
A Stochastic Description of Dictyostelium Chemotaxis
Gabriel Amselem1,2, Matthias Theves1,3, Albert Bae1,4, Eberhard Bodenschatz1,4,5, Carsten Beta1,3*

1Max Planck Institute for Dynamics and Self-Organization, Göttingen, Germany, 2 School of Engineering and Applied Sciences, Harvard University, Cambridge,

Massachusetts, United States of America, 3 Institute of Physics and Astronomy, University of Potsdam, Potsdam, Germany, 4 Laboratory of Atomic and Solid State Physics,

Cornell University, Ithaca, New York, United States of America, 5 Institute for Nonlinear Dynamics, University of Göttingen, Göttingen, Germany

Abstract

Chemotaxis, the directed motion of a cell toward a chemical source, plays a key role in many essential biological processes.
Here, we derive a statistical model that quantitatively describes the chemotactic motion of eukaryotic cells in a chemical
gradient. Our model is based on observations of the chemotactic motion of the social ameba Dictyostelium discoideum,
a model organism for eukaryotic chemotaxis. A large number of cell trajectories in stationary, linear chemoattractant
gradients is measured, using microfluidic tools in combination with automated cell tracking. We describe the directional
motion as the interplay between deterministic and stochastic contributions based on a Langevin equation. The functional
form of this equation is directly extracted from experimental data by angle-resolved conditional averages. It contains
quadratic deterministic damping and multiplicative noise. In the presence of an external gradient, the deterministic part
shows a clear angular dependence that takes the form of a force pointing in gradient direction. With increasing gradient
steepness, this force passes through a maximum that coincides with maxima in both speed and directionality of the cells.
The stochastic part, on the other hand, does not depend on the orientation of the directional cue and remains independent
of the gradient magnitude. Numerical simulations of our probabilistic model yield quantitative agreement with the
experimental distribution functions. Thus our model captures well the dynamics of chemotactic cells and can serve to
quantify differences and similarities of different chemotactic eukaryotes. Finally, on the basis of our model, we can
characterize the heterogeneity within a population of chemotactic cells.
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Introduction

Directional movement of cells in response to chemical cues is

ubiquitous in nature. It is essential for many biological processes

ranging from embryogenesis [1], to wound healing [2] and cancer

metastasis [3]. A complete picture of how a eukaryotic cell senses,

responds, and migrates in a chemical gradient is still missing. This

includes the many unknown molecular details in the chemotactic

signaling pathway [4,5] as well as the lack of a quantitative model

to describe the chemotactic process. Many approaches have been

developed to advance our quantitative understanding of eukar-

yotic chemotaxis. Among them, the use of GFP-tagged constructs

and knock-out mutants has emerged as the most prominent tool to

assess the role of individual proteins in the chemotactic process.

The chemotactic performance of a cell line is commonly

investigated using gradient methods like micropipette assays or

diffusion chambers. To date, chemotaxis in such assays has been

characterized based on averaged quantities taken over a population

of cells as well as over time. Typical examples are the average

velocity in gradient direction [6] or the chemotactic index,

a measure of the average angle of propagation relative to the

gradient direction [7]. Such measures show a deterministic

dependence on the gradient signal. Nevertheless, they only convey

very limited information about the chemotactic movement. In

particular, they do not reflect the fluctuations that are inherent in

all dynamical processes at the cell level. This element of

randomness is a salient feature of cell movement that may vary

strongly between different mutant cell lines and requires detailed

quantification. Recently, a model was proposed that describes the

chemotactic motion of a cell as a stochastic process governed by

the probabilities of pseudopod extension [8]. These probabilities

have been determined from experiments, including the gradient

induced bias in the case of chemotactic motion. Based on this

model, Monte Carlo simulations were performed and chemotactic

indices computed from the resulting random walks. A close

agreement with experimental data was found on the level of the

chemotactic index. The chemotactic index, however, is a global

measure of the average direction of cell motion. A more refined

description of eukaryotic chemotaxis should also take into account

the fluctuations of the cell velocity observed in experimental data.

