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Abstract

Based on metabolic and morphological similarities between infective third-stage larvae of parasitic nematodes and dauer
larvae of Caenorhabditis elegans, it is hypothesized that similar genetic mechanisms control the development of these forms.
In the parasite Strongyloides stercoralis, FKTF-1 is an ortholog of DAF-16, a forkhead transcription factor that regulates dauer
larval development in C. elegans. Using transgenesis, we investigated the role of FKTF-1 in S. stercoralis’ infective larval
development. In first-stage larvae, GFP-tagged recombinant FKTF-1b localizes to the pharynx and hypodermis, tissues
remodeled in infective larvae. Activating and inactivating mutations at predicted AKT phosphorylation sites on FKTF-1b give
constitutive cytoplasmic and nuclear localization of the protein, respectively, indicating that its post-translational regulation
is similar to other FOXO-class transcription factors. Mutant constructs designed to interfere with endogenous FKTF-1b
function altered the intestinal and pharyngeal development of the larvae and resulted in some transgenic larvae failing to
arrest in the infective stage. Our findings indicate that FKTF-1b is required for proper morphogenesis of S. stercoralis
infective larvae and support the overall hypothesis of similar regulation of dauer development in C. elegans and the
formation of infective larvae in parasitic nematodes.
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Introduction

Parasitism among nematodes appears to have arisen multiple

times throughout evolution [1]. However, the exact mechanism by

which nematodes developed parasitic life histories is unknown.

Altering gene regulation through variation in conserved signaling

systems, is a potential mechanism by which a free-living species

might develop characteristics required for parasitism [2]. Insulin-

like signaling regulates metabolism and lifespan in a variety of

organisms including nematodes, insects and mammals [3,4]. In

Caenorhabditis elegans, this signaling pathway mediates entry into the

dauer larvae diapause by negatively regulating DAF-16, a

forkhead transcription factor type O (FOXO) [5]. Biological

requirements of C. elegans dauer larvae include increased resistance

to stress and a metabolism altered to allow the animal to persist,

potentially for months, in unfavorable environments [6]. Infective

larvae of parasitic nematodes, such as S. stercoralis, have similar

requirements for survival prior to host finding. The ‘dauer

hypothesis’ recognizes the common physiological characteristics

of dauer larvae and parasitic infective larvae, and proposes that the

same molecular genetic mechanisms control the morphogenesis of

both forms [7].

The life cycles of Strongyloides and Parastrongyloides spp., unusual

among the parasitic nematodes, alternate between free-living and

parasitic generations [8,9]. First-stage larval progeny of parasitic S.

stercoralis females typically develop into free-living adults unless

triggered by genetic, environmental or host-associated conditions

to develop directly into infective third-stage larvae (L3i) [10].

Progeny of the free-living generation of S. stercoralis are uniformly

fated to become L3i that invade the host and develop into parasitic

females. Previous work identified the FOXO encoding gene fktf-1

(forkhead transcription factor-1) as the ortholog of C. elegans daf-16 in S.

stercoralis [11]. In heterologous rescue experiments, a transgene

construct designed to express FKTF-1b (isoform b) partially

restored DAF-16 function to C. elegans daf-2;daf-16 double mutants

[12] rescuing the dauer development phenotype. These data

indicate that fktf-1b encodes a working forkhead transcription

factor that can function in insulin-like signaling to regulate L3

development in C. elegans.

The more relevant question of whether FKTF-1b regulates

infective larval development in S. stercoralis itself can now be

addressed using new methods for transgenesis in this parasite

[13,14]. In the present study, we transformed free-living adult

female S. stercoralis with constructs encoding a 2.6 kb fktf-1b
promoter controlling expression of GFP::FKTF-1b fusion proteins.

We then examined first-stage larval progeny of these female

worms for anatomical and intra-cellular localization of GFP-linked

proteins and for phenotypes associated with expression of

transgenes encoding mutant forms of FKTF-1b.

Results/Discussion

Anatomical expression patterns of fktf-1b
First, we asked whether the localization of fktf-1b expression in

S. stercoralis mimics that of C. elegans daf-16b, which is expressed

primarily in the pharynx and body neurons [5]. First-stage S.
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stercoralis larvae expressed fktf-1b::gfp::fktf-1b (Figure S1) predom-

inantly in the procorpus of the pharynx (Figure 1A, and Figure 1B,

arrow) and the hypodermis (Figure 1C and 1D). These expression

patterns continued into the L3i (Figure 1E and 1F). In S. stercoralis,

remodeling of the short, trilobed rhabditiform pharynx of the L1

into the long, cylindrical filariform pharynx of the L3i is a

hallmark of the transition to infectivity [15]. The rhabditiform

pharynx, found in all free-living stages, has three main

components: the procorpus, the isthmus and the terminal bulb.

