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Almost all animals, regardless of the anatomy of the eyes, require some level

of gaze stabilization in order to see the world clearly and without blur.

For the mantis shrimp, achieving gaze stabilization is unusually challenging

as their eyes have an unprecedented scope for movement in all three

rotational degrees of freedom: yaw, pitch and torsion. We demonstrate

that the species Odontodactylus scyllarus performs stereotypical gaze stabiliz-

ation in the yaw degree of rotational freedom, which is accompanied

by simultaneous changes in the pitch and torsion rotation of the eye. Surpris-

ingly, yaw gaze stabilization performance is unaffected by both the torsional

pose and the rate of torsional rotation of the eye. Further to this, we show, for

the first time, a lack of a torsional gaze stabilization response in the stoma-

topod visual system. In the light of these findings, we suggest that the neural

wide-field motion detection network in the stomatopod visual system may

follow a radially symmetric organization to compensate for the potentially

disorientating effects of torsional eye movements, a system likely to be

unique to stomatopods.
1. Introduction
Moving animals are confronted with a visual trade-off: their eyes are more effi-

cient at detecting salient features of a scene and local motion cues when they are

fixed relative to the outside world and yet, for many tasks, having movable eyes

provides an adaptive advantage. Overcoming this problem is a visual challenge

that has resulted in the evolution of systems that steady the retinal projection

of the external visual scene for periods of time. This is achieved with eye

movements that counter movements of the visual field.

If an animal’s eyes were to stay immobile as its head or body moves, the direc-

tion of visual gaze would become displaced and the retinal image would be

distorted and degraded due to motion blur. Motion blur occurs mainly due to

the relatively slow response time of photoreceptors (typically greater than

20 ms in vertebrates and approx. 12–24 ms in invertebrates [1–3]). It is more dif-

ficult to detect an object, either stationary or in motion, relative to its background

in a blurred image than in a spatio-temporally stabilized one [2,4]. Additionally,

motion blur disrupts an animal’s ability to infer information from optic flow or

motion parallax [2,4]. Furthermore, without adequate visual compensation for

rotational and translational movements of the body, an animal’s egocentric coor-

dinate system can become misaligned with real-world coordinates, so body

posture and equilibrium may become compromised [4]. To counteract these

degrading visual effects, animals make compensatory movements with their

eyes, head or body depending on their individual anatomy to reduce movement

of the retinal image [2]. This is known as gaze stabilization, and is common to both

vertebrates and arthropods.

The main mechanisms known to control gaze stabilization are the vestibular–

ocular reflex (VOR), the optokinetic response (OKR) and the optomotor response
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(OMR). The VOR involves slow counter rotation of the eyes

that compensates for head motion and is triggered by signals

from sense organs in the vestibular system such as the semicir-

cular canal organs (e.g. humans [5–7], monkeys [8,9] and

rabbits [10,11]), ampullae (e.g. fish [12,13]) or hair cells in

statocysts (e.g. crabs [14] and lobsters [15]). The OKR, on the

other hand, is mediated only by vision. It consists of a repetitive

series of eye movements with a slow and a fast phase, known as

the optokinetic nystagmus [1,2,16–19]. In the OKR, the eye

typically performs a slow rotation in the same direction

as the movement of the visual scene followed, at intervals, by

a rapid counter rotation, which ‘flicks’ the eye back to the

approximate starting position [1,16,18]. The slow phase of

optokinetic nystagmus largely ‘fixes’ an image on the retina

and is seen in animals both with and without a fovea or

acute zone. The OMR is similar to the OKR, but involves

movement of the entire body not just the eyes [16].

