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Abstract
In recent years, digital dentistry has increasingly utilized advanced image analysis techniques, such as image 
classification and disease diagnosis, to improve clinical outcomes. Despite these advances, the lack of 
comprehensive benchmark datasets is a significant barrier. To address this gap, our research team develop LMCD-
OR, a substantial collection of oral radiograph images designed to support extensive artificial intelligence (AI)-
driven diagnostics. LMCD-OR comprises 3,818 digital imaging and communications in medicine (DICOM) oral X-ray 
images from local medical institutions that are meticulously annotated to provide broad category information 
for both primary dental outpatient services and detailed secondary disease diagnoses. This dataset is engineered 
to train and validate multiclassification models to improve the precision and scope of oral disease diagnostics. 
To ensure robust dataset validation, we employ four cutting-edge visual neural network classification models 
as benchmarks. These models are tested against rigorous performance metrics, demonstrating the ability of the 
dataset to support advanced image classification and disease diagnosis tasks. LMCD-OR is publicly available at 
http://dentaldataset.zeroacademy.net.
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Introduction
Oral health is crucial for maintaining overall well-being 
[1]. However, oral diseases continue to pose signifi-
cant global health challenges [2]. According to the 2019 
Global Burden of Disease (GBD) report, oral diseases 
such as dental caries, periodontitis, and tooth loss affect 
more than 44.5% of the global population, making them 
a major public health burden and a key determinant of 
quality of life [3]. Furthermore, a 2021 review on global 
oral health disparities highlights that the burden of oral 
diseases is particularly severe in low- and middle-income 
countries due to a lack of access to dental care services 
[4]. There is a significant gap between the actual burden 
of disease and the healthcare system’s ability to provide 
adequate patient care. These findings underscore the 
urgent need to enhance the effectiveness of oral disease 
diagnosis, improve dental services, and conduct data-
driven research to mitigate the growing global impact 
of oral diseases. Therefore, there is an urgent need for a 
comprehensive oral health dataset that includes a large 
volume of clinical data. Such a dataset would not only 
provide more accurate guidance for diagnosing and 
treating oral diseases in specific regions but also serve 
as a foundation for developing artificial intelligence (AI) 
models. In recent years, AI algorithms have experienced 
rapid and significant advancements [5–9]. By leveraging 
these datasets, AI algorithms can more effectively detect 
patterns and abnormalities in oral health, thus provid-
ing fast and accurate diagnostic support. The integration 
of AI with well-curated datasets holds great potential to 
significantly reduce diagnostic and treatment time, ulti-
mately improving clinical outcomes [10, 11].

Oral datasets have shown considerable potential in 
dental informatics [12], facilitating early detection and 
diagnosis of oral diseases and assisting in the identifica-
tion of osteoporosis and anatomical landmarks within 
gingival and periodontal tissues [13]. For example, data-
sets comprising oral X-ray images can be utilized to train 
AI models to detect early signs of dental caries and peri-
odontal diseases more accurately. Such models have been 
demonstrated to assist clinicians in identifying subtle 
radiographic features that may be overlooked during 
manual examination, thereby improving diagnostic accu-
racy and efficiency [14]. Overall, integrating these datas-
ets into clinical workflows not only enhances diagnostic 
precision but also contributes to more timely and per-
sonalized treatment planning, representing a significant 
advance in intelligent oral healthcare. The development 
and exploration of these datasets represent important 
focuses for advancing future precision-oriented dental 
healthcare to significantly improve the efficiency and 
accuracy of dental practices. To meet this objective, vari-
ous datasets, such as the Tufts Dental Database (TDD) 
[12], the oral diseases and sciences image database 

(ODSI-DB) [13], the Swedish Quality Registry for Caries 
and Periodontal Diseases (SKaPa) dataset, the National 
Dental Practice-based Research Network (NDPBRN) 
dataset, and the Bigmouth dataset [15], have been devel-
oped to assist in diagnosing various dental diseases. The 
existing oral datasets fall into three primary categories: 
oral cancer databases, which are represented by organi-
zations such as the Queensland Cancer Registry (QCR) 
and can predict the 3-year and 5-year overall survival 
of oral cancer patients [16]; oral radiographic datasets, 
which are represented by organizations such as author-
ity (AUTH) and are proficient in accurately dissecting 
intraoral anatomical structures [17]; and intraoral photo-
graphic datasets, which are represented by organizations 
such as the University of Hong Kong/Hospital Author-
ity Hong Kong West Cluster (HKU/HA HKW IRB) and 
are adept at categorizing, labeling and locating gingival 
health status [18].