The procorpus of the pharynx is the muscular region anterior to

the narrow isthmus and is primarily responsible for food intake

[15]. The pharynx of the non-feeding L3i, is not contractile and

has no readily identifiable lobes [15]. Interestingly, expression of

the fktf-1b reporter construct in the filariform pharynx was

restricted to a band (Figure 1F arrow) analogous to the procorpus

of a rhabditiform pharynx. The hypodermal cell layer is

responsible for secretion of the cuticle in a stage specific manner

[16]. The infective larval cuticle must not only protect the L3i, it

must also allow the L3i to sense the presence of a host and secrete

molecules facilitating invasion. Although the expression patterns of

the fusion protein in L1 varied somewhat (Figure 1G), the fact that

the predominant sites of expression were the pharyngeal procorpus

and the hypodermis bolsters confidence that the endogenous fktf-

1b promoter is active in these tissues in wild-type larvae. This

pattern of expression is consistent with a role for FKTF-1b in the

development of structures characteristic of infective larvae.

FKTF-1b is regulated via phosphorylation
Insulin-like signaling negatively regulates the function of forkhead

transcription factors, including DAF-16, via phosphorylation of

serines or threonines at specific sites by Akt/PKB kinases [17]. To

ascertain similar post-translational regulation of FKTF-1b, we

transformed S. stercoralis with vectors encoding mutant versions of

GFP::FKTF-1b that were predicted to behave as either constitutively

phosphorylated or non-phosphorylated forms of the protein.

Substitution of charged residues, either aspartic or glutamic acids,

for serines at Akt/PKB phosphorylation sites in the forkhead domain

of human FOXOs is sufficient for disruption of DNA binding by

these proteins and for their export from the nucleus [18,19].

Homologous ‘phospho-mimetic’ mutations in predicted Akt/PKB

sites of FKTF-1b also resulted in constitutive export of the fusion

protein GFP::FKTF-1b(S238E/T240E) (encoded by pPV244,

Figure S1) from nuclei of hypodermal cells in transgenic S. stercoralis

L1 (Figure 2A and 2B and 2G). Likewise, disruption of all four

predicted Akt/PKB sites in FKTF-1b by substitution of the neutral

amino acid alanine for critical serine or threonine residues (see

Figure 1. Anatomical expression patterns of fktf-1b::gfp::fktf-1b.
DIC and fluorescence images of transgenic S. stercoralis larvae. Each DIC
image is a separate individual. All scale bars = 10 mm. (A,B) Transgenic
first-stage larvae with GFP expression in the procorpus (arrow) of the
pharynx. (C,D) Expression of the GFP::FKTF-1b(wt) transgene in the
hypodermis of an L1. (E,F) Transgenic L3i expressing the GFP::FKTF-
1b(wt) fusion protein in the hypodermis and a narrow band in the
pharynx (arrow). (G) Sites of gfp expression under the direction of the
fktf-1b promoter in 125 transgenic first-stage larvae from five or more
experiments expressing gfp reporters under the direction of fktf-1b
promoter. Due to variations in transformation rates between experi-
ments, all transgenic larvae were pooled to quantify expression
patterns. x2 test, P = 2.9E-14.
doi:10.1371/journal.ppat.1000370.g001

Author Summary

Parasitic nematodes are an important threat to public
health in much of the world. Understanding how these
worms find and invade their hosts may lead to improved
therapies. The infectious forms of many parasitic nema-
todes developmentally arrest as infective third-stage larvae
that require hosts to reactivate. Development of these
larvae has been compared to that of the diapausing dauer
larvae of Caenorhabditis elegans. Our lab studies the
development of the human nematode parasite Strongyloi-
des stercoralis. We identified S. stercoralis’ FKTF-1 as an
ortholog of DAF-16, a forkhead transcription factor
controlling dauer larval development in C. elegans.
Transgenes were introduced into S. stercoralis to investi-
gate the possibility that FKTF-1 regulates development of
its infective larvae. We discovered that recombinant FKTF-
1b tagged with GFP localizes to specific tissues remodeled
in infective larvae. Furthermore, mutant forms of FKTF-1b
designed to interfere with endogenous FKTF-1b function
resulted in incomplete development of the infective larval
structures and prevented some transgenic larvae from
arresting in the infective stage. Indicating that FKTF-1b is
required for the proper development of Strongyloides
stercoralis infective larvae, our findings support the
hypothesis of similar controls over parasitic and free-living
nematode development and pave the way for further
comparative studies.