Gaze stabilization is thought to be important for an animal

to be able to perceive motion accurately. There is an abundance

of motion-sensitive interneurons in the arthropod central ner-

vous system [20–23]. Most of these are directionally specific

to some degree and while some wide-field neurons are directly

involved in the gaze stabilization response, other neurons with

a smaller receptive field require stabilization for optimal per-

formance [24–26]. An example of such neurons can be found

in the lobula of male fleshflies (Sarcophaga bullata). These retino-

topic directionally sensitive neurons have a small receptive

field and are linked to flight motor neurons, indicating that

they may play a role in the tracking of females during sustained

aerial pursuit [24]. Some directionally insensitive neurons

associated with optic flow have been identified in the lobular

plate of crustaceans and insects, responding to both vertical

and horizontal motion [20,27,28].

While most animals endeavour to restrict the movement of

their eyes for all the reasons stated previously, stomatopod

crustaceans (mantis shrimp) have unusually mobile eyes.

Their compound eyes are of the apposition type, and while

their eye anatomy shares many similarities with that of many

other crustaceans, they show a uniquely regionalized structure.

Each eye has three sections: the dorsal and ventral hemi-

spheres, and a midband typically consisting of two or six

ommatidial rows (depending on the species) bisecting the eye

and anatomically separating the hemispheres [29–35]. Various

adaptations to the basic crustacean photoreceptor anatomy,

particular to each section of the eye, have enabled stomatopods

to evolve regional specializations for 12-channel colour vision,

as well as for both linear and circular polarization vision

[30,31,36–40]. Stomatopod eyes also exhibit an unusually

large angular range of movement in which their eyestalks

move in all three degrees of rotational freedom (figure 1a),

exceeding 908 in pitch (up-down movements), yaw (side-to-

side) and torsion (rotation about the visual axis) [41,42].

Additionally, the eyes show a high degree of independence,

though this depends on the visual task [43].

Despite their unique eye design, stomatopods perform

stereotypical eye movements including optokinesis [18,44],

tracking [45] and object-of-interest acquisition through saccades

[46]. More unusual are the scanning motions of the eyes

directed approximately perpendicular to the midband [44].

Because the midband consists of up to six ommatidial rows

and the direction of view of ommatidia in the hemispheres is

skewed, the field of view of the stomatopod eye is much

reduced compared with that of many crustaceans with
superficially similar apposition compound eyes. For example,

the midband ommatidia typically only view a narrow 108
strip of space [31,47–49]. Consequently, scans made perpen-

dicular to the midband will obtain sequential spectral and

polarization information across a greater portion of the visual

scene, rather than just a narrow strip; much like push-broom

sensors used for remote sensing [50]. Despite this need for scan-

ning, stomatopods show stereotypical gaze-stabilizing eye

movements, performing yaw or pitch optokinesis in response

to a horizontally or vertically displaced field of view, res-

pectively, to stabilize the retinal image [18,43,44]. By contrast,

the role of torsional eye rotation for gaze stabilization in

stomatopods is much less clear [42,43].

Torsional rotation, in which the eye rotates about the long

axis of the eyestalk, is an unusual movement in an animal

with frontally placed eyes. Stomatopods have previously been

shown to use torsional rotations to enhance their polarization

vision [42]. However, the greater than 908 range of torsional

rotation far exceeds the range needed for dynamic polariza-

tion vision (22.58), suggesting that these eye rotations have

additional functions. In this work, we investigate the role of

torsional eye movements during gaze stabilization in the stoma-

topod Odontodactylus scyllarus and ask three questions: do the

eyes rotate torsionally during optokinetic responses to a hori-

zontally displaced field of view? Do torsional rotations affect

the yaw gaze stabilization performance? Is there evidence for

gaze stabilization in the torsional degree of freedom?
2. Material and methods
Full details of materials and methods are presented in the elec-