However, the existing oral datasets are relatively lim-
ited in scope and size, and a sufficiently large dataset 
that can serve as a baseline for comparing different mod-
els is lacking [19]. Most studies have generally relied on 
single models, such as the standard convolutional neural 
network (CNN) model and the faster region-based con-
volutional neural network (R-CNN), for training, which 
results in unstable raw data processing [20]. Within the 
current oral radiograph dataset, Panetta created the 
TDD, which contains 120 periapical dental radiographs 
from both the maxilla and mandible. This database uti-
lized CNNs to analyze bone conditions, achieving a 
nuanced assessment of baseline results in dental radio-
graphic image enhancement and tooth segmentation. 
However, the limited size of the database, its reliance 
on a single model, and its relatively poor generalizabil-
ity prevent its clinical translation [12]. While Mattea et 
al. expanded the database to include 2112 radiographs 
from seven key institutions in an attempt to reduce bias 
and the misinterpretation of results, relying solely on 
CNNs for data analysis remains a challenge in ensur-
ing model efficacy and stability [21]. Mohammed et al. 
applied six pretrained models, AlexNet, VGG-16, VGG-
19, ResNet-50, DenseNet-169 and MobileNet-V3, to 
500 cone beam computed tomography (CBCT) images. 
Although successful in accurately detecting the location 
of missing teeth, these models cannot simultaneously 
detect other oral diseases [12]. Many oral datasets lack 
stand-alone websites, limiting the expansion of com-
petition and research communities [22–24]. While few 
databases, such as the TDD, have easily accessible stand-
alone websites, they primarily process disease types via 
single model identification. Although models have been 
developed to identify multiple diseases over the past 
three years, their ability to detect a wide array of diseases 
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is still somewhat limited and often restricted to recogniz-
ing only approximately 20 different categories [25, 26].

Current models for oral databases face several chal-
lenges: they are based on relatively small datasets, lack 
dedicated website support, and often rely on training 
models that are too uniform. These factors obstruct the 
creation of oral diagnostic tools with broad applicabil-
ity. To overcome these obstacles, increasing the data vol-
ume significantly, setting up specialized websites for easy 
access, and encouraging the adoption of various founda-
tional models for the processing of data are imperative. 
These steps improve model generalizability and promote 
the sharing of resources.

LMCD-OR addresses the challenges faced by current 
oral databases in several ways. First, it expands the data 
volume by incorporating 3,818 oral radiograph images 
sourced from local hospital databases. These images 
include original DICOM oral X-rays that have been 
meticulously labeled to cover both common categories 
seen in primary dental care and specific secondary dis-
ease diagnoses, thereby enhancing the dataset’s repre-
sentativeness and reliability for various diagnostic tasks. 
Second, to tackle the issue of accessibility, LMCD-OR is 
made available through dedicated websites such as http://
dentaldataset.zeroacademy.net/ [27] and Kaggle [28]. 
These platforms provide convenient access for research-
ers and clinicians to explore, download, and utilize the 
dataset, fostering community collaboration and resource 
sharing. To ensure transparency, we emphasize that the 
dataset is provided under open access, with clear usage 
terms and conditions outlined on each platform. Users 
must agree to non-commercial use only, and they are 
required to acknowledge the dataset in their publications. 
Additionally, the legal responsibilities for appropriate use 
are clearly stated, ensuring that users are aware of their 
obligations when accessing the dataset. Finally, to address 
the challenge of overly uniform training models, we have 
developed a baseline multiclass classification model using 
diverse foundational architectures. This model not only 
aids in evaluating the dataset’s performance but also sets 
a benchmark for future research and competitions. These 
comprehensive efforts ensure that LMCD-OR serves as 
a robust and versatile resource for advancing oral health 
diagnostics and treatment outcomes [29].

Furthermore, the aim of compiling oral datasets on a 
specialized webpage and community, as part of this study, 
is to invigorate the development of competitions based 
on oral disease databases while nurturing a research 
community focused on this field.

Method
Ethics and quality standards
The subjects included in this study received approval 
from the Medical Ethics Review Committee of the 

Affiliated Stomatological Hospital of Wenzhou Medi-
cal University (Ethics No. WYKQ2023010). Owing to 
the retrospective nature of this investigation and the 
anonymity and nonidentifiability of the radiographs, the 
institutional review board granted a waiver of informed 
consent. In addition, our study methodology and report-
ing strictly adhere to the standards for quality improve-
ment reporting excellence (SQUIRE) guidelines, ensuring 
ethical and quality standards for this quality improve-
ment study.

Datasets
Oral radiographic data and case data were collected 
between 1st July 2023 and 18th August 2023, compris-
ing a total of 4682 raw DCM files and 79,139 raw case 
data. The case data collection primarily includes 288 
principal diagnoses of diseases and seven medical opera-
tions, with detailed tables of these diagnoses presented 
in Table S1 in the Supplementary Materials. All the raw 
images are stored at a uniform resolution (2440 × 1280). 
The DCM format is converted to a portable network 
graphics (PNG) format, incorporating several levels of 
data enhancement for subsequent data processing. This 
includes measures such as contrast enhancement, image 
flipping and image rotation.

Inclusion and exclusion criteria
Images are rigorously screened, and DICOM images 
without corresponding condition information or with 
multiple mixed information segments are systematically 
excluded. Images of elderly patients over 75 years of age 
and children under 4 years of age are also excluded. All 
images with a primary diagnosis of medical surgery are 
removed, along with case records with a primary diag-
nosis associated with fewer than five patients. Our data-
set contains 3818 unique oral radiographs and an equal 
number of individual heat codes. The flow of images and 
annotations into and out of this set is shown in Fig. 1.

