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Lyon 1, Lyon, France, 5 Laboratoire de Biométrie et Biologie Évolutive, CNRS, UMR5558, Villeurbanne, France

Abstract

The reconstruction of ancestral genome architectures and gene orders from homologies between extant species is a long-
standing problem, considered by both cytogeneticists and bioinformaticians. A comparison of the two approaches was
recently investigated and discussed in a series of papers, sometimes with diverging points of view regarding the
performance of these two approaches. We describe a general methodological framework for reconstructing ancestral
genome segments from conserved syntenies in extant genomes. We show that this problem, from a computational point of
view, is naturally related to physical mapping of chromosomes and benefits from using combinatorial tools developed in
this scope. We develop this framework into a new reconstruction method considering conserved gene clusters with similar
gene content, mimicking principles used in most cytogenetic studies, although on a different kind of data. We implement
and apply it to datasets of mammalian genomes. We perform intensive theoretical and experimental comparisons with
other bioinformatics methods for ancestral genome segments reconstruction. We show that the method that we propose is
stable and reliable: it gives convergent results using several kinds of data at different levels of resolution, and all predicted
ancestral regions are well supported. The results come eventually very close to cytogenetics studies. It suggests that the
comparison of methods for ancestral genome reconstruction should include the algorithmic aspects of the methods as well
as the disciplinary differences in data aquisition.
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Introduction

The reconstruction of ancestral karyotypes and gene orders

from homologies between extant species is a long-standing

problem [1]. In the case of mammalian genomes, it has first been

approached using cytogenetics methods [2–7]. The recent

availability of sequenced and assembled genomes has led to the

development of bioinformatics methods that address this problem

at a much higher resolution, although with fewer available

genomes. Such methods propose in general more detailed

ancestral genome architectures than cytogenetics methods (see

[8–12] and reviews in [13–15]). The comparison of the two

approaches was recently investigated and discussed in a series of

papers, sometimes with diverging point of views [16–18]. Among

the bioinformatics methods that have been applied to mammalian

genomes (previous works were limited to small genomes such as

organellar genomes [19] or to bacterial genomes [20]), the one

based on a parsimony approach in terms of evolutionary events

such as reversals, translocations, fusions and fissions [8,11], leads

to results that are sometimes in disagreement with cytogenetics

studies [16]. Recent results on this approach point out that the

modeling of genome rearrangements probably needs further

studies before it can be used for the reconstruction of ancestral

genomes (see [21], or [17], where it was suggested that inferring

parsimonious rearrangement scenarios is more intended to infer

evolutionary dynamics characteristics, such as rearrangement

rates, than ancestral genomes). Another type of approach infers

ancestral genome segments, called Contiguous Ancestral Regions

(CARs), from syntenic features that are conserved in extant species

(the terminology is borrowed from [12]). We call this principle

model-free, following [22], even if it is based on certain assumptions,

like the absence of events inside a conserved synteny, which is a

parsimony principle. But this terminology stresses the difference

with rearrangement-based methods, which contraint the recon-

struction by allowing prescribed operations that define then an

evolution model. It is then less ambitious than the rearrangement-

based approach as it does not propose evolutionary events, neither

does it ensure that proposed CARs are ancestral whole

chromosomes. However, when recently applied on mammalian

genomes [12] it gave results more in agreement with cytogenetic

methods, while exhibiting few other points of divergence [18].

We describe here a very general model-free framework for the

reconstruction of CARs, that formalizes and generalizes the

principles used in several computational [12,22] and cytogenetics

[5–7] studies. This framework takes as input a representation of

extant genomes as sequences of homologous genomic markers
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(synteny blocks or orthologous genes for example). Then it

decomposes into two main steps: we first compute a collection of

possible ancestral syntenic groups (in general small groups of

genomic markers that were possibly contiguous in the ancestral

genome), each weighted according to its conservation in the extant

species; from this set of possible ancestral syntenies, we group and

order the considered genomic markers into one (or several

alternative) set(s) of CARs, each of these sets of CARs representing

a possible ancestral genome architecture. An important feature of

our framework is that we propose the set of all possible genome

architectures that agree with the conserved ancestral syntenies.

This framework is general in the sense that both steps can be made

effective in several ways. For example, during the first phase, the

signal for ancestral syntenies can be defined from extant species in

terms of conserved adjacencies between homologous markers as in

[12] or between chromosome segments as in [5–7]. We propose

one possible implementation of this framework, choosing as

ancestral features both conserved adjacencies and gene teams

[23,24], generalizing the approach of Ma et al. [12] (where only

adjacencies were considered), and mimicking the methods

employed with cytogenetic data [5–7] (conserved chromosome

segments may be formalized as gene teams). The second step, that

computes CARs and ancestral genome architectures, benefits from

a combinatorial framework, centered around the Consecutive

Ones Problem and an ubiquitous combinatorial structure called

PQ-tree [25], well known and used in physical mapping [26,27],

and recently applied in other comparative genomics problems

[28,29]; in particular, in [22,30,31], PQ-trees were already

considered to represent ancestral genomes. In our implementation

of this second step, we follow the same principle as in [12]: we

extract a maximum unambiguous subset of ancestral syntenies.

We apply our method on several datasets. We first consider the

case of the ancestral boreoeutherian genome using a dataset

obtained from the whole genome alignments available on the

UCSC Genome Bioinformatics website [32]; from these align-

ments, we build sets of synteny blocks at different levels of

resolution (we use from 322 to 1675 homologous markers). Our

experiments show that the results of our method are quite

constant, in the sense that they are very similar, independently of

the chosen resolution. This reinforces the impression that

algorithmic aspects may have an important impact on the

differences in the results of [11,12] discussed in [16–18], together

with the differences of data acquisition and interdisciplinarity

problems [18]. Moreover, the results we obtain are very close to

the ones towards which cytogenetics methods tend to converge. As

these are obtained from many more species and much expertise,

we take it as a validation of the framework and method we

propose. We performed intensive comparisons with other

computational methods, and ran our method on several published

datasets. Compared to the recently published method of Ma et al.

[12], we obtain sets of CARs that are less well defined, as we

propose a large set of possible ancestral boreoeutherian genome

architectures, instead of only one, but better supported, as any

proposed adjacency or segment is supported by at least one

syntenic group that is conserved in at least two extant species

whose evolutionary path in a phylogenetic tree contains the wished

ancestral species. We also reconstruct an ancestral ferungulate

genome architecture for the the same data as [11]. On this dataset,

our method and the method of Ma et al. obtain similar results. The

CARs are comparable to those of the ferungulate chromosomes

from e-painting studies [33] that are ancestral boreoeutherian

features, while the rearrangement-based method of [11] on the

same dataset gives divergent results.

In the next section, we describe the general framework and how

we implemented it to design a new method for ancestral genome

reconstruction. We then describe the results of our method on the

considered mammalian datasets. We use our reconstruction of

possible genome architectures for the boreoeutherian ancestor at

several levels of resolution to assess both the internal stability of

our method and the consistency of its results when compared to

other published ancestral genome architectures. We compare our

results to the results proposed by cytogenetic methods and by the

bioinformatics method of Ma et al. [12], that received some

attention recently [18] as it was the first bioinformatics method

that tended to agree well with cytogenetics. We conclude by a

discussion on our results and methodology and describe several

possible extensions of our framework.

Results

A General Methodological Framework and
Implementation

We now describe more precisely the two steps of the framework,

together with their implementation into an effective method for

reconstructing a set of CARs. We separate the general principles

from the implementation details to emphasize that there are many

possible implementations: the method of Ma et al. [12] is one

possibility, and we also propose a variant of our method targeted

at analyzing datasets with less well defined outgroups.

Input: Species tree. The input of our method is a set of

extant genomes, together with a phylogenetic tree T describing the

evolutionary relationships between the species to which the

genomes belong. The ancestral genome we want to construct is

characterized by its position, as an internal node on the

phylogenetic tree. Following [12], we assume that there is at

least one outgroup species, that is, one species which is not a

descendant of the ancestor whose genome we are reconstructing.