tronic supplementary material, S1. Yaw optokinesis was elicited

by the horizontal motion of a black and white grating on

the inner face of a rotating drum (figure 1b–d), following the

method of Daly et al. [43]. A torsionally rotating field of view

was created by turning the drum on its side such that its axis of

rotation was horizontal (figure 1e–g). The closed end of the

drum, which the animals were facing, was covered by a radial pat-

tern of stripes so as to extend the torsionally rotating field of view

frontally (figure 1g). The three-dimensional rotation of the eyes

was recorded using two video camcorders (Panasonic HC-X900,

Osaka, Japan) calibrated to form a stereoscopic pair and tracked

in each frame (50 fps) using MATLAB (2015b, Mathworks, Massa-

chusetts, USA) using the method previously described by Daly

et al. [42]. The performance of an eye when stabilizing its gaze

was quantified using the relative velocity ratio (SY and ST in the

yaw and torsion degrees of rotation, respectively, previously

termed ‘gain’ [18]), which is the ratio between the angular velocity

of the drum and the angular velocity of the eye in a particular plane

of rotation. The angular velocity of the eyes is derived from the

differential of the pose in each video frame, rather than manually

selecting regions of the responses in order to ensure equal numbers

of measurements from each eye and each individual was included

in the analyses.

(a) Statistical analyses
All statistical analyses were conducted in R v.3.0.25 [51]. The mean

and standard deviation are quoted for normal distributions, and

the median and 95% confidence interval (CI) for non-normal

distributions of independent data. Gaze stabilization performance

was analysed using a generalized linear mixed-effects model

(GLMM) (R package lme4, [52]). Correlation between the three

degrees of rotational freedom and between torsional rotation

and yaw gaze stabilization performance was investigated using
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Figure 1. (a) Stomatopods can rotate their eyes in all three degrees of freedom: yaw (red; side-to-side), pitch (blue; up-down) and torsion (green; rotation about
the stalk). Photo credit: Mike Bok. (b) The rotating drum with the black and white grating on the inner face used to elicit yaw optokinesis. (c) Individual sto-
matopods are placed in the stationary aquarium with their body concealed within an artificial ‘burrow’ and their exposed eyes, located at the centre of the drum, are
filmed using stereoscopic cameras from above. (d ) Motion of the rotating drum (b,c) creates a field of view moving in the horizontal direction. (e) The torsional
rotating drum. As for (a – c), the sides of the drum were covered with a black and white grating. (f ) Individual stomatopods are placed in the stationary counter-
balanced aquarium in the middle of the drum and filmed from above through slits in the drum. (g) The end of the drum (left in (d,e)), directly in front of the
stomatopod, was filled with a radial pattern of black and white segments, which rotated torsionally at the same rate as the drum. (Online version in colour.)
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cross-correlation on the differential of the data series with respect

to time in order to satisfy the stationarity assumption (i.e. that

there is no overall trend in the data, such that the mean and var-

iance do not change over time) [53] and to avoid the potential

influence of high-frequency noise on the correlation calculation.

Both the maximum cross-correlation coefficient between combi-

nations of eye movements and the associated time lags were

determined separately for the left and right eyes of each individual

and were statistically analysed using a Wilcoxon signed-rank test

to ascertain whether there was evidence of significant correlations.

An additional Wilcoxon analysis was performed to determine

whether the torsional pose of the eye, horizontal or vertical, had

a significant effect on the median yaw gaze stabilization perform-

ance. Statistical analysis of the effect of the drum velocity on the

torsional velocity of the eye also used a GLMM.
Soc.B
285:20180594
3. Results
(a) Yaw optokinesis
Seventeen individual O. scyllarus performed stereotypical