Image annotation
Primary dataset annotation was undertaken from 24th 
November 2023 to 8th December 2023, followed by a 
secondary review and quality control phase from 9th 
January 2024 to 29th January 2024. Annotation at the 
image level was performed by four certified dental clini-
cians. Subsequent quality control of the entire annotated 
sample was completed by three quality controllers. Prior 
to the start of the annotation process, a group of medical 
experts highlighted seven initial superordinate detection 
targets and 41 initial subordinate detection targets. These 
categories are detailed in Table S2.

http://dentaldataset.zeroacademy.net/
http://dentaldataset.zeroacademy.net/
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Training set, validation set and test set
The dataset is methodically divided into three distinct 
segments, ensuring balanced proportions and no patient 
overlap between the subsets: the training set comprises 
64% with 2444 images, the validation set comprises 16% 
with 611 images, and the test set comprises 20% with a 
total of 763 images. The test set is stored in an isolated 
storage space managed by professional data scientists 
(HM. C and FX.C). In the competition setting, this test 
set is exclusively used to evaluate algorithm performance 
when a user submits their algorithm for the competition. 
The descriptive statistics for all the subsets are shown in 

Table 1. The dataset is publicly available on a dedicated 
website [27] as well as on Kaggle [28].

Benchmarking algorithm
Algorithm design
In this project, we create a sophisticated multiclassifi-
cation model designed for automatically analyzing oral 
X-ray images to demonstrate the efficacy of LMCD-OR 
in both image classification and disease diagnosis tasks. 
To achieve this goal, we employ a transfer learning 
methodology using deep learning models pretrained on 
extensive image recognition datasets (such as ImageNet). 

Fig. 1  Data inclusion and elimination flowchart
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These models include VGG-16 [30], GoogLeNet [31], 
ResNet-152 [32], and DenseNet-201 [33], as depicted 
in Fig.  2. Each model is characterized by unique archi-
tectural features. VGG-16 is unique because it uses 

a consistently small convolution kernel. GoogLeNet 
achieves parameter minimization through its innova-
tive “sparse connection” design. ResNet-152 addresses 
vanishing gradients in deep networks via deep residual 

Table 1  Demographic table
Clinical parameters Data Training set (n = 2444) Validation set (n = 611) p value
Age (years) 27.05 ± 17.98 27.22 ± 18.05 26.33 ± 17.72 0.381 > 0.05
Gender
(male) 1339(0.37) 1053(0.37) 286(0.39) 0.256 > 0.05
(female) 1715(0.63) 1390(0.63) 325(0.61)
Type of registration
(first visit) 2249(0.63) 1798(0.63) 451(0.61) 0.992 > 0.05
(return visit) 806(0.37) 646(0.37) 160(0.39)
Check-in time
7:00——9:30 1318(0.43) 1068(0.44) 250(0.41) 0.929 > 0.05
9:31——12:00 407(0.13) 321(0.13) 85(0.14)
12:01——14:30 946(0.30) 746(0.30) 200(0.33)
14:31——17:00 385(0.13) 309(0.13) 76(0.12)
Number of patients in each department
Oral surgery disease 615(0.20) 492(0.20) 123(0.20) 0.999 > 0.05
Pediatric stomatology diseases 74(0.02) 58(0.02) 16(0.02)
Remediation disease 286(0.09) 226(0.09) 60(0.09)
Dental endodontic diseases 1003(0.33) 801(0.33) 202(0.33)
Periodontal diseases 346(0.11) 276(0.11) 70(0.11)
Orthodontic disease 722(0.24) 583(0.24) 139(0.25)
Other 9(0.01) 8(0.01) 1(0.00)
Types of dental diseases in each department
Oral surgery disease 8(0.20) 8(0.20) 7(0.18) 0.999 > 0.05
Pediatric stomatology diseases 2(0.05) 2(0.05) 2(0.05)
Remediation disease 3(0.07) 3(0.07) 2(0.05)
Dental endodontic diseases 17(0.42) 17(0.42) 17(0.45)
Periodontal diseases 3(0.07) 3(0.07) 3(0.08)
Orthodontic disease 6(0.14) 6(0.14) 6(0.16)
Other 2(0.05) 2(0.05) 1(0.03)

Fig. 2  Schematic representation of a transfer learning-based multiclass classification model
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learning. DenseNet-201 enhances feature propagation 
and reuses its dense connectivity architecture.

These pretrained models serve as initialization param-
eters and are fine-tuned specifically for our multiclas-
sification task on oral radiograph data. The output layer 
includes a softmax classifier combined with a cross-
entropy loss function to optimize the classification per-
formance. The selection of the optimal model, which 
serves as the baseline model for both the superordinate 
diagnostic task and subordinate diagnostic task, is influ-
enced by performance evaluation metrics such as the 
top-1 accuracy (top-1 Acc) and top-5 accuracy (top-5 
Acc).