fktf-1b Function in S. stercoralis
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pPV243, Figure S1) resulted in strongly enhanced nuclear

localization of the ‘phospho-null’ fusion protein GFP::FKTF-

1b(4A) (Figure 2E–2G). These data indicate that FKTF-1b’s intra-

cellular localization, and thereby its access to genomic response

elements, is regulated by phosphorylation in a similar manner to

DAF-16 and other FOXO-class transcription factors.

Dominant interfering transgenes cause altered intestinal
morphology in L1s

Its anatomical localization and intra-cellular trafficking support

the hypothesis that FKTF-1b is an ortholog of DAF-16 and that

through it, insulin-like signaling regulates S. stercoralis’ larval

development. More conclusive testing of this hypothesis requires

experimental manipulation of gene function and evaluation of

phenotypic outcomes. Thus far, S. stercoralis, like many other

parasitic nematodes, has proven insensitive to targeted gene

silencing via RNAi [20]. Therefore, we opted for an approach

based on transgenesis in which we express altered forms of FKTF-

1b designed to interfere with the function of the endogenous

transcription factor. Two such mutant proteins, encoded by

plasmids pPV251 and pPV298, respectively (Figure S1), are

tagged with GFP and carry the four ‘phospho-null’ mutations

described above, causing them to be sequestered in the nucleus

Figure 2. Intra-cellular localization of GFP::FKTF-1b phosphorylation mutants. DIC and fluorescence images of representative hypodermal
cells of transgenic S. stercoralis L1s. In all images, the nucleus is identified with an arrow. All scale bars = 10 mm. (A,B) L1 expressing pPV244(S238E/
T240E), the ‘‘phospho-mimetic’’ GFP::FKTF-1b with fluorescence in the cytoplasm. (C,D) L1 expressing pPV234, GFP::FKTF-1b(wt), with fluorescence in
both the cytoplasm and the nucleus. (E,F) L1 with strong nuclear localization of the FKTF-1b(4A) fusion protein. (G) Percentages of hypodermal cells in
transgenic larvae with intra-cellular localization of GFP classified as ‘‘cytoplasmic’’, ‘‘cytoplasmic/nuclear’’, or ‘‘nuclear’’. Results include transgenic
larvae from at least two separate microinjection experiments per transgene. Phospho-mimetic: n = 47 GFP+ cells in 11 larvae. GFP::FKTF-1b: n = 29
GFP+ cells in 8 larvae. Phospho-null: n = 37 GFP+ cells in 8 larvae. x2 test P = 1.23E-10.
doi:10.1371/journal.ppat.1000370.g002

fktf-1b Function in S. stercoralis
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where they presumably out-compete native FKTF-1b for response

elements in the genome. In addition, both mutant proteins are

truncated within the C-terminal domain immediately downstream

of the fourth regulatory phosphorylation site, ablating key

transactivator binding motifs. In one of the dominant interfering

proteins, encoded by pPV251 and dubbed GFP::FKTF-1b(dom-

inant-repressor), the truncated C-terminal domain is fused to the

repressor domain of Ce-PIE-1, a protein responsible for the

transcriptional repression characterizing the germline precursor of

C. elegans [21]. In the other mutant protein, encoded by pPV298

and dubbed GFP::FKTF-1b(dominant-negative), the truncated C-

terminal domain is not linked to Ce-PIE-1.

Upon hatching, larvae expressing either of the dominant

interfering constructs were shorter but virtually identical in form

to larvae expressing GFP-tagged wild-type FKTF-1b at similar

levels (Figure S2), indicating that the S. stercoralis transcription

factor, like DAF-16 in C. elegans [22], does not play a significant

role in embryonic development. By contrast, at 24 hours, S.

stercoralis L1 expressing either of the dominant interfering mutants

of FKTF-1b exhibited phenotypic changes in the form and

apparent function of their intestinal cells, with these being most

evident in larvae expressing the dominant-repressor construct.