It is the aim of this article to develope a statistical description of

eukaryotic chemotaxis that captures these details quantitatively

and serves as a benchmark to describe eukaryotic chemotaxis.

Processes that exhibit both deterministic and stochastic

components are commonly described by Langevin-type stochastic

differential equations. This approach has a long-standing tradition

in the study of random (non-chemotactic) cell motion. The first

random walk models that describe the motion of microorganisms

date back to the early 20th century [9,10]. In the 1990s, Langevin

equations were introduced for the first time to describe cellular

motion, see Ref. [11] among others. Such models have been

adapted to various organisms. They were extended to include
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a chemotactic bias [12,13] as well as coupling between speed and

turning angle [14]. Recently, a systematic, model-free analysis was

proposed to extract the parameters of a Langevin equation directly

from experimental data without a priori modeling assumptions

[15]. Since then, similar statistical approaches have been adopted

by various groups to describe random ameboid motion in absence

of external cues [16–19]. They have also stimulated interests

among theoretical scientists that study generic models of actively

moving particles [20,21].

Here, we introduce an analogous statistical concept to describe

the directional movement of chemotactic cells in a chemical

gradient. Earlier Langevin-type chemotaxis models were based on

the assumption that random cell motion can be described as an

Ornstein-Uhlenbeck process [12,13]. However, recent work has

shown that this is not necessarily the case [15,17,19]. Inspired by

these recent studies of random cell migration, we also base our

present analysis on a generalized Langevin equation,

dv

dt
~F(v)zR(v)G(t), ð1Þ

where F(v) is the deterministic component of cell motion and

R(v)G(t) represents the random contributions with G(t) denoting
Gaussian white noise. The functions F(v) and R(v) can be

determined directly from experimental data by conditional

averaging. In the presence of a chemical gradient however, both

the deterministic and the stochastic parts may depend on

direction. Thus, conditional averages have to be taken in an

angle-dependent fashion, requiring a much higher data density as

compared to the analysis of random motion. To obtain large

numbers of cell tracks under well-controlled conditions, we

employed microfluidic devices as our experimental platform

[22]. The experiments were performed with chemotactic cells of

the social amoeba Dictyostelium discoideum, a common model

organism for cell motility and chemotaxis [23]. From the cell

tracks, we determined the deterministic and stochastic parts of our

model equation 1. This analysis was systematically performed for

cell populations experiencing different gradients of chemoattrac-

tant. We furthermore divided the cells into several subpopulations

according to their speed and directionality. The same formalism

was then applied to each subpopulation to exemplify the relation

between the model parameters and different modes of cell

movement.

In summary, it is the overall objective of our work to advance

our understanding of eukaryotic chemotaxis beyond a description

in terms of averaged values. In particular, we will characterize the

deterministic and stochastic components of chemotactic motion

along with their dependence on external parameters. Our primary

goal is thus to phrase a detailed statistical description of

chemotactic motion that captures also the distribution functions

of fluctuating quantities. At this stage, it remains a purely

descriptive approach. In future studies, it will serve as a basis for

the detailed comparison of different mutant cell lines. This will

enable us to identify the molecular players that determine specific

features in the motion patterns of eukaryotic cells and link our

model parameters to the underlying signaling events. Ultimately,

this will lead to a detailed understanding of how eukaryotic cells

move in response to a chemical gradient, a long-term aim of

quantitative biology.

Results

Microfluidic Tools Allow Quantitative Recording of Large
Chemotaxis Data Sets
We studied the chemotactic motion of starvation developed D.

discoideum cells in stable linear gradients of cyclic AMP (cAMP).

The gradients were generated using a pyramidal microfluidic

network that provides well-defined concentration profiles with

high temporal stability. The layout of our gradient device can be

seen in Fig. 1B. It is a modified version of the classical design

introduced by Jeon and coworkers [24]. The device has been

thoroughly characterized and was successfully used in previous

studies of D. discoideum chemotaxis, for details see Ref. [6].