This implies that the ancestral node has at least two branches

towards its descendants (exactly two if the tree is fully resolved) and

Author Summary

No DNA molecule is preserved after a few hundred
thousand years, so inferring the DNA sequence organiza-
tion of ancient living organisms beyond several million
years can only be achieved by computational estimations,
using the similarities and differences between chromo-
somes of extant species. This is the scope of ‘‘paleoge-
nomics’’, and it can help to better understand how
genomes have evolved until today. We propose here a
computational framework to estimate contiguous seg-
ments of ancestral chromosomes, based on techniques of
physical mapping that are used to infer chromosome maps
of extant species when their genome is not sequenced.
This framework is not guided by possible evolutionary
events such as rearrangements but only proposes
ancestral genome architectures. We developed a method
following this framework and applied it to mammalian
genomes. We inferred ancestral chromosomal regions that
are stable and well supported at different levels of
resolution. These ancestral chromosomal regions agree
with previous cytogenetics studies and were very probably
part of the genome of the common ancestor of humans,
macaca, mice, dogs, and cows, living 120 million years ago.
We illustrate, through comparison with other bioinfor-
matics methods, the importance of a formal methodolog-
ical background when comparing ancestral genome
architecture proposals obtained from different methods.

Ancestral Genome Reconstruction

PLoS Computational Biology | www.ploscompbiol.org 2 November 2008 | Volume 4 | Issue 11 | e1000234



one branch towards the outgroup species. Additionally we may

add branch lengths to indicate the relative a priori expected

quantity of evolution. The method we describe relies on this

phylogeny as we infer ancestral features only if they are supported

by at least two species whose evolutionary path goes through the

ancestral node (see paragraph ‘‘Detection of putative ancestral

genome segments’’ below). While this principle is widely used by

cytogeneticists to reconstruct ancestral karyotypes, no

computational method so far has ensured this simple property.

Implementation. We consider three datasets, focusing on two

ancestral nodes of the mammalian clade: the boreoeutherian and

ferungulate ancestors. The choices were made according to the

possibilities of comparisons of the obtained ancestors with former

studies [5–7,11,12,33]. The phylogenetic tree of all considered

species is described in Figure 1, and the branch lengths were taken

according to lower bounds from recent studies in paleontological

dating [34].

Input: Representation of extant genomes. Following

other approaches for ancestral genome reconstruction, we

represent the genome of an extant species by a set of sequences

of genomic markers. Each marker belongs to a family of

homologous markers identified by a unique label. Such families

of genomic markers can be defined in several ways: from

annotated orthologous genes [10,22,35,36], to whole genome

alignments methods [37,38] as in [10,12], comparative maps [11]

or virtual hybridization [39]. Each extant chromosome is an

ordered sequence of markers, each marker being represented by

the label of its family. If there are n family labels, we denote by

L~ 1, . . . ,nf g the set of all family labels (the markers alphabet).

Implementation. We construct several datasets from the

pairwise whole genome alignments between the human genome

taken as reference, and the rhesus, mouse, rat, cow, dog, chicken,

and opossum genomes, available on the UCSC Genome

Bioinformatics website [32]. Pairwise synteny blocks between the

human genome and the seven other extant genomes were

computed from pairwise genome alignments, following the

method described in [40,41], for value of the parameters max_gap

(the size of ignored micro-rearrangements or misplaced DNA

segments) of 100 kb and of min_len (the minimum length of

pairwise alignments with the reference genome) ranging from

100 kb to 500 kb (see details in Material and Methods). Then

multispecies markers were computed using the human genome as

a reference. For each value of the parameters max_gap and min_len,

we kept the set of markers that are present in all eight genomes. In

order to perform several comparisons with published methods, we

also use datasets taken from Ma et al. [12], based on alignments at

a 50 kb resolution and where markers can be duplicated, missing

or overlapping in the outgroups, and from the supplementary

material of Murphy et al. [11], based on human-mouse synteny

blocks and comparative maps of seven mammalian genomes

(human, mouse, rat, pig, cow, cat, dog).

Step 1: Detection of putative ancestral genome

segments. The first step consists in detecting ancestral syntenies,

that is, subsets of the alphabet of marker labels that are candidates

to represent contiguous markers in the ancestral genome; this point is

central in our framework (see Discussion) and is close to

cytogenetic methods, though working with different data. The

general problem of this first step reduces then to defining synteny

conservation patterns along the species tree T that indicate a

possible ancestral synteny, and to detecting such patterns.

Implementation. We chose to follow a simple general

principle: a group of genomic markers is possibly contiguous in

the ancestor genome if it is contiguous in at least two extant species

whose evolutionary path on the phylogenetic tree goes through the

considered ancestral node. From then, several synteny conserva-

tion models between pairs of genomes can be considered to build

ancestral syntenies: adjacent pairs of genes with the same

orientation, as in [12,36], or common intervals as in [22]. Here

we use the following notions of conserved features: (1) gene teams

with no gaps (also called maximal common intervals) [24], defined

as maximal genome segments that have the same content in terms

of genomic markers, (2) non-ambiguous unsigned adjacencies, and

(3) approximate common intervals (used instead of maximal

common intervals to analyze the dataset of [12]), defined as

common intervals relaxing the condition of having exactly the

same gene content (see Material and Methods for formal

definitions).

As such ancestral syntenic groups can have very different

conservation patterns in T, we associate to each of them a weight,

based on the pattern of occurrence of this set of markers in T and

on the branching pattern of T, following the weighting scheme

used in [12] (see Material and Methods). This weight is a way to

measure the extent of conservation of a given feature.

Step 2: Structuring ancestral features and PQ-trees. The

output of the first phase is a set S~ S1, . . . ,Smf g of m weighted,

and pairwise different, ancestral syntenies. Each ancestral synteny

is a subset of L which contains genomic markers which are

believed to be contiguous in the ancestral genome. The problem is

then to group the markers of L into CARs, and to order them

inside these CARs, which, from a computational point of view, is

very related to physical mapping problems [26,27,42]. (In physical

mapping problems, markers representing the hybridization of

probes are known but their relative order in the mapped genome is

not known, and what is known, from hybridization with genome

fragments, is that some sets of markers need to be contiguous; the

problem is then to find an organization of the markers into

chromosomes, such that all, or a maximum of subset of S if it is

not possible to handle all markers, are indeed contiguous in the

resulting genome.) Intuitively, the conserved syntenic groups of S,

that represent sets of possibly ancestral contiguous markers, can be

seen as ancestral genome fragments that have evolved along T and

are observed today conserved in at least two species. We then use

Figure 1. The phylogenetic relationships between studied
species, taken from [34]. The branch weights are computed from
the lower bounds on estimated times of species divergences from the
same paper.
doi:10.1371/journal.pcbi.1000234.g001
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an approach developed, first in the graph theory community (the

Consecutive Ones problem was introduced by Fulkerson and

Gross [43] to solve the problem of recognition of interval graphs,

which, intriguingly, was motivated by another molecular biology

problem in [43]!) and then applied to physical mapping problems,

based on the consecutive ones property (C1P) and PQ-trees.

We encode S by an m6n 0/1 matrixM where row i represents

Si as follows: M i,j½ �~1 if marker j belongs to Si and 0 otherwise.

Ordering markers into CARs consists in finding a permutation of

the columns of the matrixM, such that all 1’s entries in each row

are consecutive (also called a C1P ordering for M). Finding such

an order of the columns ofM is not always possible, in particular

if there are false positives in S, that is groups of markers that were

not contiguous in the ancestral genome. Moreover, if there exists a

C1P ordering of the columns ofM, there are often several possible

(sometimes an exponential number of) such orderings where all 1’s

are consecutive on each row. Every ordering represents an

alternative possible ancestral genome architecture.

In the case where there exists a C1P ordering for M, all C1P

orderings can be represented in a compact way, using the PQ-tree

ofM, denoted T Mð Þ. We now provide a short description of the

important properties of this structure with respect to C1P

orderings (a complete formal description is given in Material

and Methods). T Mð Þ is a tree with three kinds of nodes: leaves, P-

nodes and Q-nodes. The leaves are labeled by L, in such a way

that each i[L labels exactly one leaf of T Mð Þ. P-nodes and Q-

nodes are internal nodes, both with a total order on their children.