These phenotypes ranged from flattening of the normally apically

rounded intestinal cells and a decrease in the number of

cytoplasmic storage granules in the presence of GFP::FKTF-

1b(dominant-negative) (compare Figure 3J to Figure 3H and

Figure 3I) to an almost complete loss of intestinal cell architecture

and of cytoplasmic storage granules in the presence of the

GFP::FKTF-1b(dominant-repressor). Perhaps due to compro-

mised intestinal cell function, S. stercoralis L1 expressing

GFP::FKTF-1b(dominant-repressor) exhibited significant

(P,0.01) growth retardation at 24 hours (Figure 3N). Owing to

the severity of the associated phenotypes, none of the larvae

expressing GFP::FKTF-1b(dominant-repressor) survived beyond

the L1. The fact that S. stercoralis L1 expressing comparable levels

of wild-type FKTF-1 tagged with GFP (Figure 3B, 3E, and 3I)

were morphologically similar to untransformed larvae (Figure 3A

and 3H) argues against the observed phenotypes being due to non-

specific effects of recombinant protein expression. Therefore, it is

clear from these findings that FKTF-1 is necessary for normal

development of intestinal cells in pre-infective larvae of S. stercoralis

and specifically for accumulation of storage granules, which may

contain reserves necessary for survival of the L3i.

Dominant interfering transgenes cause aberrant
morphogenesis in S. stercoralis L3

With regard to the dauer hypothesis and the role of insulin

signaling in infective larval development, the most significant

results in the present study were the morphogenetic changes seen

in L3 expressing the GFP::FKTF-1b(dominant-negative) trans-

gene. Under the null hypothesis, all of our transgenic larvae should

develop to L3i. While L3i expressing the wild-type GFP::FKTF-1b

fusion protein were morphologically identical to their non-

transgenic counterparts (Figure 4A and 4B, compare to Figure

S3A), L3 expressing the dominant-negative transgene (Figure 4C

and 4D) exhibited some indications of bypassing developmental

arrest and failing to undergo the pharyngeal and intestinal

remodeling characteristic of L3i. Three of the 11 transgenic L3

appeared to initiate an aberrant molt to the fourth stage as

evidenced by the existence of a pointed tail inside a notched L3i

cuticle cast (Figure 4E and 4F compared to wild-type Figure 4G).

The notched tail is characteristic of infective larvae and is created

by pairs of ‘L3i-specific’ alae [15]. Another L3 expressing the

dominant-negative construct exhibited an elongated rhabditiform

pharynx complete with a grinder-like structure (Figure 4H and 4I)

instead of the expected filariform pharynx (Figure S3B and Figure

S3C). Incomplete remodeling of the rhabditiform pharynx and

initiation of a supernumerary molt in culture are consistent with

expression of the interfering FKTF-1b transgenes in the

pharyngeal procorpus and the hypodermis. Initiation of ecdysis

by L3 in combination with retention of some rhabditiform

pharyngeal characteristics as we observed suggests that worms

expressing GFP::FKTF-1b(dominant-negative) were developing in

the direction of a second-generation free-living L4. While such a

form occurs in some strongyloidoid species (e.g. Strongyloides

planiceps, Parastrongyloides trichosuri), it does not exist in the natural

life cycle of S. stercoralis [8,23].

Five of the 11 transgenic L3 expressing the dominant-negative

construct exhibited changes consistent with a failure to remodel

the free-living intestine into the darkened, radially constricted

intestine of the L3i. In some cases, the L3 intestine retained

bacteria (Figure 4E) and in others, it failed to constrict and close

(Figure 4I to the left of the black triangle). The incompletely

remodeled intestine seen in the transgenic L3 is consistent with the

defects in intestinal structure seen in the L1. Together, these data

indicate that FKTF-1b is required for the proper remodeling of

the pharynx and the intestine of a free-living larva into structures

characteristic of the infective larva.

Our findings support the ‘dauer hypothesis’ [7] by showing that

the forkhead transcription factor FKTF-1b, presumably under the

control of insulin-like signaling, regulates infective larval develop-

ment in Strongyloides stercoralis in a manner similar to the dauer

regulatory functions of DAF-16 in Caenorhabditis elegans. Further-

more, in this study, we have demonstrated the utility of

transgenesis in S. stercoralis for investigation not only of temporal

and spatial patterns of gene expression, but also of endogenous

gene function. This work opens new avenues of inquiry into the

genes involved in the shift between free-living and parasitic states

in Strongyloides stercoralis and ultimately into the evolution of

parasitism in nematodes generally.