In our experiments, cAMP gradients were linearly extending

over a distance of about 320mm inside the microfluidic chamber,

ranging from zero on one side to a maximal concentration level

cmax on the other side. The value of cmax was systematically varied

between different experiments, to cover the entire range of

gradients over which D. discoideum shows directional responses [6].

Compared to our earlier work, we collected much larger data sets

in order to evaluate the parameters of our model in an angle-

resolved fashion. In Fig. 1C, cell tracks recorded in a cAMP

gradient of 0.16 nM/mm are displayed as an example. At each

time, the velocity of the cell was determined by finite differences.

From the velocity, we calculated the chemotactic index of each cell

according to CI~�vvy=�vv, where �vvy is the average velocity of the cell
in gradient direction, and �vv is the average cell speed. This

corresponds to the ratio between the distance travelled in the

gradient direction and the total length of the trajectory. In Fig. 1D,

the chemotactic index is displayed as a function of gradient

steepness. Note that the data point displayed at very low gradient

values (10{5nM/mm) corresponds to an experiment where no

gradient of cAMP was applied. In agreement with our earlier

work, we observed an optimal chemotactic performance around

0.1 nM/mm [6].

After considering the chemotactic index as a classical average

measure of the chemotactic performance, we moved on to analyze

the fluctuations in various motion parameters by extracting the

probability distribution functions of these quantities from the data.

The results are summarized in Fig. 2, where the experimental data

is displayed in gray bars and black dots. Along with the

experimental data, numerical simuations based on the model

equations (2) and (3) are shown in red. The simulations will be

discussed at a later point in the Results Section, after the model

equations have been introduced. In Fig. 2, the probability

distribution functions (PDF) for the velocity components (A and

B), the speed (C), and the propagation angle (D) over the entire

population are shown. Furthermore, the average speed depending

on the angle of propagation was extracted from the data (E) and

the relation between cell speed and chemotactic index (CI) was

investigated in the form of a scatter plot in the (�vv,CI)-plane (F). In
Fig. 2, these results are displayed for a gradient of 1:5 nM=mm as

an example. While the component perpendicular to the cAMP

gradient (vx) was distributed symmetrically around zero, the

distribution of the component in gradient direction (vy) was shifted
towards positive values, clearly reflecting the directional nature of

the movement (see Fig. 1A for a definition of the coordinate

frame). We furthermore observed that both the distributions of

propagation angle and speed are peaked in gradient direction, see

Fig. 2D and E. A weak correlation between the speed and the

chemotactic index of the cells was found. To test for correlations,

we marked each cell according to its average speed (�vv) and its

chemotactic index (CI) in the (�vv,CI)-plane, see Fig. 2F. A

correlation coefficient of 0.23 was found for this data set. This

Dictyostelium Chemotaxis
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indicates that within a population of chemotactic cells, the more

chemotactic ones tend to be more mobile, i.e., have a larger speed.

This is in agreement with earlier studies, where it was reported

that the motility of Dictyostelium cells increases over the first hours

of development [25], so that the higher developed, and thus more

chemotactic cells should also display a higher motility.

The Deterministic Part of Directed Motion Depends on
Gradient Direction while the Stochastic Part does not
It is our aim to model chemotactic motion based on the

generalized Langevin equation 1. To phrase a specific model

equation of this type, we need the explicit functional dependencies

of the deterministic and stochastic parts on the cell speed and

direction. We determined these expressions from our experimental

data by conditional averaging [26,27]. To retrieve the de-

terministic part, we divided the range of cell speeds into 20

intervals of equal size. In the same way, the range of propagation

angles was divided into 18 equally sized intervals. We then

averaged the acceleration of the cells within each interval to obtain

the deterministic part as a function of speed and angle. Similarly,

the stochastic part was determined by taking the variance of the

fluctuations in acceleration for fixed speed and angle. For details of

the conditional averaging procedure, see the Materials and

Methods Section. Inspired by earlier work on Langevin models

of random cell motion [15], we decomposed the acceleration into

its projections parallel and perpendicular to the cell’s instanta-

neous velocity, see Fig. 1A.