Experiment
Various data enhancement techniques are used, includ-
ing image contrast enhancement, flipping, and rotation. 
The computational framework uses the stochastic gradi-
ent descent optimizer (SGD) with a maximum learning 
rate of 0.0001. The impulse technique is used with its 
value set at 0.9 and a weight decay parameter set at 0.05 
to effectively manage the optimization process and accel-
erate the model convergence rate. The number of itera-
tions for the weight adjustment process is limited to 150 
epochs, and the model accuracy performance improve-
ment converges when no change greater than 0.02 is 
observed for 15 consecutive epochs on the validation set. 
The final model is evaluated via an independent test set.

Statistical analysis
The top-1 Acc of the multiclassification task is calculated 
to evaluate the final performance of the baseline algo-
rithm. The top-5 Acc is also calculated for the complex 
subordinate target classification task. In addition to these 
two metrics, we introduce six other metrics—microav-
eraged precision, microaveraged recall, microaveraged 
F1, macroaveraged precision, macroaveraged recall, and 
macroaveraged F1—to provide a more comprehensive 
performance assessment. The Mann‒Whitney U test 
is employed to evaluate the differences in performance 
between the groups. These comprehensive assessment 
metrics are analyzed via an open-source statistical tool 
based on Python. The specific versions of the Python 
library used can be found in Table S2.

Data desensitization
To ensure privacy, we implement a multistage desensi-
tization process before the data are stored and distrib-
uted. First, numeric data are rounded and quantized to 
reduce their precision and sensitivity. Second, masking 
techniques are used to hide sensitive information and 
truncate data to reduce precision. In addition, a unique 
substitution method replaces the original data with irrel-
evant unique identifiers to prevent reverse inference. We 

also use hash functions to convert data into fixed-length 
strings to increase data security. To further break the cor-
relation between data, a reordering process randomizes 
the order of records. Finally, format-preserving encryp-
tion (FPE) ensures that the data content is unrecogniz-
able while preserving the data format. The combined 
application of these desensitization methods effectively 
reduces the risk of personal identification and microdata 
exposure while maximizing the retention of the research 
value and utility of the data.

Results
Data analysis of the local dataset
From 1 July 2023 to 18 August 2023, a total of 3,818 
patients diagnosed with dental diseases were evaluated 
at a medical center in China. To improve model perfor-
mance and ensure unbiased validation, thereby increasing 
the credibility of the study conclusions, patient selection 
and distribution were randomized across cohorts. The 
data distribution heatmaps for the six datasets are shown 
in Figure S1. Figure S1a displays a heatmap of metric 
attributes for 3,818 patients, covering medical status, reg-
istration time, sex, registration type, and main diagnostic 
categories. Medical status ranges from ‘number returned’ 
(0) to ‘recalled’ (6). Registration time is segmented into 
four periods: 7:00−10:00 (1), 10:01−13:00 (2), 13:01−16:00 
(3), and 16:01−19:00 (4). Gender, registration type, and 
electronic signature are binary variables denoted 0/1. A 
female is assigned 0, and a male is assigned 1. The ini-
tial visit is denoted 0, and the returned visit is denoted 1. 
Unsigned is represented by 0, and signed is represented 
by 1. The main diagnostic categories range from ‘oral sur-
gery diseases’ (0) to ‘other’ (6). Figures S1b, S1c, and S1d 
show heatmaps for metric attributes within the model 
development, validation, and external cohorts that were 
utilized in model optimization, respectively. Table 1 pro-
vides the data and between-group statistical test results. 
The model development cohort (n = 2444), the validation 
cohort (n = 611) and the external cohort used for model 
optimization (n = 763) are shown in Figure S1b to S1d, 
respectively.

Model accuracy performance for superordinate 
classification tasks
The transfer learning models are constructed via the four 
replacement core frameworks. Their performances within 
the superordinate classification tasks are analyzed using 
both the validation and test sets, as shown in Fig. 3. In the 
validation set, the ResNet-152, VGG-16, DenseNet-201, 
and GoogLeNet frameworks provide top-1 Acc val-
ues of 0.6674, 0.6636, 0.6487, and 0.6404, respectively, 
as shown in Fig.  3a. We also calculated the microaver-
aged precision, microaveraged recall, microaveraged 
F1, macroaveraged precision, macroaveraged recall, and 
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Fig. 3  The four transfer learning models using different core frameworks were evaluated on the validation and test sets via the metrics top-1 Acc (a), 
macroaveraged F1 and microaveraged F1 (b), macroaveraged precision and microaveraged precision (c), macroaveraged recall and microaveraged recall 
(d) for superordinate classification tasks
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macroaveraged F1 within the ResNet-152 framework. 
The values are 0.4625, 0.8417, 0.5966, 0.3680, 0.6397, 
and 0.4577. See Fig.  3b and d. Conversely, in the test 
set, all the models represented by the four frameworks 
show a decrease in performance, with top-1 Acc values 
of 0.6445, 0.6358, 0.6236, and 0.6042 for the ResNet-152, 
VGG-16, DenseNet-201, and GoogLeNet frameworks, 
respectively, as shown in Fig.  3a. The DenseNet-201 
framework shows the highest performance across several 
metrics, achieving a microaveraged precision of 0.5010, a 
microaveraged F1 of 0.6197, a macroaveraged precision 
of 0.4029, and a macroaveraged F1 of 0.4680. Conversely, 
the VGG-16 framework outperforms the other methods 
in terms of the microaveraged recall and macroaveraged 
recall, with scores of 0.8575 and 0.6749, respectively, as 
shown in Fig.  3b and d. Among the models tested, the 
model utilizing a transfer learning approach within the 
ResNet-152 framework demonstrates superior overall 
performance compared with the other three models.