yaw optokinesis with slow tracking and fast reset profiles

(figure 2a–c, red line) with variable kinetics (electronic sup-

plementary material, S2), which would serve to partially

stabilize their gaze to a horizontal displacement of their field

of view during the tracking phase. There was no significant

difference in the yaw gaze stabilization performance (SY in

the direction of drum rotation throughout the duration of the

trial) between the left and right eyes (left: SY ¼ 0.74+0.01

(median+95% CI), right: SY ¼ 0.74+0.01 (median+95%

CI), GLMM, n ¼ 17,X2 ¼ 0.19, p ¼ 0.665). Nor did the direction

of rotation have a significant effect on yaw gaze stabilization

performance (clockwise: SY ¼ 0.74+0.01 (median+95% CI),

anticlockwise: SY ¼ 0.73+0.01 (median+95% CI), GLMM,

n ¼ 17, X2 ¼ 2.61, p ¼ 0.106; figure 2d). Across the whole

distribution of SY, taking the velocity of counter rotations and

tracking rotations into account, the median of the relative vel-

ocity ratios is significantly greater than 0 (SY ¼ 0.60+0.01

(median+95% CI), Wilcoxon sign-ranked test, n ¼ 17, V ¼
153, p , 0.001), indicating that the eye movements made by

the stomatopods are mostly for gaze stabilization.

Despite the drum movement creating a field of view

moving only in the horizontal plane, stereotypical OKR yaw

rotations were accompanied by both torsion and pitch. The

median torsional pose relative to the horizontal was 67.34+
0.128 (median+95% CI, n ¼ 17) and the median pitch pose

relative to the horizontal was 16.64+0.088 (median+95%

CI, n ¼ 17). The profile of pitch and torsion rotations during

yaw optokinesis are highly variable, sometimes showing

apparently correlated rotation (figure 2a), while other times

showing highly uncorrelated rotation (figure 2b,c). However,

overall the median maximum cross-correlation coefficient

was not significantly different from 0 for yaw and torsion

rotation, yaw and pitch rotations or pitch and torsion rotation

(Wilcoxon signed-rank test, n ¼ 17, V ¼ 117, p . 0.05, full stat-

istics in electronic supplementary material, S3; figure 2e). These

findings demonstrate that stomatopods are able to indepen-

dently rotate their eyes in the three degrees of rotational

freedom, but that these rotations can become coupled in

some instances, such as the yaw and torsion rotation during

optokinesis shown in figure 2a,b. The reason for this occasional

coupling is, as yet, unclear.

Yaw gaze stabilization performance (SY) was unaffected by

the torsional pose (uT) of the eye. There was no strong overall
correlation between SY and uT: the correlation coefficients

between these variables for the left eye are not significantly

different from 0 (left: 20.02+0.08 (median+95% CI),

Wilcoxon signed-rank test, n ¼ 17, V ¼ 59, p ¼ 0.407;

figure 2f ) and, while the right eye correlation was significantly

different from 0, the correlation coefficient indicates an extre-

mely weak correlation (right: 0.03+0.28 s (median+95% CI),

Wilcoxon signed-rank test, n ¼ 17, V ¼ 122, p ¼ 0.031;

figure 2g). Further to this, the torsional pose of the eye,

when divided into the categories ‘horizontal’ (08 � uT � 258)
or ‘vertical’ (658 � uT � 908), had no significant effect on the

median value of SY when the eye was oriented in either angu-

lar category (left horizontal: 0.65+0.05 (median+95% CI);

left vertical: 0.75+0.02 (median+95% CI), Wilcoxon

signed-rank test, n ¼ 17, V ¼ 70, p ¼ 0.600; right horizontal:

0.72+ 0.06 (median+95% CI); right vertical: 0.87+0.02

(median+95% CI), Wilcoxon signed-rank test, n ¼ 17, V ¼
73, p ¼ 0.890; figure 2g). Similarly, there is no correlation

between yaw gaze stabilization performance and the velocity

of torsional rotations, with the maximum cross-correlation

coefficients being not significantly different from 0 (left eye:

0.04+ 0.13 (median+95% CI), Wilcoxon signed-rank test,

n ¼ 17, V ¼ 113, p ¼ 0.084; right eye: 0.04+ 0.21 (median+
95% CI), Wilcoxon signed-rank test, n ¼ 17, V ¼ 56, p ¼
0.332; figure 2g).
(b) Torsional optokinesis
The torsional rotation of the drum elicited torsional rotation of

the eyes, as well as yaw and pitch rotations (figure 3a). How-

ever, there was no evidence for torsional gaze stabilization as

the angular torsional velocity of the eye poorly matched the

angular torsional velocity of the drum at all three speed set-

tings (slow, medium and fast, indicated by the dotted lines,

figure 3a–c). Nor did the torsional rotation of the eye fit the

bi-phasic slow/fast profile typical of optokinetic nystagmus

OKR, as was observed for yaw optokinesis (figure 2a–c).