The main property of T Mð Þ is that any C1P ordering ofM can

be obtained from T Mð Þ by reading, from left to right, the leaves

labels of T Mð Þ after choosing for each node N, independently of

the other nodes, (1) an arbitrary order for the children of N if N is a

P-node, or (2) to reverse or not the order of the children of N if N is

a Q-node.

An important property of the framework we describe is that, if

all markers are true orthologs and if all Si’s are true positive, that

is, were indeed contiguous in the ancestral genome, then there

exists a C1P ordering of the markers of L. In that case, T Mð Þ
encodes in a compact way all possible C1P orderings of the

columns of M and then all alternative genome architectures we

can deduce from S: the root of T Mð Þ is a P-node, children of the

root represent CARs, where Q-nodes describe fixed orderings, up

to a reversal, while P-nodes except the root describe subsets of

markers that have to be contiguous but where there is no

information to fix a relative order (see Figure 2 for an illustration).

A linear representation of the PQ-tree allows to present the set of

whole C1P solutions in a chromosome-like form (Figure 2c). In a

PQ-tree, two markers define an adjacency if they are consecutive

siblings of a Q-node.

Finally, if M is not C1P, we can still represent some partial

information from it using a structure called the PQR-tree in [44] or

generalized PQ-tree in [45], that we also denote by T Mð Þ. It contains

a fourth kind of nodes, called degenerate nodes or R-nodes which

represent disjoint subsets of S that are not C1P. Hence, T Mð Þ
extracts parts of S that are unambiguous and can be used directly

to define CARs (the P-nodes and Q-nodes of the generalized PQ-

tree), unlike the ambiguous parts of S that contain non-ancestral

Figure 2. Representation of a family of sets with the consecutive ones property. (A) A matrixM with the consecutive ones property. (B)
The corresponding PQ-tree T Mð Þ, where P-nodes are rounded and Q-nodes are square. 3 4 1 2 5 6 7 8 9 10 11 12 13 14 and
3 4 1 2 9 10 14 12 13 11 6 7 5 8 are two possible C1P orderings for M, among 13824 possible C1P orderings. 3 4 1 2 5 7 6 8 9 10 11 12 13 14 is
not a C1P ordering for M: columns 6 and 7 need to be consecutive as they are consecutive children of a same Q-node. (C) An equivalent
representation of T Mð Þ which highlights all ancestral genome architectures that correspond to C1P orderings for M: each row corresponds to a
chromosomal segment represented by a child of the root, two glued blocks have to be adjacent in any ancestral genome architecture and sets blocks
that float in the same box have to be consecutive in any genome architecture but their order is not constrained. Here we see three ancestral
chromosomal segments: the first one, which contains markers 1 to 4 is totally ordered; the second one contains markers 5 to 8, with only constraint
that markers 6 and 7 are adjacent; the third one contains markers 9 to 14, with 9 and 10 being adjacent, 11 being adjacent to a block that contains 12,
13 and 14 with no order between these three markers. Hence, 9 10 11 12 13 14 is a possible order for this last segment, but not 9 10 12 11 13 14 as
11 is inserted inside the block that contains 12, 13 and 14. All 13824 possible C1P orderings (possible ancestral orderings) are visible on this
representation.
doi:10.1371/journal.pcbi.1000234.g002
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features (the R-nodes). An illustration of such a case is presented in

Figure 3. It is then a first level of representation of CARs, that

contains possible ambiguous information and generalizes the

successor and predecessor graphs of [12]. Computing T Mð Þ can

be done efficiently (see Material and Methods).
Step 3: Clearing ambiguities and constructing CARs. As

pointed above, if M is C1P, there is no indication that some

features of S are not ancestral, so we directly output the possible

ancestral genomes as the PQ-tree T Mð Þ. However, if M is not

C1P, then we know that some sets of markers in S are false

positive and were not contiguous in the ancestral genome. There

can be several reasons: errors in constructing homologous markers

(errors in the assemblies, paralogies inferred instead of orthologies),

incomplete syntenies resulting from convergent loss of markers,

convergent fusions of chromosomal segments in several lineages

for example. As in physical mapping [46], depending of the kinds

of errors that have to be removed, there are several ways to

remove ambiguous information present in S such as discarding

some markers or features, or splitting possibly chimeric sets of

markers in two or more subsets. After ambiguous information has

been removed, there remains a subset S’ of S that defines a C1P

matrix M0 and a PQ-tree T M’ð Þ that represent all possible

genome architectures compatible with M0.
Implementation. In our implementation we did not consider

the option of discarding markers, that is, removing columns of the

matrix. Indeed, as we considered DNA alignments at a resolution

of at least 100 kb, taking care about possible paralogies by

eliminating segmental duplications and repeated elements, we

have a good confidence in the set of orthologous markers. We then

clear ambiguities by removing elements from S, i.e. rows fromM
that represent possibly non-ancestral syntenies. More precisely, we

rely on the following combinatorial optimization problem: find a

subset of S of maximum cumulative weight, such that the matrix

of this subset is C1P. This problem, which generalizes the

approach used in [12], is NP-hard (it generalizes the traveling

salesman problem). We solve it using a branch-and-bound

algorithm based on a greedy heuristic inspired from [12] (see

Material and Methods). We take the proportion of rows that have

to be deleted as an indicator of the level of ambiguity of a dataset.

Reconstructing Ancestral Mammalian Genome
Architectures

In this section, we first report the results of our method in

reconstructing the architecture of the boreoeutherian ancestral

genome from five datasets, at different levels of resolution, that we

computed from whole genome alignments. Next we report results

based on the original dataset used in [12] and on the ferungulate

ancestral genome from the dataset of [11]. All data and results

discussed in this section are available on a companion website:

http://lbbe-dmz.univ-lyon1.fr/tannier/ploscb2008_supmat/.

The Boreoeutherian Ancestor with a Dataset Constructed
from UCSC Genome Browser Whole Genome Alignments

We computed five datasets, with parameters max_gap = 100 kb

and min_len = 100 kb (1675 markers), 200 kb (824 markers),

300 kb (510 markers), 400 kb (406 markers) and 500 kb (322

markers). Their coverage of the human genome goes from

2173 Mb (min_len = 100 kb) down to 1487 Mb (min_len = 500 kb).

Computational characteristics of the CARs inference

method. From a computational point of view, these five datasets

seem to contain very little ambiguity. For example, with max_gap =

100 kb and, min_len = 200 kb, only 14 of the 1431 ancestral syntenies

detected during the first step needed to be discarded to clear all

ambiguities in the 0/1 matrix. The branch-and-bound algorithm

finds a provably optimal solution in a very small amount of time.

With other values of min_len, the computational characteristics were

similar (very few ancestral syntenies need to be discarded to clear

ambiguities). This is important to remark, as it lowers the influence of

the optimization step in the framework. This step is the most subject

to arbitrary choices, so we think the less it relies on optimization, the

more the method is reliable.

Properties of the different ancestral genome architecture

proposals. In Table 1, we see that generally the number of

CARs obtained decreases as min_len increases, which is expected as

larger synteny blocks hide more rearrangements and misassemb-

lies that could prevent ancestral syntenies to be detected. The

number of CARs tends to converge towards the accepted number

of 23 chromosomes in the boreoeutherian ancestral genome,

despite the presence of 29 CARs at resolution 300 kb due to three

markers that do not belong to any ancestral synteny and define

each a CAR. The correspondence between the CARs and human

chromosomes is very stable: aside of chromosome 1, for whom it

seems to be hard to infer the ancestral structure (it spans one CAR

at a resolution of 100 kb, 2 CARs at 200 kb, 4 CARs, including

one reduced to a single marker at 300 kb, 3 CARs at 400 kb and 2

CARs at 500 kb; note however that the history of human

chromosome has not been easy to write by cytogeneticists. While

it is in two pieces in some works [7], the study of Murphy et al. [47]

Figure 3. Representation of a family of sets without the consecutive ones property. (A) A matrix M without the consecutive ones
property. (B) The corresponding generalized PQ-tree, where there is a single R-node represented by a diamond shape labeled R. The only R-node is
due to the rows 1, 2, 6, 7 and 9 of M that define a sub-matrix that is not C1P, while the submatrix defined by the remaining rows is C1P.
doi:10.1371/journal.pcbi.1000234.g003

Ancestral Genome Reconstruction

PLoS Computational Biology | www.ploscompbiol.org 5 November 2008 | Volume 4 | Issue 11 | e1000234



states its probable unichromosomal history in placental

mammals.), for all other human chromosomes, the number of

spanned CARs is stable or decreases as the resolution decreases

from 100 kb to 200 kb. It is due to the fact that at lower resolution,

due to the lower coverage of genomes, some large part of human

chromosomes do not contain any marker and do not map to any

CAR. The only exceptions are due to two markers of chromo-

somes 8 and 19, at resolution 300 kb that define each a CAR,

because the markers that were syntenic with them in other species

at resolution 200 kb are not conserved at 300 kb; note also that

these two markers both disappear when min_len = 400 kb, which

explains that we find again 26 CARs.