Model accuracy performance for subordinate classification 
tasks
To provide a more comprehensive assessment of model 
performance for complex tasks, we analyze the effec-
tiveness of the four frameworks for subordinate clas-
sification tasks. This analysis is performed for both the 
validation and test sets, and the resulting performances 
are shown in Fig. 4a and b. Within the validation set, the 
ResNet-152, VGG-16, DenseNet-201 and GoogLeNet 
frameworks have top-1 Acc values of 0.4000, 0.3818, 
0.3742 and 0.3792, respectively, as shown in Fig.  4a. In 
our evaluation of the ResNet-152 framework, we com-
pute the microaveraged and macroaveraged performance 
metrics. The microaveraged recall is 0.7917, and the mac-
roaveraged recall is 0.3850, as shown in Fig. 4b. In con-
trast, within the test set, we observe varying degrees of 
performance degradation for the ResNet-152 (0.3633), 
VGG-16 (0.3674), and DenseNet-201 (0.3616) frame-
works, as shown in Fig.  4a. Notably, the GoogLeNet 
model increased the top-1 Acc by approximately 0.02 
units. The best performing frameworks in terms of 
microaveraged recall and macroaveraged recall perfor-
mance are the DenseNet-201 and GoogLeNet frame-
works, respectively (see Fig. 4b). Figure 4c compares the 
top-1 Acc performances of four transfer learning models, 
each incorporating a different core framework, for super-
ordinate and subordinate classification tasks. For the vali-
dation set, we calculated the top-1 Acc at 30 epochs after 
convergence for each model and performed a significance 
test to evaluate the performance differences among vari-
ous groups. The p values of 2.59 × 10^-9, 7.30 × 10^-9, and 
4.21 × 10^-11 highlight substantial statistical disparities. 
The performance metrics are depicted through scatter 

plots and error bars, with the average of all values shown 
by the height of the bar chart (see Fig. 4c).

For the test set, we apply a similar approach where the 
performance of each model is measured at 30 epochs 
following convergence. The significance test revealed 
significant differences, with p values of 5.28 × 10^-10, 
5.37 × 10^-10, and 5.05 × 10^-10. These results emphasize 
the distinct capabilities of the models when dealing with 
the complexities inherent in superordinate versus subor-
dinate classification tasks. As with the validation set, we 
visualize the performance data via scatter plots and error 
bars, summarizing the average performance in bar charts 
(see Fig. 4c).

Variation in evaluation metrics for subordinate 
classification tasks
Given the high-dimensional nature of subordinate classi-
fication tasks involving up to 41 categories, relying solely 
on the top-1 Acc metric may not adequately represent the 
ability of the model to handle complex tasks with similar 
categories. Therefore, we also include the top-5 Acc as an 
evaluation metric for this task. This approach provides a 
more comprehensive assessment of model performance, 
aligning better with the high noise and mixed diagno-
sis realities encountered in clinical scenarios. We con-
struct four transfer learning models by replacing the core 
framework and analyzed their top-1 Acc and top-5 Acc 
for subordinate classification tasks in both the validation 
and test sets, as shown in Fig.  4d. In the validation set, 
the ResNet-152, VGG-16, DenseNet-201 and GoogLeNet 
frameworks achieve top-5 Acc values of 0.6698, 0.6579, 
0.6884 and 0.7039, respectively. These values significantly 
exceed the top-1 Acc by more than 0.1 units. Within the 
test set, the performances of the ResNet-152, VGG-16, 
DenseNet-201 and GoogLeNet frameworks yield top-5 
Acc values of 0.6760, 0.6546, 0.6582 and 0.6640, respec-
tively. Notably, these values are lower than the perfor-
mance metrics of the models within the validation set.

For the validation set, our detailed comparative analy-
sis reveals that the model employing transfer learning 
with the GoogLeNet framework outperformed the other 
models in terms of the top-5 Acc. To assess the perfor-
mance differences among the groups, we perform a sig-
nificance test on the top-5 Acc data from 30 epochs after 
convergence. This test reveals significant disparities in 
the overarching classification task, notably showing the 
superiority of GoogLeNet over models based on the 
ResNet-152, VGG-16, and DenseNet-201 frameworks. 
The evidence shows strikingly low p values of 8.17 × 10^-
12, 2.79 × 10^-11, and 7.65 × 10^-8.