Nevertheless, the torsional angular velocity of the drum

rotation did have a significant effect on the torsional angular

velocity of the eye when it was rotating in the same direction

as the drum (GLMM, n ¼ 6, X2 ¼ 41.31, p , 0.001; figure 3d ),

the eyes rotating faster in torsion at higher drum speeds. It is

not clear what is causing this effect and, at this stage, we

cannot eliminate the possibility that the response is to a non-

visual stimulus, such as noise or vibrations from the drive

motor, that increased at the higher speeds.

Unlike the relative velocity ratios in the yaw degree of

rotational freedom, which showed a skewed distribution

(figure 2d), the distributions of the average torsional rela-

tive velocity ratios at each of the three speed settings follow

approximately normal distributions (figure 3e–g). As stated

previously, only torsional data in which the eye was facing for-

wards (uY , 308) are included in the statistical analysis. Despite

the significant effect of drum angular velocity on eye angular

velocity, the average torsional relative velocity ratio (ST) in the

direction of the drum for each speed setting was greater

than 1 (slow: ST ¼ 3.09+4.26, medium: ST ¼ 2.04+1.98, fast:

ST ¼ 1.23+1.07 (mean+ s.d., n ¼ 6), figure 3h), indicating

that the eyes generally rotated faster than the drum. Neither

the eye, left or right (GLMM, n ¼ 6, X2 ¼ 2.68, p ¼ 0.102), nor

the direction of drum rotation, clockwise or anticlockwise

(GLMM, n ¼ 6, X2 ¼ 0.43, p ¼ 0.513), had a significant effect

on the torsional relative velocity ratio. Across the whole
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Figure 2. (a – c) The three-dimensional rotational response (yaw (red), pitch (blue) and torsion (green)) of the left eye of a single stomatopod during three separate
trials in which the striped drum rotated anticlockwise in the yaw plane, producing a horizontally moving field of view. (d ) The distribution of relative velocity ratios
during the fast and slow phases of yaw optokinesis across the left and right eyes of 17 O. scyllarus during presentation of the drum rotating in both directions.
Dashed vertical line indicates ‘perfect’, idealized gaze stabilization (SY ¼ 1). SY . 0 when the eye is yawing in the same direction as the drum and SY , 0 when
yawing in the opposite direction (dark red region), as occurs during fast resets (n ¼ 17, error bars are standard deviation across all animals in each 0.5 interval).
(e) Distribution of the cross-correlation coefficients between the angular pose of each of the degrees of eye rotation during yaw-plane experiments showing
non-significant correlation between yaw and torsion, yaw and pitch, and torsion and pitch for the left and right eyes (n ¼ 17). Horizontal dashed line indicates
a cross-correlation coefficient of 0. ( f ) Boxplot of the cross-correlation coefficients between the relative velocity ratio in the yaw degree of freedom and the torsional
rotation of the left and right eyes during yaw-plane experiments. Yaw gaze stabilization performance is independent of both torsional pose and velocity of torsional
rotation. Horizontal dashed line indicates a cross-correlation coefficient of 0. (g) Median values of relative velocity ratio in 108 intervals as the left (orange) and right
(black) eyes rotate torsionally from horizontal (08) to vertical (908) (n ¼ 17, error bars are the standard deviation across all animals in each 108interval).
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ST ¼ 1. Error bars are the standard deviation at each drum speed (n ¼ 6). Also shown (grey) are the average torsional relative velocity ratios of both eyes of each individual.
While eye velocity approaches the drum velocity (ST � 1), gaze-stabilizing eye movements are expected to be slightly slower (ST) than the drum movements due to the finite
response time of the neural feedback loop.
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Figure 4. (a) The motion of a stimulus moving in the horizontal direction (red arrow) in the real-world coordinate system (indicated by the axes) across a sto-
matopod’s eye depends on its torsional pose. (b) In its reference frame, rather than an eye torsionally rotating, it remains motionless with the midband fixed in the
horizontal position, while the world rotates torsionally about the eye, as shown by the orientation of the real-world coordinate axes. In the eye’s reference frame, the
apparent direction of motion of the stimulus moving horizontally in the real world depends on its torsional pose. Despite the ubiquitous torsional rotations observed
during yaw tracking causing a dynamic apparent direction of motion, stomatopods are able to accurately track the actual motion of a horizontally displaced field of
view, showing normal optokinetic nystagmus in the yaw rotation, despite simultaneous (but uncorrelated) pitch and torsion rotations. (Online version in colour.)
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distribution, including the velocity of counter rotational data,