Materials and Methods

Parasite maintenance and culture
The UPD strain of Strongyloides stercoralis was maintained in

immuno-suppressed dogs and cultured as described [24]. Free-

living adult S. stercoralis were isolated from two-day-old coprocul-

tures via Baermann funnels. The worms were washed twice with

sterile deionized water to reduce carryover of fecal bacteria and

plated on Nematode Growth Medium (NGM agar) plates seeded

with Escherichia coli OP50. All cultures of S. stercoralis were

incubated at 22uC unless otherwise noted.

Transgene construction
gfp reporters. In C. elegans, the promoter for splice form daf-

16b exists in the large intron between exons 4 and 5 [25]. The fktf-

1 genomic sequence also includes a large, approximately 6 kb,

intron between the end of the fktf-1a-specific exons (exons 1–3) and

the beginning of the fktf-1b-specific exon 4 [11]. We used 2.6 kb

sequence directly 59 of the fktf-1b-specific ATG codon plus the first

90 bp of the coding sequence as the fktf-1b promoter element.

Using the primers SsHindBprF1 and SsBprPstR2 (Table S1), we

amplified the putative fktf-1b promoter from plasmid pPV57. The

PCR product was cloned into pAJ01, a promoter-less vector

containing the gfp coding sequence fused to the Strongyloides era-1 39

UTR, with HindIII and PstI restriction enzymes using standard

techniques. The resulting fktf-1b::gfp::era-1 reporter construct was

designated pPV232 (Figure S1).

fktf-1b Function in S. stercoralis
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Figure 3. S. stercoralis transgenic L1s 24 hours post-hatch. Representative images of S. stercoralis wild-type and transgenic larvae at 24 hours
post-hatch. Each DIC image is a separate individual. All scale bars = 10 mm. By 24 hours, the wild-type (A) and GFP::FKTF-1b(wt) (B) larvae have grown
to comparable lengths with similar numbers of intestinal granules. (C) GFP::FKTF-1b(dom-neg)–expressing larvae are a similar length but show

fktf-1b Function in S. stercoralis
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To create the fusion protein GFP::FKTF-1b, the original

construct pPV232 was altered via site-directed mutagenesis

(QuikChange Site-Directed Mutagenesis, Stratagene, La Jolla,

California, USA), to remove the terminator for the gfp coding

region and to introduce the unique restriction site BspEI using the

primers GFPnoTER-BspEF and R (Table S1). The clone with the

appropriate mutation and the new restriction site was designated

pPV233 (fktf-1b::gfp(no ter)::era-1). The cDNA sequence for fktf-1b

had been previously cloned into a plasmid vector pPV207. The

coding region of fktf-1b was amplified from pPV207 using the

primers: BspE-FkBF (Table S1) and FkB-AvrIIR (Table S1) and

inserted into pPV233 using the restriction enzymes BspEI and

AvrII via standard techniques. The clone containing the full-

length fktf-1b promoter with gfp fused N-terminal to and in frame

with the fktf-1b coding region was designated pPV234 (fktf-

1b::gfp::fktf-1b::era-1) (Figure S1).

Phosphorylation mutant constructs. Phosphorylation-null

and phosphorylation-mimetic constructs were created from

pPV234 using site-directed mutagenesis (QuikChange Site-

Directed Mutagenesis, Stratagene, La Jolla, California, USA).

All phosphorylation-null mutagenesis reactions were carried out

on the cDNA sequence of fktf-1b in the pCR-BluntII-TOPO

cloning vector (Invitrogen, Carlsbad, California, USA) to improve

the efficiency of the reactions. The phosphorylation-null construct

was created in three stages, each stage mutating the key regulatory

residues in one of the three functional domains. Primers FK-

1bPsite1F2 (Table S1) and FK-1bPsite1R (Table S1) mutated

threonine 22 to alanine in the N-terminal domain. Primers

SsD16Psite2F and SsD16Psite2R (Table S1) mutated both serine

238 and threonine 240 to alanine. Primers FkCPsite3KOF2 and

FkCPsite3KOR2 (Table S1) mutated the phosphorylation site

serine 317 to alanine in the C-terminal transactivation domain.

Once all four sites were mutated, the wild-type fktf-1b coding

region was removed from the pPV234 vector, and the phospho-

null fktf-1b(4A) coding region was cloned in using BspEI and AvrII

sites using standard techniques. The phospho-null construct was

designated pPV243 (fktf-1b::gfp::fktf-1b(4A)::era-1) (Figure S1).