Similarly, the model built on the ResNet-152 frame-
work achieves the highest Acc in the test set comparison. 
Further significance testing on postconvergence top-5 
Acc data highlights marked differences in performance 
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Fig. 4  Performance evaluation of the models trained on the respective core frameworks to verify the top-1 Acc (a), macroaveraged recall and microaver-
aged recall (b) for the subordinate classification tasks on the validation and test sets, comparative analysis and significance test to determine the perfor-
mance differences between the top-1 Acc values for the superordinate classification tasks and the subordinate classification tasks on the validation and 
test sets (c), and comparison and significance test to determine the performance differences between the top-1 Acc and top-5 Acc for the subordinate 
classification tasks (d)
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among groups for superordinate classification tasks. 
Notably, replacing ResNet-152 leads to significantly bet-
ter performance than replacement with the GoogLeNet, 
DenseNet-201, and VGG-16 frameworks, as evidenced 
by the p values of 9.21 × 10^-9, 2.82 × 10^-11, and 
1.86 × 10^-10, respectively.

Performance metric analysis is further carried out 
through scatter plots and error bars that effectively show 
result variability and reliability. These visual aids comple-
ment our findings by displaying average performances 
for models through bar chart heights in corresponding 
figures.

Data enrichment processing
To optimize the performance, we apply enhancement 
procedures such as flipping and rotating to the datasets. 
Transfer learning models are then constructed via four 
replacement core frameworks. The performance of these 
models is analyzed on both the superordinate and subor-
dinate classification tasks within the validation and test 
sets following the data enhancement process. Figure  5 
presents a performance analysis of the transfer learn-
ing models using a replacement ResNet-152 framework 
within the validation set and the test set before and after 
data enhancement (the performance comparison graphs 
for the remaining three models are included in Figures 
S2 to S4.). For the superordinate classification tasks, the 
ResNet-152 framework yields accuracy performances 
of 0.6599 and 0.6156 (see Fig.  5a) in the validation and 
test sets, respectively, after data enhancement. The vali-
dation sets for ResNet-152 yield microaveraged preci-
sion, microaveraged recall, macroaveraged precision, 
macroaveraged recall, microaveraged F1 and macroav-
eraged F1 of 0.4974, 0.8405, 0.6247, 0.4127, 0.6208, and 
0.4811, respectively. The corresponding test sets have val-
ues of 0.4783, 0.8239, 0.6049, 0.3923, 0.6308 and 0.4720, 
as shown in Fig.  5b. The ResNet-152 framework yields 
top-1 Acc values of 0.3633 and 0.3950 (see Fig.  5c) and 
top-5 Acc values of 0.6309 and 0.6662 (see Fig. 5d) in the 
validation and test sets, respectively, for the subordinate 
classification tasks following data enhancement.

The use of data from enhanced processed datasets in 
both the superordinate and subordinate classification 
tasks does not significantly improve the overall perfor-
mance. This suggests that conventional data enhance-
ment strategies are of limited effectiveness for dental 
category medical X-ray data. Consequently, there is a 
need for targeted enhancement strategies to effectively 
improve the performance of models dealing with such 
specialized datasets.

Construction of an online web download platform
Our aim is to create a web-based dental research commu-
nity equipped with libraries, datasets and communication 

facilities, as shown in Fig.  6a. Therefore, we create an 
online platform [27] to facilitate the downloading of our 
dataset content. Additionally, we include links to five 
other publicly available datasets and more than 20 links 
to relevant literature on the website. This aggregation 
helps to conveniently provide a comprehensive under-
standing of dental datasets. Figure 6b outlines the com-
prehensive development process of the website, which 
primarily involves front-end technologies such as hyper-
text markup language (HTML), cascading style sheets 
(CSS) and JavaScript. HTML is utilized to define the page 
structure and CSS styles of the presentation layer. JavaS-
cript manages interactivity and dynamic behavior on the 
page. In terms of backend development, Spring Boot pro-
vides a productive and straightforward framework for 
building Java-based applications. My structured query 
language (MySQL) serves as the backend database to 
ensure reliable data storage and management. MyBatis-
Plus extends MyBatis, increasing development efficiency 
and streamlining data manipulation procedures. This 
information can serve as a useful guide for developers. 
The design and functionality of our community interface 
are illustrated in Fig. 6c and e.

Discussion and conclusion
AI coupled with dental datasets has significantly 
advanced digitization in dentistry, with immense poten-
tial for clinical applications in automated diagnosis, dis-
ease prediction and taxonomic identification [34]. Dental 
datasets provide a valuable repository of prior informa-
tion essential for implementing precision dentistry strat-
egies. They encompass diverse research findings, such 
as clinical examination data, nested case designs, and 
cross-sectional designs of patient populations [15, 35]. 
However, importantly, the development and application 
of these dental datasets are still in their infancy, and the 
datasets currently available in oral health have significant 
limitations in terms of both scope and size. This situa-
tion hinders its potential utility as a reference point for 
comparing the performances of different models [19]. In 
addition, much of the relevant research is based on the 
application of a single model, which is focused primar-
ily on diagnosing and assessing a single condition [12, 20, 
21], limiting its widespread clinical use. Moreover, many 
datasets lack dedicated websites or community sup-
port [22–24], hindering their use and validation by other 
researchers. This limitation impedes progress toward rel-
evant competitions and academic community develop-
ment in this domain.