Let us first consider the deterministic and stochastic parts in

a fixed cAMP gradient of 1.5 nM/mm. We found that the

deterministic part of the acceleration parallel to the current

direction of motion depended on both the speed (v) and the angle

(h) of propagation. It was well approximated by a quadratic fit,

FE(v,h)~{c(h)v2za(h). In Fig. 3A, we show FE(v,h~0), the

deterministic part in gradient direction, as an example. The

friction coefficient c(h) was found to be independent of h within

the precision of our experiments, see Fig. S1 of the electronic

supplementary material. The angular dependence of a(h) can be

seen in Fig. 3C, together with a sinusoidal fit a(h)~a0zF1 cos h
(see the equation for FE(v,h) above for a definition ofa). By

contrast, the deterministic part perpendicular to the direction of

motion was independent of the cell’s speed and dependent only on

angle, F\(v,h)~F\(h). In Fig. 3B, F\(v,h~0) can be seen as an

example. The angular dependence of F\(h) was well approxi-

mated by F\(h)~{F2 sin h, see Fig. 3D. In Fig. S2 of the

electronic supplementary material, we show that F1~F2~F .

Thus, the presence of a gradient was reflected by an additional

effective force in the deterministic part. It consisted of a contribu-

tion F , pointing along the gradient direction, and a contribution

a0 pointing along the direction of propagation.

For the stochastic part, we found multiplicative noise that can

be approximated by a linear dependence on the cell speed. The

noise parallel to the direction of motion could be fitted, at each

angle, by a first-order polynomial RE(v,h)~r1,E(h)zr2,E(h)v, see
Fig. 4A (see Fig. S7A and B of the electronic supplementary

material for more examples of this curve at other values of h). In

Figure 1. Experimental setup. (A) Definition of the coordinate system. (B) Microfluidic gradient mixer, adapted from [6]. The x-direction of the
coordinate system corresponds to the direction of fluid flow in the main channel of the device, the y-direction to the direction of the chemoattractant
gradient. (C) Trajectories of chemotactic Dictyostelium cells in a gradient of 0.16 nM/mm cAMP. The starting point of all trajectories was shifted to (0,0).
(D) Average chemotactic index as a function of the cAMP gradient. Note that the data point displayed at very low gradient values (10{5nM/mm)
corresponds to an experiment where no gradient of cAMP was applied.
doi:10.1371/journal.pone.0037213.g001

Dictyostelium Chemotaxis
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Figs. 4B and C, the offset r1,E(h) and the slope r2,E(h) are shown as

a function of the angle. No dependence on h was observed.

Similarly, the noise perpendicular to the direction of motion could

be fitted by a first-order polynomial with angle-independent offset

and slope, see Fig. S3 of the electronic supplementary material.

Because no angular dependence was found in either of the

stochastic components, we averaged the data over all angular bins

and fitted the result by first order polynomials,

r\,E(v)~r1,\,Ezr2,\,Ev. The stochastic part as a function of cell

speed, averaged over all anglesh, can be seen in Fig. S7C of the

electronic supplementary material.

Thus, by conditional averaging, the following Langevin

equation for the chemotactic movement of D. discoideum was

obtained,

dv

dt
DE~{cv2za0zF cos hz(r1,Ezr2,Ev)CE(t) ð2Þ

dv

dt
D\~{F sin hz(r1,\zr2,\v)C\(t) ð3Þ

The model incorporates quadratic damping and multiplicative

noise.

Figure 2. Comparison of experimental and simulated histograms. Experimental histograms (gray boxes) and simulated histograms (red lines)
of (A) vx, (B) vy , (C) v, and (D) h. (E) Experimental (gray boxes) and numerical (red line) distributions of v as a function of h. (F) Each dot marks a cells
according to its mean speed and chemotactic index in the (�vv,CI)-plane. Black symbols mark the experimental data, red dots the numerical results. The
vertical and horizontal lines indicate the mean speed and chemotactic index of the entire population as obtained from the experiment. The numbers
mark the subpopulations defined by the four quadrants. They are differentiated according to their directionality and speed, (1) slow non-chemotactic,
(2) fast non-chemotactic, (3) slow chemotactic, and (4) fast chemotactic cells.
doi:10.1371/journal.pone.0037213.g002