As min_len increases, the coverage of the extant genomes

decreases, and beyond the value of min_len = 500 kb, the missing

parts become more and more visible, so the reconstruction

becomes less reliable, as the ancestor covers only a small part of

the extant genomes. The coverage of the human genome by the

CARs, containing several contiguous sets of markers goes from

2667 Mb (for min_len = 100) to 1796 Mb (for min_len = 500) and is

larger than the coverage by the markers only.

For chromosomal syntenic associations in the inferred ancestral

genome architecture between some human chromosomes, we can

also see that the results we obtain are very consistent, and in

general do not propose CARs which disagree with previous

cytogenetics studies [14,16]. The only differences within the

chromosomal associations are the synteny between human

chromosomes 1 and 4, seen with min_len = 100 kb only, a synteny

between human chromosomes 5 and 8, observed only with

min_len = 500 kb, and an association between human chromo-

somes 4 and 8 that is not present with min_len = 500 kb. This last

fact is linked to the resolution as the only marker of human

chromosome 8 that participates to the association chr4-chr8 at

min_len = 400 kb disappears at min_len = 500 kb; we discuss the two

other associations in relation to the notion of support below. Other

differences between the results obtained with the different values of

min_len mostly involve the number of CARs corresponding to

human chromosomes 1 and 2.

With values of max_gap = 100 kb and min_len = 200 kb, a higher

resolution than the one used in [10,11], we obtain 26 CARs

presented in Figure 4. We can compare the obtained CARs with

the previously published boreoeutherian ancestors, in the light of

some recent discussions on these results [16]. We recover ancestral

segments that are very close to cytogenetic studies: all the 26

segments of the max_gap = 100, min_len = 200 kb dataset are indeed

segments with which all cytogenetic publications agree [2–7], and

this is the first reported bioinformatics study which verifies this.

We just miss two or three adjacencies according to the studies:

some are probably due to the incompleteness of our data in terms

of covering of extant gnomes by universal synteny blocks (human

chromosome 2 is cut into three pieces and human chromosome 1

is cut into two pieces in our reconstruction, whereas it was

Table 1. Characteristics of the datasets based on the UCSC alignments, and the obtained reconstructed boreoeutherian ancestral
genome architectures with our method.

min_len (kb) Markers CARs Human cov. (Mb) Adjacencies Chromosomal syntenies

100 1675 29 2667 1604 1-4, 3-21, 4-8, 7-16, 12-22, 12-22

200 824 26 2511 778 3-21, 4-8, 7-16, 12-22, 12-22, 14-15, 16-19

300 510 29 2179 449 3-21, 4-8, 7-16, 12-22, 12-22, 14-15, 16-19

400 406 26 2186 372 3-21, 4-8, 7-16, 12-22, 12-22, 14-15, 16-19

500 322 24 1796 260 3-21, 5-8, 7-16, 12-22, 12-22, 14-15, 16-19

The ‘‘Markers’’ column describes the number of synteny blocks of each dataset. The ‘‘Adjacencies’’ columns describes the number of adjacencies in the ancestral
genome architecture. In the right-most column, a set of numbers linked by - indicate a CAR that contains markers that belong to the corresponding human genomes.
The ‘‘human coverage’’ is the portion of the human genome that is covered by sets of markers that are consecutive on a CAR and on the human genome, although
possibly in different orders, expressed in Mb.
doi:10.1371/journal.pcbi.1000234.t001

Figure 4. The ancestral genome architecture obtained with the
dataset constructed from the UCSC whole genome alignments,
with parameters max_gap = 100 kb and min_len = 200 kb. Seg-
ments of a given color represent sequences of genomic markers that
are colinear in the inferred CARs and in a human chromosome called
conserved segments (corresponding human chromosomes numbers are
indicated with each conserved segment). The size of conserved
segments in the figure is proportional to the sum of the size of the
the human genome that is covered by the synteny blocks they contain.
The nodes of the PQ-tree are represented: children of a linear (Q) node
are linked by a small segment, while children of a prime (P) node are
grouped together with a rectangular frame.
doi:10.1371/journal.pcbi.1000234.g004
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probably a unique piece in the ancestor [47]), and others are

debated in the community (adjacency between human chromo-

some arm 10p and an ancestral chromosome 12–22 [5,6], or

between chromosome 1 and a segment from chromosome 19 [6]).

We obtain similar results for values of min_len = 300 kb and

min_len = 400 kb, with minor differences about the coverage of

human chromosomes 1 and 2 for min_len = 400 kb, and the

presence of three small CARs containing each a single marker

with min_len = 300 kb.

Adjacencies in ancestral genome proposals: support and

stability. We report in Table 1 the number of adjacencies; this

number indicates how well defined the ancestral genome

architectures are, as the markers that are not in an adjacency

belong to sets of markers that are children of a P-node and whose

relative order is not known. There are relatively few such markers

(between 6% and 20%), which means that the ancestral genome

architectures are quite well defined.

We now define the support of an adjacency between two

markers in an ancestral genome as the number of ancestral

syntenies which contain these two markers. The adjacencies of our

five ancestral genomes are in general well supported as in total we

find 14 adjacencies that are supported by a single ancestral synteny

(2 for min_len = 100 kb, 4 for min_len = 200 kb, 3 for min_

len = 300 kb, 3 for min_len = 400 kb and 2 for min_len = 500 kb).

Among these minimally supported adjacencies, only two of them

imply a chromosomal association: between human chromosomes 4

and 8 with min_len = 400 kb and between human chromosomes 5

and 8 with min_len = 500 kb (this last one is supported by a single

gene team common to the rat and opossum genomes and it

involves a single marker of length 1600 kb in human chromosome

5), which raises some doubts on the validity of this chromosomal

association that is found only at the highest value of min_len and

not well supported. On the other hand the association between

human chromosomes 1 and 4 with min_len = 100 kb is supported

by 7 gene teams, but involves a single marker of human

chromosome 4.

One of the reasons for computing several datasets at different

resolution levels but based on the same set of initial alignments was

to assess the stability of our method. To do so, given an ancestral

adjacency obtained at a given level of resolution (say min_

len = 100 kb) we say that it is not conserved at a lower resolution (say

min_len = 200 kb) if the markers defining this adjacency are neither

in the same marker or in adjacent markers at this lower resolution,

and we say that it is weakly conserved if the markers stay on the same

CAR, but not adjacent, at the higher resolution (see Material and

Methods for precise definitions). We compared all 10 pairs of

ancestral genome architectures for all pairs of values of min_len,

and we found only 2 non-conserved adjacencies (with no surprise

they belong to the ancestor computed for min_len = 100 kb) and

141 weakly conserved adjacencies. For these last ones, the markers

are in general close in the CAR which contains them (on the

average the gap between such pairs of markers on a CAR contains

approximately 3 blocks, with only 32 such pairs being separated by

more than 5 blocks).

Considering common intervals in defining ancestral

syntenies. To assess the impact of considering common

intervals to define ancestral syntenies instead of adjacencies, we

applied our method on the same datasets but using only conserved

adjacencies (i.e. pairs of markers adjacent in two genomes whose

evolutionary path goes through the ancestral node), without

accounting for the orientation of the markers. We obtain, for every

value of min_len, a larger number of CARs (between 36 and 42

CARs), with many CARs containing few markers. However, the

computational characteristics and the stability of the proposed sets

of CARs are similar: the datasets contain little ambiguity and the

computed adjacencies and human chromosomal associations are

very stable, these last ones agreeing with the ones we described

above. This points the importance of using larger syntenic sets to

infer more precise sets of CARs.