the torsional relative velocity ratios are not significantly differ-

ent from 0 (slow: S0T ¼ �0:30 + 5:14 (mean+ s.d.), Wilcoxon

signed-rank test, V ¼ 6, p ¼ 0.438; medium: S0T ¼ 0:15 + 2:56,

V¼ 11, p¼ 1; fast: S0T ¼ 0:02 + 1:65 , V¼ 6, p¼ 0.400 (n ¼ 6)).

In other words, the eyes spend approximately as much time

torsionally rotating counter to the drum direction (dark

green region in figure 3e–g) as they do rotating in the same

direction (light green region in figure 3e–g). This is in contrast

to the eye movements in response to the yaw rotation of the

drum, in which the eyes spend more time rotating in the

same direction as the drum in order to stabilize their gaze as

much as possible.
4. Discussion
When presented with a horizontally displaced field of view

comprising black and white vertical stripes on a surrounding

drum, O. scyllarus performed stereotypical yaw optokinesis

in order to stabilize their gaze. The left and right eyes per-

formed gaze stabilization equally and with no significant

preference for clockwise or anticlockwise movement of the

striped drum. This rotation in the yaw degree of freedom

was accompanied by both pitch and torsion rotation of the

eyes, despite the motion of the drum being purely in the hori-

zontal (yaw) plane. Moreover, the yaw gaze stabilization

performance was not significantly correlated with the eye’s tor-

sional or pitch pose, nor the rate of torsional rotation. A similar

result was found in another stomatopod species, Pseudosquilla
ciliata [18], suggesting that the consistency in yaw gaze stabiliz-

ation performance as the eye rotates torsionally is likely to be a

fundamental facet of stomatopod vision.

The ability of stomatopods to show optokinetic stabiliz-

ation in yaw, while their eyes simultaneously rotate in pitch

or torsion, indicates that the neuronal network for detecting

wide-field motion in the stomatopod eye must be more com-

plex than a simple system of a Reichardt-like motion detector

and a comparison between horizontal or vertical pairs of

photoreceptors [54–56]. As previously mentioned, the gaze

stabilization response of many insects originates with
directionally selective wide-field neurons that have a specific

orientation in the eye relative to real-world coordinates

(e.g. [24,25]). Gaze-stabilizing mechanisms in stomatopods,

with their torsionally rotating eyes, would likely require a

different architecture that is optimized to a shifting coordinate

system. For stomatopods, the apparent direction of motion of a

stimulus will depend on the eye’s torsional pose. For instance,

the direction of a horizontally moving stimulus progressing at

a constant angular velocity will appear to change sinusoidally

as the eye rotates torsionally (figure 4). Nevertheless, as we

have shown, the yaw gaze stabilization performance of a sto-

matopod eye appears to be independent of both its torsional

pose and its rate of torsional rotation. Such a finding suggests

that the stomatopod’s wide-field motion detection network

may be radially symmetrical, which would be novel in any

visual system.