Dictyostelium Chemotaxis
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The External Gradient Sets the Effective Force Terms F
and a0
In the previous section, we have derived a probabilistic model of

chemotactic motion in one given gradient of 1:5 nM=mm. How

do the model parameters depend on the steepness of the

chemoattractant gradient? To answer this question, we repeated

the above analysis for chemotactic motion in gradients ranging

over four orders of magnitude, see Fig. 1D. The results are

summarized in Fig. 5, where the friction coefficientc, as well as the
parameters a0 and F are displayed as a function of gradient

steepness. While c did not show any dependence on the gradient,

both F and a0 went through a maximum at about 1 nM=mm.

This coincided with a peak in the chemotactic index as shown in

Fig. 1D, and with a peak in the motility [6]. For the stochastic

components, no clear dependence on the gradient steepness was

observed, see Fig. S4 of the electronic supplementary material.

Thus, the effect of a chemoattractant gradient on chemotactic cell

motion was encoded in the effective force terms F and a0. All
other model parameters did not show any gradient dependence

and are constitutive properties of the cell.

Figure 3. Deterministic components of the Langevin equation. Deterministic components of (A) the parallel and (B) the perpendicular
acceleration for h~0 (gradient direction), as a function of v. Black dots show the experimental results, the red lines display fits according to
FE(v,h)~{c(h)v2za(h) and F\(v,h)~F\(h), respectively. (C) a(h) as a function of h. The red line shows the fit a(h)~a0zF1 cos h. (D) F\(h) as
a function of h. The red line shows the fit F\(h)~{F2 sin h. Error bars indicate the 95% confidence interval on the values of a(h) and F\(h).
doi:10.1371/journal.pone.0037213.g003

Figure 4. Stochastic components of the Langevin equation. (A) Stochastic component of parallel acceleration. Black dots show the
experimental data, the red line shows a linear fit RE(v,h)~r1,E(h)zr2,E(h)v. (B, C) r1,E(h) and r2,E(h) are independent of h. The red lines show constant
fits.
doi:10.1371/journal.pone.0037213.g004

Dictyostelium Chemotaxis
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Velocity and Angle Distributions of the Population are
Captured by the Langevin Model While Cellular
Individuality is not
We used an Euler-Maruyama scheme to simulate the model

equations 2 and 3 based on the parameters that were retrieved

from the experimental data. For details of the numerical scheme

see Materials and Methods. In Fig. 2A-E, the velocity histograms,

the distribution of the propagation angle, and the dependence of

the average speed on the propagation angle are displayed for

a gradient of 1:5 nM=mm. Together with the experimental data,

the results of our numerical simulations are shown. We found close

agreement between experiments and simulation.

In Fig 2F, the average speed (�vv) and the chemotactic index (CI)

of each simulated cell track are marked in the (�vv,CI)-plane and

compared with the experimental data. We observed that the

scatter in the experimental data is greater than in the numerical

simulations. The reason for this difference is that the model

parameters were computed based on conditional averages of the

entire population. Subsequent model simulations of cell tracks

were all based on this set of averaged parameters. Thus, our model

correctly recovered the chemotactic behavior (including probabil-

ity distribution functions) at the population level, but not at the

level of individual cell tracks.

Different Modes of Chemotactic Motion are Reflected in
Distinct Parameters of the Langevin Equation
To illustrate how the model parameters reflect different types of

cellmotionwithin a population, we have divided the data set of Fig. 2

into four subpopulations according to directionality and speed, (1)

slow non-chemotactic, (2) fast non-chemotactic, (3) slow chemotac-

tic, and (4) fast chemotactic cells. The numbers correspond to the

quadrant labels in the (�vv,CI)-plane displayed in Fig. 2F. The lines

along which the population was divided into the four quadrants, are

chosen to coincide with the average cell speed and chemotactic

index. There is no further intrinsic criterion for a separation into

subpopulations. For each of these subpopulations we derived the

model equations 2 and 3. The friction coefficient c and the effective
force terms F and a0 are shown in Fig. 6 for all subpopulations.