To address the shortcomings of existing databases, we 
created a new local oral dataset named LMCD-OR by 
compiling oral X-ray images from patients in local hos-
pitals, offering a volume of data that surpasses many cur-
rent collections. Most existing databases are limited in 
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Fig. 5  Performance evaluation of the transfer learning model implemented via the ResNet-152 framework before and after data augmentation, includ-
ing a comparison of the top-1 Acc values for the superordinate classification task on the validation and test sets (a), macroaveraged F1, microaveraged 
F1, macroaveraged precision and microaveraged precision, macroaveraged recall and microaveraged recall (b), comparison of top-1 Acc values for the 
subordinate classification task (c), and comparison of top-5 Acc values (d)
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providing secondary diagnoses for specific conditions 
and lack information on broader classification levels 
[34–36]. In contrast, LMCD-OR boasts detailed hierar-
chical annotations and high labeling precision, encom-
passing both primary-level categories for oral outpatient 
visits and secondary-level diagnoses for specific diseases. 
This richness allows the use of a multiclass classification 
model that can learn various oral diseases simultane-
ously from a single X-ray image. Additionally, to ensure 
the ethical credibility of the research, all data included 
in LMCD-OR has been fully anonymized and de-identi-
fied. As detailed in Sect.  2.7, all patient identifiers were 
removed prior to data compilation, and strict protocols 
were followed to prevent any traceability back to indi-
vidual patients. This guarantees that the dataset complies 
with ethical standards and legal regulations, ensuring full 
data anonymity and non-identifiability.

Moreover, LMCD-OR is a multilevel categorized diag-
nostic dataset for oral radiography, which addresses the 
limitations of traditional datasets that typically focus on 
single disease types. By providing both primary-level 
classifications for general dental conditions and second-
ary-level diagnoses for specific diseases, LMCD-OR sup-
ports multi-class disease classification. This multilevel 
annotation allows the simultaneous detection of multiple 
abnormalities and various disease types within a single 
scan, significantly enhancing its clinical relevance. With 
this structure, LMCD-OR facilitates the development of 
advanced classification models capable of diagnosing a 
broad range of oral diseases, setting a new benchmark for 

future research in oral disease diagnostics. The experi-
mental outcomes underscore the advanced performance 
of LMCD-OR in oral image classification and disease 
diagnosis. Specifically, LMCD-OR can be leveraged in 
research projects to enhance AI-driven diagnostics, espe-
cially by supporting multimodal dataset integration stud-
ies. For instance, combining radiographic data with other 
clinical datasets, such as patient history or intraoral pho-
tography, can provide more comprehensive diagnostic 
insights. Such integration is anticipated to significantly 
improve the precision, scope, and reliability of clinical 
decision-making in diagnosing, treating, and forecasting 
oral health conditions.

Additionally, an independent web portal has been 
developed to provide seamless access to the LMCD-OR 
dataset for researchers. The platform offers key features 
designed to facilitate data access and enhance usability. 
These include a user-friendly interface for downloading 
the dataset, links to other established oral health data-
sets, and a literature search tool specifically tailored for 
oral radiography research. By offering these resources, 
the platform aims to foster collaboration and streamline 
the process for researchers to explore, download, and uti-
lize LMCD-OR in their studies.

In this research, we employ a model skeleton replace-
ment strategy aimed at enhancing the architecture and 
optimizing the application of four key visual neural net-
work classification models. To comprehensively evaluate 
the performance of these models across a variety of clas-
sification tasks, we rely on two critical metrics: the top-1 

Fig. 6  Overview of the oral dataset resource platform, showing various components of the site: (a) the community structure, (b) the comprehensive 
development process of the website, (c) the download interface for accessing the dataset, (d) a webpage that provides links to established oral datasets, 
and (e) a literature search webpage designed specifically for the oral dataset
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Acc and the top-5 Acc. For a more comprehensive evalu-
ation of the model, we also use microaveraged precision, 
microaveraged recall, microaveraged F1, macroaveraged 
precision, macroaveraged recall, and macroaveraged F1.

Focusing on the broader classification objectives, 
implementing the ResNet-152 framework delivers a top-1 
Acc of approximately 0.7. This performance underscores 
the ability of the dataset to significantly enhance model 
efficiency. However, when more intricate classification 
tasks within the validation set are explored, the top-1 Acc 
for ResNet-152 decreases to only 0.4 in instances without 
data augmentation techniques. This discrepancy demon-
strates how incorporating more sophisticated classifica-
tion goals substantially increases computational demands 
on the model, indicating considerable room for further 
refinement.