Further to this, O. scyllarus did not show any evidence of

torsional gaze stabilization in response to a torsionally rotating

field of view. This is in contrast to many flying insects, such as

honeybees [57], wasps [58] and blowflies [59], which exhibit

compensatory torsional rotation of the head in order to stabil-

ize their gaze relative to torsional rotation of the visual scene. In

insects with halteres, such as dipteran flies, compensatory tor-

sional rotation of the head can be induced either by the visual

or haltere systems, while in the hymenopteran insects lacking

the mechanosensory information from halteres, torsional

head rotations have been shown to be governed purely by

the visual system [57–59]. Three-dimensional gaze stabiliz-

ation is particularly important during flight control as it

reduces motion blur and prevents image rotation from degrad-

ing optic flow information; translational optic flow being an

important visual cue during flight, assisting in flight control,

determining self-motion, navigation and landing [57,60,61].

Like many other crustaceans, O. scyllarus are benthic,

spending the vast majority of their time in contact with the

ocean floor or with the walls of their home burrows. Conse-

quently, torsional stability may not be as critical as it would

be to a flying insect, at least while the stomatopod is stationary.

Several species of benthic crabs have been shown to perform

torsional rotation of their eyes in response to vestibular or

visual stimuli [62–64]. It is likely that these compensatory
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eye movements, which have a limited rotational range (less

than 158), act to keep the gaze of the crab stable and level rela-

tive to a local horizon during locomotion over a rough terrain

[62,63]. However, two substantial differences in the visual sys-

tems of stomatopods and crabs limit the comparison between

the two animals; stomatopods fixate objects and perform

visual scans, while crabs do neither [42,44,46,65].

Although we found no evidence for torsional gaze stabiliz-

ation in stationary O. scyllarus when viewing a torsionally

rotating visual scene, it is possible that their repertoire of eye

movements may change when they undergo locomotion,

either walking or swimming, due to different neural control

requirements. Locomotion will induce optic flow in the stoma-

topod’s visual system and, although little is known about their

way, they may process and use such information, it is likely

to be as useful to stomatopods as to other invertebrates. In

addition, while stationary, torsional eye rotations are likely to

play a functional role in enhancing certain facets of stomatopod

vision: for instance, both O. scyllarus and G. smithii employ tor-

sional rotations in order to dynamically enhance their linear

polarization vision [42]. It has also been hypothesized that tor-

sional rotations may be instrumental in optimally positioning

the eyes during scans that are undertaken during the visual

inspection of objects [47].
5. Conclusion
Although stomatopods display the stereotypical features of

optokinetic nystagmus in ocular yaw rotations in response to

the horizontal displacement of their visual field, the neural

basis of this gaze stabilization system is potentially more com-

plex than that of other crustaceans due to their ability to

perform torsional rotations through at least 908 while simul-

taneously yaw-tracking. Although it is far easier to detect
motion in a scene when an eye is stable, the stomatopod’s

visual system appears to be able to detect and follow transla-

tional motion even during torsional rotation. Our findings

could be explained by the presence of an unusual radial

array of motion detectors in stomatopod visual systems. Such

an array has never been described, and it would have to be

able to compensate for wide-field translational motion and

be unaffected by torsional self-motion of the eyes, at least

when the animal is stationary. Such a radial array would

allow the stomatopods to detect, and therefore track, the

motion of a stimulus in any direction equally across the eye

rather than along set directions. A full understanding of this

system has biomimetic potential, as a system of motion detec-

tion that is insensitive to the negative effects of torsional

rotation would have many applications in the realm of machine

vision, especially on mobile platforms.
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