Phosphorylation-mimetic primers FkB S238E&T240E F and

FkB S238E&T240E R (Table S1) mutated serine 238 and

threonine 240, key residues in the forkhead domain, to glutamic

acid to mimic the negative charge of phosphorylated residues. The

phospho-mimetic construct was designated pPV244 (fktf-

1b::gfp::fktf-1b(S238E/T240E)::era-1) (Figure S1).

Dominant-interfering constructs. The phospho-null

construct, GFP::FKTF-1b(4A), which sequesters in the nucleus,

still contains functional forkhead (DNA binding) domain and C-

terminal transactivation domains and thus should out compete

endogenous FKTF-1b for DNA binding sites. Truncation of the

C-terminal domain in the phospho-null GFP::FKTF-1b, should

create a protein constitutively bound to DNA but unable to

activate transcription. Subsequently, replacing the endogenous

transactivation domain of FKTF-1b with a repressor domain

should create a protein actively repressing transcription specific to

FKTF-1b’s DNA binding domain.

The transactivation domain was truncated using an introduced

ClaI site immediately downstream of the regulatory phosphory-

lation site S317. The phospho-null fktf-1b(4A) in the pCR-BluntII-

TOPO vector (Invitrogen, Carlsbad, California, USA) was again

used for mutagenesis using the primers FKTFtrcMutCla1F and

FkMutTrcCla R2 (Table S1) to introduce the ClaI site in the

desired location. The plasmid was cut using BspEI and ClaI to

release the fktf-1b(4A, truncated) coding region (BspEI-fktf-1b(4a,

trunc)-ClaI).

The coding region for the C. elegans gene pie-1 was amplified

from RNA prepared from a pool of C. elegans N2 worms using the

primers Ce-pie-1ATGF and Ce-pie-1StopR (Table S1) and cloned

into a pCR-BluntII-TOPO cloning vector (Invitrogen, Carlsbad,

California, USA). The active repressor domain of PIE-1 consists of

81 amino acids at the C-terminus (CTD) [21]. Using the primers

ClaI-pieCTDF and Ce-pie-1teravrR (Table S1) the repressor

domain alone was PCR amplified using PfuTurbo (Stratagene,

La Jolla, California, USA). The resulting PCR product was

digested with ClaI and AvrII for cloning, (ClaI-pieCTD-AvrII).

pPV234 was digested with BspEI and AvrII to remove the wild-

type fktf-1b coding region. The ligation reaction included the

digested pPV234 vector, the BspEI-fktf-1b(4A, trunc)-ClaI and the

ClaI-pie-1CTD-AvrII simultaneously. The resulting construct,

pPV251 (fktf-1b::gfp::fktf-1b(4A,trunc)::pie-1CTD::era-1), incorporat-

ed gfp upstream of the mutated and truncated fktf-1b region, which

became fused to the pie-1CTD (Figure S1). The dominant-negative

construct, pPV298 (fktf-1b::gfp::fktf-1b(4A,trunc)::era-1) (Figure S1),

was created by simply removing the pie-CTD from pPV251 via

restriction enzyme digest with ClaI and AvrII. The digested ‘sticky

ends’ were filled in with PfuTurbo (Stratagene, La Jolla, California,

USA) using standard methods and blunt-end ligated.

Transformation of S. stercoralis
Adult female S. stercoralis were transformed with transgene

encoding plasmids via intra-gonadal microinjection using standard

protocols [24,26]. Coding plasmids were injected at a concentra-

tion of 10–100 ng/ml with non-coding plasmids being used as

necessary to make up the total DNA concentration to 100 ng/ml.

Following injection, worms were transferred to clean NGM OP50

plates with an excess of males and incubated at 22uC.