Incorporating the top-5 Acc alleviates the challenges 
created by noise and the inherent similarities among 
various detailed classification targets found in real-world 
scenarios. In this respect, ResNet-152 achieves a top-5 
Acc of 0.6698 with the validation settings. While this 
demonstrates commendable performance, it also iden-
tifies avenues for potential enhancements in optimizing 
the model.

A comparative analysis among various model archi-
tectures shows that employing a baseline model with 
ResNet-152 leads to a marginal performance improve-
ment of approximately 0.02 over other architectures, 
such as DenseNet-201, VGG-16, and GoogLeNet, for 
most evaluated tasks. Although this improvement may 
appear slight and statistically nonsignificant, it demon-
strates the adaptability and relative strengths of our data-
set compared with those of multiple models in diverse 
contexts.

In our study, we utilize traditional visual data augmen-
tation techniques such as image flipping and contrast 
adjustment. Despite these strategies not yielding substan-
tial performance gains for ResNet-152, possibly because 
the intrinsic model design mitigates these visual modi-
fications, they remain essential for validating the utility 
of our dataset. The results show that data enhancement 
does not significantly improve overall performance. This 
suggests that conventional data enhancement strategies 
for dental category medical X-ray data have limited effec-
tiveness and cannot adequately address the complexity 
and diversity of the data.

To further improve model performance, future 
research should consider the use of broader and more 
targeted data enhancement strategies. In particular, strat-
egies that capture and enhance features of classification 
labels prove to be more effective in improving the model’s 
classification ability. For example, enhancement methods 
based on domain knowledge in dentistry, such as mod-
eling common oral lesion features or enhancing lesion 

details, prove to be more effective than traditional meth-
ods are. In conclusion, optimizing and adapting data 
enhancement strategies is an important way to unlock 
the full potential of our dataset and improve the overall 
performance of the model.

While our study enhances the utility of oral datasets, 
certain limitations are acknowledged. LMCD-OR com-
prises only intraoral radiographs from a single healthcare 
provider, which may limit the generalizability of the find-
ings to diverse populations. The single-source nature of 
the dataset means that it may not fully capture the vari-
ability in oral health conditions across different demo-
graphics or clinical settings. Future expansions of the 
dataset will need to address several challenges, includ-
ing the incorporation of data from diverse populations 
and the standardization of imaging quality. Variations in 
equipment and operator techniques can impact the clar-
ity and angulation of images, which may introduce biases. 
To mitigate these issues, collaborations with multiple 
healthcare providers and the implementation of stan-
dardized imaging protocols will be essential for ensuring 
consistency and improving the dataset’s applicability to a 
broader population. Additionally, the integration of gene/
protein signaling networks through ODE-based theoreti-
cal modeling has proven to be crucial in disease predic-
tion, as demonstrated in recent studies [37, 38]. Future 
research can explore the application of these models in 
conjunction with LMCD-OR to enhance oral disease pre-
diction capabilities and broaden the scope of diagnostics.

Despite these limitations, our research advances AI 
analysis of oral X-ray images and lays a foundation for 
developing AI-assisted oral X-ray image analysis sys-
tems. Our findings set the stage for deeper integration 
and application of AI alongside big data analytics within 
dentistry.

LMCD-OR is a comprehensive repository that covers a 
wide range of clinical data on prevalent oral diseases and 
includes samples of rare conditions such as acute pericor-
onitis [39]. Our forward-looking plans involve crafting 
a competitive model leveraging this dataset, which will 
incorporate small-sample learning techniques to handle 
these less common clinical cases. This ambitious model 
has the potential to significantly contribute to creating a 
thorough and precise framework for the differential diag-
nosis of oral diseases [40, 41].

To foster cooperative research and knowledge 
exchange, we have launched a dedicated website to estab-
lish it as a cornerstone for the global oral disease research 
community. This platform currently facilitates data access 
and downloads, and we have included detailed access and 
usage policies to ensure transparency and credibility. 
Potential users can apply for access by submitting a for-
mal request through the website, and access is granted to 
academic and clinical researchers following a brief review 
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process. Usage is restricted to non-commercial research 
purposes. Additionally, we are committed to maintaining 
and updating the dataset. New images and labels will be 
periodically added, and version maintenance will ensure 
the ongoing validity of the existing data. We anticipate 
that this platform will evolve into an active research eco-
system featuring forums and spaces for dialogue, allow-
ing researchers, clinicians, and data scientists to share 
insights, discuss discoveries, and generate new lines of 
inquiry.

To enhance the community aspects of our website, we 
encourage the initiation of diverse academic endeavors 
and collaborative projects, all united by the overarching 
aim of driving innovation in dental disease diagnostics. 
Our vision is for this open-access platform to become 
an indispensable tool in advancing oral disease research 
worldwide. Additionally, we will implement a user feed-
back mechanism to continuously improve the usability 
of the LMCD-OR dataset. Researchers using the dataset 
will be able to provide feedback through the platform, 
which will be regularly reviewed and addressed by our 
team. This process ensures that user suggestions and 
issues are considered in future updates, further foster-
ing community engagement and improving the dataset’s 
functionality.
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