While the friction coefficient showed only slight variations between

the subpopulations, Fand a0 exhibited a clear trend. There was

a positive a0 for subpopulations (2) and (4), reflecting their large

mean speed. The force term F showed large positive values for (3)

and (4), which corresponded to the high chemotactic index of these

subpopulations. Also the parameters of the stochastic part showed

variations between the four subpopulations, see Fig. S5 of the

electronic supplementary material. The clearest trend was observed

for the offset parameters r1,\ andr1,E. They were larger for the

subpopulations (2) and (4) as compared to (1) and (3). Thus, the level

of noise increased with increasing cell speed, irrespective of the

chemotactic behavior of the cell.

Discussion

We have recorded large data sets of Dictyostelium chemotaxis in

linear gradients of cAMP using microfluidic tools. Different

steepnesses were systematically explored, covering the full range

of gradients, in which chemotactic behavior was observed [6].

Based on this data set, we derived a probabilistic model of

eukaryotic chemotaxis. What is the benefit of this stochastic

description? To date, chemotaxis is almost exclusively described by

averaged quantities, most prominently, the average cell speed and

the chemotactic index, which is defined as the distance moved in

gradient direction divided by the total distance moved. However,

cell trajectories with the same chemotactic index and the same

average speed can be of very different type. To illustrate this, we

show in Fig. 7A two schematic trajectories that have the same

chemotactic index but very different geometrical character. In

other more realistic cases, it may be difficult to judge the difference

between two trajectories by eye even though their shape may be

determined by very different underlying processes. As an example,

we show in Figs. 7B and C trajectories that were generated by two

different Langevin-type equations (see the caption of Fig. 7 for the

form of these equations). They were designed to have the same

chemotactic index and the same average speed. The differences

between these trajectories can be only captured by carrying out the

stochastic data analysis proposed here.

Thus, when considering only the chemotactic index, many

details of the cellular motion patterns are lost. For example, when

comparing mutant cell lines with deficiencies in different

cytoskeletal regulators, the character of the cell trajectories may

change considerably without substantial changes in the chemo-

tactic index. Such differences in the structure of the cell trajectories

may yield interesting information about the role of the respective

proteins in the regulatory network of the cytoskeleton and cannot

be resolved by the chemotactic index alone.

Here, our stochastic model of chemotactic cell motion will make

a contribution. Using this more detailed description, it is possible

Figure 5. Evolution of the deterministic components with the gradient strength. (A) Friction coefficient c, and effective force terms (B) a0,
and (C) F as a function of the gradient. The error bars indicate the standard deviation in (A) and the 95% confidence intervals in (B) and (C). As in Fig.
1D, the data point displayed at very low gradient values (10{5nM/mm) corresponds to an experiment where no gradient of cAMP was applied.
doi:10.1371/journal.pone.0037213.g005

Dictyostelium Chemotaxis
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to capture subtleties that go far beyond the information that is

contained in the chemotactic index. We based our model on the

assumption that chemotactic cell motion contains both determin-

istic and stochastic contributions. Such processes can be typically

described by a Langevin-type equation. By applying angle-

resolved conditional averaging to the experimental data, we

obtained the deterministic and stochastic parts of the underlying

Langevin equation and analyzed the dependence on the external

gradient. To date, similar data-driven stochastic modeling has

been only applied to non-directional, random cell motion in

absence of external stimuli, see e.g. Refs. [15,16,18,19]. In the

present work, we have generalized this approach for the first time

to describe the directed migration of eukaryotic cells in an external

gradient of chemoattractant. In particular, we made the following

observations:

N The stochastic equation of motion showed quadratic damping

and multiplicative noise, similar to non-directional random

ameboid motion (see Fig. S6 of the electronic supplementary

material).

N The presence of a gradient introduced an additional effective

force in the deterministic part of the equation of motion. It

consisted of a component F pointing in gradient direction and

a component a0 pointing in the direction of propagation, see

Fig. 3 and Eqs. 2 and 3. The stochastic part did not depend on

direction.