Comparison with the method of Ma et al. The main

differences between our method and the one of Ma et al. are the

restriction on ancestral features to well supported ones and the

addition of common intervals in the ancestral features, which

implies that the combinatorial framework switches from Path

Partitioning problems in graphs to the more general Consecutive

Ones problem. So we add more information, and ask it to be more

reliable. To assess if this theoretical consideration has some effect,

we ran the method described in [12] on the datasets we have

constructed, using the software available at http://www.bx.psu.

edu/miller_lab/car/, in the frozen version used in the paper [12].

We report the results in Table 2. For every proposed adjacency

between two markers i and j, we say that it is weakly supported if

there is no ancestral synteny in S (the set of ancestral syntenies

computed by the first step of our method) which contains both i

and j (by construction, every adjacency computed with our method

is supported by at least one ancestral synteny). We also say that an

adjacency is common, if it is also present in the CARs obtained with

our method. Table 2 shows that most of the differences between

the two methods are due to adjacencies that are obtained with the

method described in [12] but are not supported by an ancestral

synteny as we define them. We also notice that a small number of

differences (which represent a very small percentage of all

adjacencies) may have some important implications in terms of

inferred chromosomal syntenic associations between human

chromosomes in the ancestral genome. Moreover, the two

methods differ slightly in terms of stability: comparing the

Table 2. Characteristics of the reconstructed genome architectures of boreoeutherian ancestral genomes with the method of Ma
et al. [12] and our synteny blocks.

min_len (kb) markers CARs Weak adj. Common adj. Human chromosomal syntenies

100 1675 31 6 1596 1-16, 3-21, 4-8, 12-22, 12-22, 12-22

200 824 34 5 759 1-10, 3-21, 4-8, 12-22, 12-22

300 510 37 7 437 1-10, 1-17, 3-12-21, 4-8, 12-22, 12-22

400 406 36 7 353 2-4, 2-22, 3-12-21, 12-22

500 322 37 6 249 2-4, 3-12, 3-21, 12-22

The weak adjacencies are the inferred adjacencies that are not supported by at least two species whose evolutionary path contains the boreoeutherian ancestor. If this
criterion is to be followed, this number is to be added to the number of CARs.
doi:10.1371/journal.pcbi.1000234.t002
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ancestral genomes obtained with all five values of min_len, we

found that 12 adjacencies were not conserved (including those that

induced the chromosomal syntenies that are not constant at all

resolution levels) and 88 adjacencies were weakly conserved. This

is expected as our new methods provides more support and

stability, but less well defined CARs due to the simultaneous

presentation of a large set of solutions.

The Boreoeutherian Ancestor from Ma et al.’s [12] Data
We also analyzed the dataset of 1338 conserved segments used

in [12], downloaded from the website http://www.bx.psu.edu/

miller_lab/car/. It has the impressive property that these

conserved segments span slightly more than 94% of the human

genome based on alignments at a 50 kb resolution level. On the

other hand, it considers less species, an unbalanced phylogeny (one

of the branch from the ancestral node contains a single species, the

dog, while the other branch contains three species, human, mouse

and rat) and the segments are less well defined in the outgroups:

they can be duplicated (due to ambiguous orthology signal),

missing or overlapping. In order to analyze this challenging

dataset, we modified our method, to handle the different

combinatorial nature of segments in outgroups, and we chose to

define ancestral syntenies in terms of conserved adjacencies and

approximate common intervals which do not require the exact

same markers content and allow for duplicated markers (see

Material and Methods). This illustrates the generality of our

framework: the way to define ancestral syntenies and the type of

dataset is flexible. While we prefer to present the results with our

own dataset due to its better proximity to the C1P property, we

performed our method on this dataset for the method comparison

to be as exhaustive as possible.

The set of possible ancestral syntenies contains 2515 subsets of

segments, and 208 needed to be discarded in order to clear all

ambiguities and get the C1P property. This shows that by relaxing

the definition of ancestral synteny by allowing inexact content, we

introduced a large number (at least 10%) of false positives (i.e.

groups of segments which were not consecutive in the ancestral

genome). We obtained an ancestral genome with 35 CARs, 1281

adjacencies and the following human chromosomal associations:

3-21, 4-8, 12-22, 12-22, 14-15, to compare to 29 CARs and 1309

adjacencies and the same human chromosomal associations in

[12]. Among our 1281 adjacencies, 1077 are present in the 1309

adjacencies obtained with the method of Ma et al.. As before, we

define a weak adjacency as an adjacency obtained by the method

of Ma et al. whose segments are not included in any of our

ancestral syntenies: 8 of the 1309 adjacencies obtained in [12] are

weak. Among these adjacencies are several human or rodent or

dog specific adjacencies. The fact that we have significantly fewer

common adjacencies while the adjacencies of Ma et al. are still well

supported can be explained by the fact that some adjacencies

inferred in [12] are supported by false positive ancestral syntenies,

which are much more frequent with this dataset than when using

or own datasets of universal markers, where we used several filters

to eliminate them. For example, by assessing the support of the

adjacencies in the 29 CARs obtained by Ma et al. in terms of the

ancestral syntenies conserved after our second phase, which

produces a C1P matrix, 21 are not supported, and the general

level of support of adjacencies decreases in general.

The Ferungulate Ancestor from Murphy et al. Synteny
Blocks

We also tested our framework on the ferungulate ancestor based

on the dataset of Murphy et al. [11]. This dataset contains seven

genomes, which are represented by 307 synteny blocks that cover

1343 Mb of the human genome [11]. It is hazardous to

reconstruct boreoeutherian ancestors with this dataset, because

there is no outgroup for the boreoeutherian clade here, but it is

interesting to use this dataset to compare several methods on a

dataset we did not construct. We ran both our method and the one

of Ma et al. [12] on this dataset and compared the inferred genome

architectures. We include in the comparison the results obtained

by Murphy et al. [11] on the same dataset, and those of Kemkemer

et al. [33] obtained independently by a computational method

called e-painting, see Table 3. The ancestral genome architecture

we propose is based on 457 ancestral syntenies from an initial

number of 461, and here again the dataset seems to contain very

little ambiguity.

Some syntenies obtained belong to the boreoeutherian ancestor,

and others are ferungulate specific. The synteny between human

chromosomes 5 and 19 is inferred only by Murphy et al. (where it is

not marked as weak, which means that it was found in all

alternative genome architectures) but not by our method.

However, it is due to an adjacency between two synteny blocks

that is not found in any of the ancestral syntenies we detected in

the first step of our method, and is found only in the pig genome.

The synteny between human chromosomes 1 and 22 is inferred

only by Murphy et al., where it is marked as weak. It is due to an

adjacency that is not found in any genome, nor supported by any

of our ancestral syntenies. The same holds for the synteny between

human chromosomes 2 and 20 (which is not weak according to

Murphy et al.), and seems to be more rodent-specific. The synteny

between human chromosomes 1 and 10 was inferred by MGR and

our method, and considered weak by Murphy et al., and is

supported by three of our ancestral syntenies that have significant

weights. The synteny between human chromosomes 2 and 7,

which is found only by the method of Ma et al. is due to an

adjacency that is found only in the pig and is not supported by any

of our ancestral syntenies. We can also note that among the 250

Table 3. Characteristics of four inferred ferungulate genomic architectures. The first three use a set of markers taken in the
supplementary material of Murphy et al. [11].