For general expression patterns, plates were scored at 24 hour

intervals for adult survival and frequency of transgene expression

among F1 progeny. For specific time points, adults were

transferred to clean NGM OP50 plates at three to five hour

intervals to obtain egg cohorts. All plates with eggs were checked

at hourly intervals for the presence of transgenic progeny. When

the time of hatch was known, transgenic larvae were transferred to

clean plates marked with the time point and examined after the

reduced intestinal granularity. (D) GFP::FKTF-1b(dom-rep)–expressing animals exhibit almost a complete loss of intestinal architecture and do not
survive past 24 hours. Comparable levels of transgene expression were seen in the transgenic animals at 24 hours (E–G). (H–K) Higher magnification
images of intestinal cells near primordial gonad (arrow) showing fewer storage granules in the GFP::FKTF-1b(dom-neg) (J) and the loss of cell integrity
in GFP::FKTF-1b(dom-rep)– (K) expressing larvae at 24 hours. (L) The presence of storage granules in the intestinal cells of wild-type and transgenic
larvae was scored+if the majority of cells near the primordial gonad (arrow) contained granules. (M) Wild-type and transgenic larvae were scored for
overall intestinal defects including structural damage and abnormal morphology. Larvae expressing either of the dominant-interfering transgenes
exhibited intestinal defects at all timepoints (see Table S2 for counts). (N) All larvae were measured from the tip of the buccal cavity to the tip of the
tail using the ImageJ program [27]. A minimum of 10 larvae per category per timepoint, with the exception of GFP::FKTF-1b(wild-type) L3i where
n = 8, were examined and measured (Table S2). At 1 hour post-hatch, larvae expressing either of the dominant-interfering transgenes were slightly
shorter than the wild-type larvae (P,0.05). At 24 hours post-hatch, only the GFP::FKTF-1b(dominant-repressor) transgene–expressing larvae were
significantly shorter than the wild-type (P,0.01). The transgenic L3i expressing the GFP::FKTF-1b(dom-neg) transgene were not significantly shorter
than the wild-type L3is (P.0.05).
doi:10.1371/journal.ppat.1000370.g003
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appropriate interval. Transgenic progeny for which the time of

hatch was not known were used for analysis of L3i development.

The low transformation rate, ,5%, of S. stercoralis larvae made it

impractical to accumulate sufficient numbers of individuals for

both phenotypic study (Table S2 for phenotype counts) and

confirmation of a full-length gfp::fktf-1b transcript. However, we

have confirmed that C. elegans transformed with the same gfp::fktf-

1b coding sequence under the control of the daf-16 promoter

exhibit GFP fluorescence and express a full length transcript

encoding the fusion protein (data not shown). Current methods

only allow us to observe transgene expression in F1 generation

following transformation.

DIC and Fluorescent Microscopy
Transgenic larvae were identified based on GFP fluorescence

using an Olympus SZX12 stereomicroscope with coaxial epi-

fluorescence. For more detailed examination of particular tissues

and individual cells, larvae were immobilized on 4% Agar Noble

(Sigma, St. Louis, Missouri, USA) pads in 10 mM (L1) or 20 mM

(L3i) levamisole and observed using an Olympus BX60 compound

microscope equipped with Nomarski Differential Interference

Contrast (DIC) optics and epifluorescence (Olympus America Inc.,

Center Valley, Pennsylvania, USA). Specimens were imaged with

a Spot RT Color digital camera and images were processed using

either the Spot Advanced image analysis software package

(Diagnostic Instruments, Inc., Sterling Heights, Michigan, USA)

or Adobe Photoshop 7.0. All image-processing algorithms (e.g.

brightness and contrast adjustments) were applied in a linear

fashion to the entire image.

Measurements
Worm lengths were measured using the ImageJ program

available from the National Institutes of Health (http://rsb.info.

nih.gov/ij/) [27]. Calibrations were done by determining the

distance of 10 mm on a micrometer in pixels and then setting the

scale in the program. All measurements were done in duplicate

using the freehand line option, taking the average of the results for

analysis.

Statistical Analysis
As categorical data, expression patterns, localization and

phenotypes, were analyzed using x2 tests. Analysis of the

expression patterns of the fktf-1b promoter constructs was based

on the null hypothesis that the expression patterns were not

specific to the hypodermis and the pharynx. Categories of intra-

cellular GFP localization were analyzed based on the null

hypothesis that the phosphorylation status of the FKTF-1b protein

had no effect on its localization. In order to compare the mean

lengths of wild-type and transgenic larvae, we used the Mann-

Whitney test, which makes no assumptions as to the population

distribution of the observations.