N With increasing gradient steepness, both F and a0 went

through a maximum, coinciding with a peak in the

chemotactic index, see Figs. 5 and 1D. The damping

coefficientc, on the other hand, did not show any gradient

dependence.

N The parameters F and a0 were related to distinct types of cell

motion. While high values of a0 reflected a large mean speed,

a large value F corresponded to increased chemotactic

efficiency. This was demonstrated by considering subpopula-

tions of different speed and chemotactic index, see Fig. 6.

Moreover, faster cells showed a higher noise level.

Note that in general, chemotactic movement will depend on

both the chemoattractant gradient and the average ambient

chemoattractant concentration (the so-called midpoint concentra-

tion). In the data presented here, the cells are exposed to a constant

gradient, while the midpoint concentration increases when the

Figure 6. Evolution of the deterministic components at a given gradient, for each subpopulations. (A) Friction coefficient c, and effective
force terms (B) a0 , and (C) F for each subpopulation. The error bars indicate the standard deviation in (A) and the 95% confidence intervals in (B) and
(C).
doi:10.1371/journal.pone.0037213.g006

Figure 7. Schematic trajectories. (A) Two examples of schematic
trajectories are displayed that have the same chemotactic index and the
same average speed, but a very different geometrical character. (B)
T r a j e c t o r i e s g o v e r n e d b y t h e L a n g e v i n e q u a t i o n
dv
dt
D\~{gvv sin (h)zRC\(t),

dv
dt
DE~{c(v{v0)

2zgvv cos (h)zRCE(t). (C)
Trajectories of an Ornstein-Uhlenbeck process with drift,
dv
dt
D\~{F sin (h)zRC\(t),

dv
dt
DE~{cvzF cos (h)zRCE(t). Also the

trajectories in (B) and (C) have the same chemotactic index and the
same average speed. The numbers on the axes are arbitrary space units.
doi:10.1371/journal.pone.0037213.g007

Dictyostelium Chemotaxis
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cells are moving up the gradient. Our data thus presents a global

average over a range of midpoint concentrations for each gradient

investigated. In order to also resolve the dependence on the

midpoint concentration, the cell trajectories would need to be

divided into small intervals along the gradient direction to perform

the stochastic data analysis within each interval, i.e., for each

midpoint concentration, separately. However, even though we

have collected a substantial amount of data, much larger data sets

would be required in order to obatin statistically meaningful results

from this type of analysis. This is primarily because the stochastic

data analysis requires an additional division of the data also

according to angle and speed. In Fig. S9 of the electronic

supplementary material, we present a coarse grained version of

this analysis, where the gradient region has been divided into two

intervals. No clear trend was found for the speed and the

chemotactic index.

In previous studies, it has been shown for human dermal

fibroblasts that the damping parameter c depends on cell-substrate

interactions. In particular, different surface coatings induced

strong changes in the value of c for the same cell type [15]. As

we did not change the surface properties in our present study, the

observation of a constant c for different gradients suggests that also
in the case of Dictyostelium chemotaxis, the parameter c might be

mostly reflecting the cell-surface interactions. We will test this

conjecture in future studies by exploring the chemotactic

performance of Dictyostelium cells on surfaces with different

coatings.

Furthermore, the noise term was found to be independent of the

external gradient. Together with our earlier observation that the

stochastic components of non-directional motility are not affected

by development or ambient cAMP [19], this supports the

hypothesis that cell motion is influenced by an independent

random process. We assume that this random component is

related to pseudopod formation. This is motivated by earlier

results demonstrating that pseudopod formation is a random event

[28]. In agreement with our observations, it was reported that the

temporal dynamics of this process (frequency of pseudopod

formation) is not affected by the presence of a gradient, which

only imposes a spatial bias (preferred direction of pseudopod

formation) [29]. Note that we image with a time interval of 40 sec,

while pseudopods are formed in cycles of about 10 sec. We thus do

not resolve the entire process of pseudopod formation but rather

sample the cell shape at independent time points that are not

correlated with respect to the time scale of pseudopod formation.