Method CARs Adjacencies Human chromosomal syntenies

New method 24 250 1-10, 3-21, 4-8, 7-16, 12-22, 12-22, 14-15, 16-19

Ma et al. [12] 38 269 2-7-16, 3-21, 4-8, 12-22, 14-15, 16-19

Murphy et al. [11] 24 283 1-10, 1-22, 2-20, 3-21, 4-8, 5-19, 7-16, 12-22, 14-15, 16-19

Kemkemer et al. [33] 23 - 1-3-19-21, 4-8, 7-16, 12-22, 14-15, 16-19

It consists in 307 markers covering 1343 Mb of the human genome. We have run our program and the one of Ma et al. [12], while taking the published results of Murphy
et al.. The last method is with a different set of markers, constructed by e-painting methods. We copy the chromosomal syntenies published in [33].
doi:10.1371/journal.pcbi.1000234.t003
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adjacencies inferred by our method, only 196 are common with

the results obtained with the methods of Ma et al. and Murphy et

al., while 240 are common with the ancestor obtained with the

method of Ma et al. and 204 are common with the ancestor

proposed by Murphy et al. We have only the boreoeutherian

syntenies in common with Kemkemer et al. [33], and those that are

supposed to be ferungulate specific all disagree (we don’t recover

the giant chromosome 1-19-3-21, and recover 1-10 instead).

Discussion

We proposed a general model-free framework for reconstruct-

ing ancestral genome architectures from current genomic marker

orders. We implemented this framework in a method that

considers adjacencies and common intervals in extant genomes

and applied our method on two ancestral genome reconstruction

problems: the boreoeutherian ancestor, from a set of homologous

markers we computed from UCSC whole genome alignments [32]

and a dataset proposed in [12], and the ferungulate ancestor from

the synteny blocks defined in [11]. We believe that our

experimental results mark a progress as compared to previous

bioinformatics studies, and that the framework we propose is a

useful tool to compare methods.

Convergences and Divergences of the Ancestral Genome
Reconstruction Methods

We perform here a comparative analysis of different methods

for the reconstruction of ancestral genomes, independently of the

type of data used for these reconstructions. For the boreoeutherian

ancestor, Ma et al. [12], with their own set of markers called

conserved segments, recovered 29 CARs, with 8 ‘‘weak adjacen-

cies’’. Those adjacencies correspond to features that are only

present in human and mouse for example, which would more

account for an euarchontoglire feature, or even only in human (as

the junction of both parts of human chromosomes 10 or 16 for

example). In contrast, at a resolution of 200 kb and with universal

synteny blocks, we infer 26 CARs, which is comparable, but no

such weakly supported adjacency is inferred. At the resolution of

50 kb, with Ma et al. data, we infer 35 CARs, which compares to

29 CARs plus 8 weak adjacencies. Moreover, all our chromosomal

syntenies, at several resolution levels, are also supported by

cytogenetic studies, but the fusion of a synteny block of human

chromosome 4 with a segment of human chromosome 1 that is

found only at high resolution (min_len = 100 kb). The method of

Ma et al. gives 31 to 37 CARs on our datasets, with a significant

number of weak adjacencies, as well as some variations in terms of

human chromosomal associations. The most likely explanation for

the difference between the two methods lies in methodological

reasons, primarily the way ancestral syntenies are defined

(adjacencies computed through a Fitch-like approach in [12], see

below for a discussion on that topic), rather than to the dataset

itself as the way we compute synteny blocks are very similar, even

if we conserve only blocks that are present in all genomes.

Nevertheless, the results obtained both by our method and Ma et

al. method, which both rely on model-free algorithmic principles,

like cytogenetics methods but on other kind of data, strongly agree

with cytogenetics results.

We also tested our method on the ferungulate ancestor and

compared our results with the ancestor inferred through a

rearrangement-based method in Murphy et al. [11]. With the

method Murphy et al., based on a genome rearrangement model

and MGR [8], the results diverged from the cytogenetics data and

provoked the discussion in [16–18]. Using the same synteny blocks

as Murphy et al., we found 24 CARs, all of which are

chromosomes of the boreoeutherian ancestor, except a fusion of

the homologs of human chromosomes 1 and 10, which seem to be

ferungulate-specific, and was also inferred by MGR. None of the

other chromosomal syntenies proposed by [11] were recovered by

our method, or the Ma et al. method. However, the number of

common inferred ancestral adjacencies points out that our method

and the method of Ma et al. compute similar ancestral genome

architectures, which are different from the one proposed by MGR,

despite the fact that this last one has 24 CARs, as with our method.

We believe that this three-way comparison indicates that the

differences discussed in [16,17] are partly due to the methods

themselves, and more precisely to the fact that MGR is a

rearrangement-based method, whereas all the others are model-free.

Methodological Comments
We now summarize the main methodological features of the

framework we propose, and discuss them, as well as some possible

extensions. We propose to decompose the process of ancestral

genome architecture inference into three steps: detection and

weighting of ancestral syntenies, representation as a 0/1 matrix

and a generalized PQ-tree, clearing ambiguities and representa-

tion of a set of alternative genome architectures as a PQ-tree.

Although these three steps are performed independently, the

implementation choices for each of them can have important

consequences on the other ones, as we discuss below. We

implemented this method using (1) unique and universal synteny

blocks, which appear once in each genome, (2) ancestral syntenies

defined as unambiguous adjacencies and maximal common

intervals (or gene teams) which are present in at least two genomes

whose evolutionary path along their phylogeny meets the

considered ancestral species and (3) a combinatorial optimization

approach, based on the Consecutive Ones Submatrix Problem, to

clear ambiguities. The comparison of our method and the one of

Ma et al. [12] through the prism of this framework highlights the

important effects of some methodological choices on ancestral

genome proposals. We discuss below these choices on the

combinatorial nature of the considered sets of genomic markers,

the definition and computation of ancestral syntenies, and the

method to clear ambiguities.

The model-free approach. By following the model-free

approach, we come close to the results of cytogenetics studies. Of

course, it might not be a surprising finding, since we claimed at the

beginning that we were trying to implement some of the principles

that were used in the cytogenetics studies. But this is still a result,

since it has never been reported before that with different types of

data and a much reduced species sample, the same principles

would lead to the same results.

The quality of the sequences and their assemblies, and the

heuristics used to align them might have caused a divergence

between the results in spite of the similarity of the reconstruction

principles. We see here that this divergence is limited, and this can

be explained by the model-free approach. Indeed, first, we do not

try to force an explanation for a misassembly through an evolution

scenario (see [48] for such an example). In addition, we consider

ancestral features in terms of common intervals that are shared by

at least two species whose evolutionary path goes through the

ancestral node. So in order for such a putative ancestral synteny to

be a false positive it would require that it is present in another

species, which is not likely for a misassembled contig, provided the

assemblies were done independently.

As an illustration, we tested our method on two different

assemblies of the cow genome, bosTau3, which was the only one

available when we started this study, and bosTau4, which is the

one presented for the final results. These assemblies are quite
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different: as an example, we found 2796 homologous markers with

parameters max_gap = 100 kb and min_len = 200 kb with bosTau3,

and only 824 such markers with bosTau4, which witnesses a

substantial progress in the cow genome assembly. But the

boreoeutherian CARs are very similar with both versions. This

indicates that the model-free method with common intervals is up

to some point resistant to misassemblies. It can be well explained

by the common interval model: contrarily to adjacencies, this is

independent from the order of the markers in an ancestral group.

Whether the cow genome presents markers ordered A B C D or A

C B D due to a misassembly, the ancestral synteny in terms of

content {A,B,C,D} will be captured by a common interval. The

differences between the assemblies have however an impact on the

possible resolution of an ancestral genome: while we obtain 26

CARs with parameters max_gap = 100 kb and min_len = 200 kb

with the bosTau4 assembly (these are the CARs of Figure 4), we

only obtain as good results from min_len = 400 kb with the

bosTau3 assembly, thus with lower resolution and coverage.

Detecting ancestral syntenies. We emphasize that, in our

opinion, the first step, which aims at computing a set of syntenic

groups that are possibly ancestral, is essentially a feature detection

phase and does not require to rely on combinatorial optimization.

Current existing methods rely on methods inspired from the Fitch-

Hartigan algorithm, as in [12,22,30]. These methods implicitly try

to minimize the number of gains and losses of features along the

species tree T, following then a parsimony model of evolution that

can be very sensitive to the branching pattern of T. For example,

in [12], due to the chosen taxonomic sampling and Fitch-based

approach to define putative ancestral syntenies, all dog adjacencies

will be considered as possible ancestral adjacencies. Weighting

characters is a possibly more flexible approach to assess their

conservation.