Supporting Information

Figure S1 Diagrams of fktf-1b constructs used to transform S.

stercoralis. pPV232 encoding the fktf-1b::gfp transcriptional reporter.

pPV234, the GFP::FKTF-1b(wt) fusion protein expression vector.

pPV243 (GFP::FKTF-1b(4A)) has all four canonical Akt/PKB

phosphorylation sites mutated to alanine. pPV244 (GFP::FKTF-

1b(S238E/T240E) has the phosphorylation sites in the forkhead

domain changed to the phospho-mimetic glutamic acid. pPV251

(GFP::FKTF-1b(dom-rep)) and pPV298 (GFP::FKTF-1b(dom-

neg)) both contain the four alanine mutations. pPV251 encodes

a chimeric fktf-1b with the repressor domain from Ce-pie-1

replacing the endogenous transactivation domain. pPV298 is

truncated just downstream of the fourth regulatory phosphoryla-

tion site and thus lacks either a transactivation or a repressor

domain.

Found at: doi:10.1371/journal.ppat.1000370.s001 (0.63 MB TIF)

Figure 4. Third-stage S. stercoralis larvae expressing dominant
interfering transgenes. DIC and fluorescence images of transgenic
L3s [n = 11 for GFP::FKTF-1b(dominant-negative), n = 8 for GFP::FKTF-
1b(wild-type)]. All scale bars = 10 mm. Except where noted, each DIC
image is a separate individual. (A,B) An L3i expressing the GFP::FKTF-
1b(wt) transgene. (C,D) An L3 expressing the GFP::FKTF-1b(dominant-
negative) transgene. (E) Higher magnification image of the tail of the L3
in (C) showing an L4 tail inside the characteristic L3i cuticle (arrow).
Bacterial mass in the posterior intestine (white triangle) indicating
failure of intestine to become radially constricted and blocked. (F) A
second transgenic L3 showing the free-living L4 tail inside the L3i
cuticle. (G) Wild-type L3i tail for comparison to transgenic tails. (H) A
third transgenic L3 expressing the dominant-negative transgene with
an elongated rhabditiform pharynx, with an intestine that is neither
radially constricted nor blocked. (I) Grinder-like structure (black triangle)
at the pharynx-intestine junction of (H). This structure is absent in wild-
type L3is.
doi:10.1371/journal.ppat.1000370.g004
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Figure S2 Transgenic S. stercoralis L1 at 1 hour post-hatch. DIC

and fluorescence images of S. stercoralis larvae. Each DIC image is a

separate individual. All scale bars = 10 mm. (A–D) 1-hour-old

transgenic hatchlings exhibit similar morphology to the non-

transgenic hatchling. (E–G) The fusion protein transgenes have

similar levels of expression throughout the larvae. (H–K) Intestinal

cells of the 1-hour post-hatch larvae were examined for presence

or absence of granules using the primordial gonad (arrow) as a

landmark. All larvae, wild-type and transgenic, show healthy

looking cells with little granularity at this early timepoint. The

similar morphologies of the larvae at 1 hour post-hatch indicate

apparently normal embryogenesis of transgenic larvae.

Found at: doi:10.1371/journal.ppat.1000370.s002 (3.25 MB TIF)

Figure S3 Examples of Strongyloides stercoralis wild-type L3i. (A)

DIC image of wild-type L3i showing filariform pharynx, pharynx-

intestinal junction (black triangle), and constricted, dark intestine.

Scale bar = 20 mm. (B) Anterior half of L3i pharynx showing

constricted cylindrical structure characteristic of the filariform

pharynx. Scale bar = 10 mm. (C) Pharynx-intestinal junction (black

triangle) of an L3i. Note the lack of a grinder-like structure at the

base of the pharynx and the closed intestine to the left of the

junction. Scale bar = 10 mm. Each image is a separate individual.

Found at: doi:10.1371/journal.ppat.1000370.s003 (3.95 MB TIF)

Table S1 Primer sequences used in construct creation.

Found at: doi:10.1371/journal.ppat.1000370.s004 (0.06 MB

DOC)

Table S2 Wild-type and transgenic larvae examined for

developmental abnormalities. Images of larvae at 1 hour,

24 hours, and L3i timepoints were examined for intestinal

structure abnormalities, pharyngeal abnormalities, presence of

storage granules in intestinal cells, and overall body integrity.

Intestinal structure abnormalities were defined as atrophy of the

intestine or structural defects. Pharyngeal abnormalities included

loss of musculature, terminal bulb irregularities, and loss of

synchronized contractions. The larva was positive for granules if

the majority of intestinal cells near the primordial gonad contained

granules. Overall body damage takes into account loss of cells

outside of the intestine, damaged tail architecture, and any

structural abnormality other than in the intestine and pharynx.

Found at: doi:10.1371/journal.ppat.1000370.s005 (1.12 MB TIF)
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