked as
clarified above, to arrange another occasion, it is stumbled into all the trees developed in the back-
woods. Each tree is divided into several cases that are recorded as a vote. The votes from all trees are
accumulated, and the class that has the maximum number of votes is assigned as the grouping of the
new case.

3.3 Bagging algorithm

Bagging is a technique for making classifier gatherings, comparable by the idea, yet with essential
contrasts [40]. Packing was proposed by Breiman [41] and stretched out further by Arcing [42,43] to
oblige the versatile steady development of the group that underlies the boosting technique. Bagging
makes the classifiers in the gathering by taking irregular samples with substitution [44] from the
informational index and building one classifier on each bootstrap test. The last arrangement choice for
an unlabeled information point x is made by taking the majority share vote over the class names
delivered by the L classifiers. The genuine quality of bagging is for precarious classifiers, for example,
neural systems and choice trees. Shaky classifiers are sensitive to little changes in the informational
index. In this way, preparing a similar classifier model on two somewhat extraordinary prepared sets
may bring about considerably various classifiers. The classifiers may be comparable by and large in
exactnesses, yet the boundaries like weights of the neural network will vary, prompting a characteristic
troupe decent variety. Ideally, this diversity will show up by the two classifiers perceiving effectively
various articles from the informational collection, i.e., having “ability” in various locales in the
component space. Bootstrap testing is utilized to give the irregular little adjustments of the
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FIGURE 25.10
An illustration of a bagging algorithm.

informational collection. Stowing has been seen as wasteful for direct classifiers prepared on enormous
informational collections, as these are steady classifiers [45, 46]. This implies if direct classifiers (e.g.,
the closest mean classifier, NMC) are prepared on two fundamentally same enormous informational
indexes (e.g., bootstrap tests), the two classifiers will be indistinguishable. Little contrasts in the in-
formation will not prompt a lot of distinction in the assessments of the class implies. So the waste-
fulness of bagging for this case can be ascribed to the absence of assorted variety in the group. Direct
classifiers may likewise become unsteady if the preparation size is small (Fig. 25.10).

At that point, any modification in the informational collection will majorly affect the outcome,
subsequently making the classifiers not the same as one another. The threat here is that, in the event
that we resort to little preparing test sizes (as we do in this examination), the general exactness of the
individuals from the outfit will be low, thus will be the consolidated one. Hence the mix probably will
not arrive at the exhibition of a solitary straight classifier prepared all in all preparation informational
indexes.

4. Result analysis

4.1 kNN model

The total time for training the model is 0.001 s and the prediction time taken by the model is 0.003 s.
The model thus gives an accuracy of 0.7, i.e., 70% (Fig. 25.11).
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Training time: 0.001 s
Prediction time: 0.003 s

Report:

Accuracy: 0.7

precision recall fl-score support
] 0.62 1.00 0.77 5
1 1.00 0.40 0.57 5
accuracy 0.70 10
macro avg 0.81 0.70 0.67 10
weighted avg 0.81 0.70 0.67 10
[[5 o]
[3 2]]
FIGURE 25.11
Confusion matrix for kNN.
[[5 o]
[2 o]]
precision recall fl-score support
0 0.71 1.00 0.83 5
1 0.00 0.00 0.00 2
accuracy 0.71 7
macro avg 0.36 0.50 0.42 7
weighted avg 0.51 0.71 0.60 7

Training time: 0.032 s
Prediction time: 0.004 s

FIGURE 25.12
Confusion matrix for random forest.

4.2 Random forest

On training the datasheet in the random forest algorithm, the accuracy of the model increases to
85.71%, The confusion matrix for the random forest classifier is given next, which will provide us with
a more clear idea (Fig. 25.12).

The total training time to train the model is 0.032 s and time taken to predict the results is 0.004 s.
The calculation for the precision, recall, f1-score, and support has already been discussed (Fig. 25.13).

4.3 Bagging algorithm

On training the datasheet in the bagging algorithm, the accuracy of the model increases to 71.42%,
which is quite good compared to the previously used kNN algorithm. The confusion matrix for the
bagging algorithm classifier is given next, which will provide us with a more clear idea: the total
training time to train the model is 0.05 s, and the time taken to predict the results is 0.003 s (Fig. 25.14).
The calculation for the precision, recall, f1-score, and support has already been discussed (Table 25.3).
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recall fl-score support

1.00 0.83 5
0.00 0.00 2

0.71 7
0.50 0.42 7
0.71 0.60 7

Confusion matrix for bagging algorithm.

FIGURE 25.14
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Table 25.3 Confusion matrix parameters.

Accuracy (%)
Sensitivity (%)
Specificity (%)
Precision (%)

kNN

70%
0.625

Random forest

85.71%
0.714
0

1

Bagging algorithm

71.42%
0.714
0

1
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5. Conclusion and future work

Classification models in ML algorithms were tested to make the best use of the clinical data provided
online to be able to predict the severity of the COVID-19 cases. In this classification, we used five
attributes and other relevant information of a patient to achieve the minimum classification error,
which proves the feasibility of the proposed approach.

To conclude, we have made use of three basic algorithms, starting from kNN, random forest, and
the bagging algorithms. The reason we chose these algorithms is in context to the target that is
classifying the result as COVID-19 positive or negative, i.e., in binary form 0 or 1 (0 = negative,
1 = positive). A brief discussion of the obtained result is done after each prediction, highlighting all
the accuracy obtained from individual models. The accuracy of the models could be increased by
normalizing the datasheet more precisely. So finally, we have built three ML classification models, and
we can see that the random forest classification algorithm gives the best results interns of accuracy and
prediction time compared to kNN and random forest algorithm in this dataset. From the result, it has
been seen that the patient who is more than 50 years old with a high fever after 5 days is confirmed with
a case of COVID-19 (Fig. 25.15).

From Fig. 25.17, it is also seen that F1 score and recall both are better for bagging algorithm, while
from Fig. 25.18, it is seen random forest algorithm has a maximum AUC score of 0.957, which is much
higher than bagging (0.9366) and kNN (0.561). Hence, random forest shows higher predictive ac-
curacy for the test datasets (Fig. 25.16).
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FIGURE 25.15
Evaluation metrics for random forest.
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FIGURE 25.16
Evaluation metrics for bagging algorithm.
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FIGURE 25.17

Comparison of models performance.

For future work, if data sets can be gathered by researchers or WHO organization or based on
personal efforts to include symptoms and other information of suspects of COVID-19, we can be able
to diagnose that new Coronavirus. Secondly, this classification can be further improved if other
symptoms like loss of taste and smell, a rash on the skin, etc., are considered.
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ROC for analysis for kNN, random forest, and bagging.
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