Handling duplicated and non universal markers. In

order to analyze the original dataset of [12], we also show how our

framework can be implemented to still define ancestral syntenies in

terms of common intervals while accommodating less well defined

synteny blocks in outgroup genomes, due to duplicated, missing or

overlapping synteny blocks. To this aim, we use approximate

common intervals. Note moreover that there are several

algorithms to compute efficiently conserved syntenic groups

between pairs of genomes with duplicated markers (see a survey

in [49] for example), or duplicated segments followed by intensive

losses in both copies (see [50]), which could be used instead of the

algorithm to detect approximate common intervals we used.

However, what is compulsory in the framework we propose is

that the ancestral genome contains exactly one marker of each

marker family; indeed, otherwise we cannot use tools such as the

notion of consecutive ones property of 0/1 matrices and PQ-trees,

which are central in our framework. From that point of view, it

would be interesting to extend our approach to problems of

inferring a pre-duplication ancestral genome architecture, which

has been considered in some rearrangement-based recent works

[51–53]. Solutions in physical mapping techniques are also

mentioned in [54]. Another approach, which has been followed

recently when using gene families instead of synteny blocks would

be to consider the gene trees of the gene families and the gene

tree/species tree reconciliation to infer the ancestral gene content

and orthology relationships [54].

Definition of ancestral syntenies, 0/1 matrices and PQ-

trees. The link between the combinatorics of PQ-trees and 0/1

matrices is the main limitation of our approach, as it only captures

certain types of ancestral syntenic features, and prevents to infer

differentiated duplicated markers in the ancestral genome. For

example, some common features of extant species are not captured

by common intervals (gene team [23] with gaps). We would

probably detect a significant amount of approximate ancestral

syntenies by considering some amount of gaps in the detection

phase [49,55]. But the combinatorial nature of the reconstruction

phase radically changes in this case, as naturally we would like

then to consider possible gaps in the rows of the 0/1 matrix that

represents ancestral syntenies after reordering the columns of this

matrix. This is illustrated by the amount of ancestral syntenies that

need to be discarded when they are defined in terms of

approximate common intervals for example, which differs

significantly from using exact common intervals.

When considering only 0/1 matrices, related problems have

been considered as in [56], but they are not related any more to

PQ-trees, which are important as they represent a set of alternative

ancestral genome architectures, an important property of the

framework we propose. The decision problem of ‘‘consecutive

ones with allowed gaps’’ is still open. In this problem, each line of

the matrix has to have consecutive ones, except that between each

pair of ones, a fixed number of zeros is allowed. It is the extension

of the C1P problem which is closest to the gene teams formalism.

It relates to bandwidth in graphs [57], where it has a polynomial

solution for maximum gaps of 2 (and more generally, if the

maximum number of allowed gaps if fixed), but no generalization

to matrices is known. There is then still an important theoretical

work to do on the combinatorics of PQ-trees and of their extension

to non-contiguous ancestral syntenies, which would be important

to implement the framework we propose in order to handle more

ancient and more rearranged genomes.

Clearing ambiguities in ancestral syntenies. In the

method we propose, we decided to clear ambiguities in the set

of detected ancestral syntenies by discarding the minimum amount

(in terms of weight) of such syntenies in order to have a C1P

matrix and then a PQ-tree. In fact we then made two choices:

removing the minimum amount of information, and considering

that only rows of the matrix may be discarded.

The bias induced by choosing to apply a combinatorial

optimization approach is that we are likely to conserve, in the

resulting matrix, false positive ancestral syntenies (for example if

there are two false positive ancestral syntenies that have the same

weight, and the presence of both contradicts the consecutive ones

property, but not the presence of either of the two). Another

approach was described in [30], where the notion of a conflicting set of

syntenies was defined as a set of syntenies that is ambiguous but such

that discarding any of them leaves a non-ambiguous set of syntenies.

It was then proposed to discard all syntenies of such a group. This is

what we do with adjacencies in the first step of our method, mostly

because such conflicting sets are easy to detect with adjacencies,

unlike with common intervals, and because we expect that true

ancestral adjacencies should also be supported by larger syntenies

that will be detected as maximum common intervals. With our data,

such an approach would have been very extreme, as preliminary

studies of ancestral syntenies that belong to the R-nodes of the

generalized PQ-tree showed that almost half of such ancestral

syntenies belonged to at least one conflicting set (data not shown).

However, using a sampling method, it seems that only very few of

these syntenies belong to many conflicting sets. It would then be

interesting to apply a cut-off approach where all ancestral syntenies

that belong to a large proportion of the conflicting sets present in a

given R-node are discarded. However, to implement such an

approach, the combinatorics of conflicting sets with general 0/1

matrices needs to be better understood (work in progress).

The second choice we made is the optimization criterion. There

are several ways to handle conflicts in a 0/1 matrix that is not C1P

(see [58] for example): removing rows (i.e. ancestral syntenies),
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columns (genomic markers), splitting rows (to account for possible

chimeric ancestral syntenies) or even reverting some cells from 0 to

1 or 1 to 0 (to account for approximate syntenies). It is important

to notice that choosing one of these approaches should be related

to the nature of the errors expected to be found in the set of

ancestral syntenies (see [46] for an example of this principle in the

case of physical mapping). Based on our definition of genomics

markers as synteny blocks computed from whole genome

alignments using quite stringent criteria, we considered that

orthology relations were correct (even if we found one possible

false positive with min_len = 100 kb), which did not justify to

remove columns. Similarly using maximum common intervals,

that is genome segments with the same content, prevents from

expecting to have to deal with reverting cells of the matrix. Finally,

in the case of chimeric ancestral syntenies (i.e. groups of two or

more syntenies joined by convergent evolution), we expect that the

individual syntenies that compose them will be detected as well,

and then we just need to remove the row corresponding to a

chimeric synteny. However, depending on the nature of the data,

one could very well consider other optimization criteria: for

example, with genomic markers defined using virtual hybridiza-

tion [39], or when considering duplicated genomic markers that

represent ambiguous orthology relations, it would be natural to

consider discarding columns of the matrix.

Orienting markers in CARs. In the present work, we do not

orient markers in the set of CARs, unlike [12]. It is possible to adapt

the present framework in order to consider marker orientations. It

may be done by doubling every marker, as in [12], and adding an

adjacency between the two copies with high weight, so that it is never

removed during the optimization phase. Then the orientation will be

inferred, with the possibility of remaining unresolved if the the two

markers are involved in P-nodes of the PQ-tree: this means that the

two orientations are equally possible.

Sensitivity to parameters. The first step of the method

(detecting ancestral syntenies) captures more information as the

resolution goes down (from 100 kb to 500 kb). So we are able to

handle a resolution of 100 kb, but our best results are obtained for

max_gap = 100 kb and min_len from 200 kb to 400 kb. This is

probably because at higher resolution, the orthology and synteny

signals are still perturbed by all kinds of duplications and

repetitions, and at lower resolution, the coverage is too low to

reconstruct reliable ancestors. At high resolution, in addition to the

presence of many duplication and mobile elements, misassemblies

and misplaced contigs may disturb the research for orthologies

with the right positions (for example, the contigs may vary between

two assembly versions of a genome, as we have seen for the

bosTau3 and bosTau4 versions, leading to different results at high

resolution). Apart from these considerations, the method is stable,

in the sense that it recovers the same basic set of adjacencies for all

choices of markers.

We also tested the sensitivity to branch lengths, and no results

were altered by taking for example the branch lengths proposed by

Ma et al. [12], based on an a priori amount of rearrangements that

is expected in each branch. The method of Ma et al. [12], which

we tested with the same parameter variability, was not as stable,

due to the higher importance of its optimization step, which may

give very different results with similar values.

Material and Methods

Computing Orthologous Markers from Whole Genome
Alignments

We construct several datasets, by a unique method depending

on two parameters, max_gap and min_len. This method, or very

similar ones, are often used to construct synteny blocks from

genomic alignments [40,41,59].

N We first downloaded the chained and netted pairwise

alignments from the UCSC Genome Bioinformatics site [32]

and the coordinates of all the alignments of the human genome

(build hg18, March 2006 [60]) against respectively macaca

(build rheMac2, January 2006 [61]), mouse (build mm9, July

2007 [62]), rat (build rn4, November 2004 [63]), cow (build

bosTau4, October 2007 [64]), dog (build canFam2, May 2005

[65]), chicken (build galGal3, May 2006 [66]) and opossum

(build monDom4, January 2006 [67]);

N For each set of alignments between the human genome and

another genome, a graph is built, with vertices being the above

alignments and edges joining two alignments if they have the

same direction, and if they are not more distant than max_gap,

a user-defined parameter (here 100 kb), in both genomes;

N Pairwise synteny blocks were defined as connected components

of the above graphs that span a size of at least min_len of both

genomes;

N The previous steps give a collection of pairwise breakpoints,

with coordinates in the human genome. By considering all

these breakpoints together, taking the union of those that

intersect, we ended up with markers common to subsets of

species, with their coordinates on the human genome and

arrangements in all species, as sequences of markers (the

chromosomes). We discarded the alignments which spanned

less than 50kb of the human genome, and those which were at

least 80% covered by segmental duplications. The coordinates

of segmental duplications were also downloaded from the

UCSC Genome Bioinformatics site [32].

Ancestral Features: Gene Teams, Approximate Common
Intervals, and Adjacencies

We first use the notion of ‘‘teams of markers’’ [24]. This notion

relies on a parameter d, a positive integer. In a genome, the position

of a marker m, denoted by p(m), is its relative rank on the its

chromosome. That is, the first marker on a chromosome has rank

1, the second has rank 2, and so on. Two markers m1 and m2 are

said to be close to each other in a genome, for the parameter d, if

they lie on the same chromosome, and |p(m1)2p(m2)|#d. A subset

of markers M is said to be a team for a genome if for any two

markers a,b from M, there exists a sequence S = a,a1,…ak,b of

markers from M, such that any two consecutive markers in S are

close to each other. Given two genomes X and Y, a team S common

to X and Y is a set of markers labels (a subset of S the alphabet of

markers) that is a team in both genomes X and Y. Such a team S is

maximal if no other team is common to X and Y and contains S.

Maximal common intervals are maximal common teams for d = 1.

Maximal common teams can be computed efficiently thanks to an

algorithm by Beal et al. [23] and a software described in [24]. We

collect a set of teams, representing possible ancestral syntenies, by

computing all maximal common teams of pairs of species which

evolutionary path contains the wished ancestor.

In order to analyze the dataset of [12], due to less defined

markers in the two outgroup genomes, we used maximal

approximate common intervals defined as follows: a subset M of

markers is an approximate common interval between two

genomes if there exists a genome segment in each of the two

genomes whose 80% of the gene content is equal to S. An

approximate common interval S is maximal if no other approximate

common intervals is common to X and Y and contains the two

occurrences of S in X and Y.
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As teams rely only on similarity in markers content, and do not

involve any marker order constraints, we added to this set of

ancestral syntenies the set of putative ancestral adjacencies,

defined as pairs of markers that are consecutive in at least two

genomes whose evolutionary path contains this ancestor and do

not belong to a conflict. A conflict is defined as follows (Figure 7 in

[12]): an adjacency {i, j} belongs to a conflict if, in the graph G

whose vertices are the markers (V(G) =S) and the edges are the

conserved adjacencies, either i or j has degree more than 2, or the

edge {i, j} belongs to a cycle.

Each of these ancestral syntenies was weighted following the

same principle as in [12]. Let S be a subset of S that represents a

possible ancestral synteny. In any leaf X of the species tree, if S is a

team in X, the weight of S in X is wX(S) = 1, otherwise, wX(S) = 0.

Then, in any internal node N of T (other than the ancestral node

A) having two children R and L, wN(S) is defined recursively by the

formula

wN Sð Þ~ dLwR Sð ÞzdRwL Sð Þ
dLzdR

where dL and dR are respectively the length of the branch between

N and L and N and R. The weight of S in A is then defined by

wA Sð Þ~ 1

3

dA1
wA2

Sð ÞzdA2
wA1

Sð Þ
dA1

zdA2

z
dA1

wA3
Sð ÞzdA3
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dA1
zdA3

�

z
dA2

wA3
Sð ÞzdA3

wA2
Sð Þ
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where A1, A2 and A3 are the three neighbors of the ancestral node

A in T, and dA1
, dA2

and dA3
are the respective length of the

branch between A and A1, A and A2 and A and A3.

Construction of the Generalized PQ-Tree
Recall L is the set of homologous markers, S is the set of subsets

of L that represent possible ancestral syntenies and M the

corresponding 0/1 matrix.

We say that two elements Si and Sj of S overlap if their

intersection is not empty, but none is included in the other. Let

N Sð Þ be the family of all subsets of L that do not overlap with any

member of S; in other words, given X an element of N Sð Þ, any Si

of S either contains all elements of X or contains no element of X.

Among the subsets of N Sð Þ, call strong the elements that do not

overlap any other elements of N Sð Þ. The inclusion tree of the strong

elements of N Sð Þ, denoted I N Sð Þð Þ, is a tree where each strong

element of N Sð Þ corresponds to a single node and the node

corresponding to a strong subset X is an ancestor of the node

corresponding to a strong subset Y if and only if X contains Y as a

subset.

Given a node N of I N Sð Þð Þ, we associate to it the subset s Nð Þ
of the elements of S defined as all Si’s that are included in N but in

none of its children. The PQ-tree T Mð Þ is defined from I N Sð Þð Þ
as follows: an internal node N such that s(N) = Ø is a P-node, while

an internal node N such that s(N)?Ø is a Q-node if s(N) can be

partitioned by a partition refinement process [68] and a R-node

otherwise. The construction of T Mð Þ can be achieved in optimal

O(n+m) time where Lj j~n and Sj j~m, as described in [45].

Algorithms for Clearing Ambiguities in Ancestral
Syntenies

In the last step, we want to remove the minimal amount (in

terms of weight) of ancestral syntenies from S in order that the

resulting matrixM’ is C1P. This problem, which is known as the

Consecutive Ones Submatrix Problem generalizes the Minimum

Path Partition (or Path Cover) problem used in [12] and is known

to be NP-hard [69] even for sparse matrices [70], which is the case

of the matrices we obtain. However, using the structural

information given by the PQ-tree T Mð Þ, it is possible to design

an efficient branch-and-bound algorithm.

More precisely, it follows immediately from the definition of

T Mð Þ that ambiguous information that prevent a matrixM to be

C1P can only be located in the submatrices defined by the subsets

s(N) of S for the degenerate nodes of T Mð Þ. Hence each of these

subsets of S can be processed independently of the remaining of S.

For such a subset, say s Nð Þ~ Si1 , . . . ,Sikf g, we first compute an

upper bound on the maximum subset S of s(N) that defines a

matrix that is C1P, using the same approach than in [12]: start

with S = Ø and, for each element Sij of s(N), taken in decreasing

order of weight, if adding Sij to S defines a matrix that is not C1P

(which can be tested using the efficient algorithms described in

[46,68]), then discard it, else leave it in S. From that upper bound,

using the same principle, we use a classical branch-and-bound

algorithm that looks for a better subset of s(N) that defines a C1P

matrix.

Assessing the Stability of Adjacencies at Different
Resolutions

Let an adjacency in an ancestral genome architecture be

defined by two markers X and Y that are adjacent in a CAR of this

ancestral genome, for a given resolution (say 100 kb). We say that

it is conserved at a lower resolution (say 200 kb) if either the

synteny blocks corresponding to X and Y in the human genome

are both included in a single synteny block in the human genome

at the lower resolution or if X and Y are contained in two blocks X9

and Y9 at the lower resolution level whose corresponding markers

are adjacent in the ancestral genome inferred at this resolution.

The adjacency is weakly conserved if the markers X9 and Y9 are

not adjacent but present on the same CAR (weakly conserved

adjacencies point at local rearrangements resulting from changing

the resolution of the considered data). Otherwise, if the two

markers X9 and Y9 are not on the same CAR, we say that the

adjacency between X and Y is not conserved. Note that we do not

consider this adjacency is not conserved if at least one of the two

synteny blocks corresponding to X or Y is not included in a lower

resolution synteny block.
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