Our model can be considered as a description that captures the

behavior of a representative, average individual from the

chemotactic cell population. The mean values and fluctuations

of various motion parameters are correctly captured for this

average chemotactic cell. However, by subdividing the cells into

subpopulations of different motility and chemotactic performance,

we demonstrated that a considerable cell to cell variability exists

and that the parameters of the Langevin equation are different for

each subpopulation.

Also the form of the stochastic part is influenced by the

heterogeneity of a typical cell population. While the slopes r2,E=\
take positive values when determined for the entire population of

cells, we found a slope close to zero in the subpopulations of fast

moving cells. Also, the offsets r1,E=\ are larger for subpopulations

of fast cells than for slow cells. This indicated that the

multiplicative noise observed for the whole cell population is

a superposition of noise contributions that may have a different

character at the level of the individual cells.

We can also relate the multiplicative noise in our Langevin

equation to the stochastic processes that occur in the cell during

gradient sensing. To the best of our knowledge, the only purely

stochastic model of gradient sensing was presented by Gamba

et al. [30], and extensively characterized in subsequent publica-

tions, see for example [31]. When simplified, the original model

can be reduced to a reaction-diffusion system, where reactions are

nonlinear. In recent years, many such nonlinear models have been

proposed to describe directional processes in chemotactic cells, for

examples see [32–34]. This nonlinearity leads to multiplicative

noise [31,35]. The multiplicative noise observed at the motility

level could therefore be a direct consequence of the nonlinearity of

the gradient-sensing mechanism.

In a recent study of Dictyostelium chemotaxis in exponential

gradients, the average cell speed did not depend on the direction of

propagation. This led to a description based on a Langevin

equation for the angle of propagation only [36]. On the contrary,

non-uniform distributions for both the angle of propagation and

the speed were observed in our study with linear chemoattractant

gradients. Here, both distributions show a maximum in gradient

direction, see Fig. 2D and E. Thus, in this case, directional motion

results from two combined effects, (a) cells are more likely to move

in gradient direction and (b) their speed is larger when moving in

gradient direction. This is in agreement with work reported in

[37].

In future work, we will apply our analysis to mutant cell lines

that carry deficiencies in various components of the chemotactic

signaling pathway. The objective is to relate the specific

parameters of our stochastic description to the individual

molecular players in a chemotaxing cell. Such relations between

microscopic molecular components and macroscopic dynamical

observables are an essential building block for a comprehensive

model of eukaryotic chemotaxis, the central aim of this field.

Materials and Methods

Cell Culture
All experiments were performed with Dictyostelium AX3 wild

type cells, kindly provided by Günther Gerisch (MPI for Bio-

chemistry, Martinsried, Germany). Cells were grown in HL5

medium (7 g/L yeast extract, 14 g/L peptone, 0.5 g/L potassium

dihydrogen phosphate, 0.5 g/L disodium hydrogen phosphate,

13.5 g/L glucose, ForMedium Ltd., UK). The culture was

renewed from frozen stock every four weeks. Cells were starved

in shaking suspension of phosphate buffer (pH 6.0, 15 mM

KH2PO4, 1 mM Na2HPO4) at a density of 2|106 cells/mL for

5:30 hours. After one hour of starvation, the cells were exposed to

periodic pulses of cAMP for the remaining time of starvation. The

pulses had a concentration of 50nM and were delivered with

a period of 6 minutes.

Microfluidics
The experiments were performed in a microfluidic gradient

mixer, in which stable gradient profiles could be established over

a region of 250|3000|25mm in size. The design of the gradient

mixer was an adapted version of the pyramidal network pioneered

by Jeon et al. [24] that allowed for the generation of linear

concentration profiles between two arbitrarily chosen input

concentrations. The layout of the gradient mixer is displayed in

Fig. 1B, for a detailed description, see Ref. [6]. The microfluidic

device was built by standard microfabrication procedures,

generally referred to as soft lithography. Based on photolitho-

graphic techniques, a Si wafer (Wafer World Inc.) was spin coated

with photoresist (SU-8 50, Micro Resist Technology) in a clean

room environment. Patterning by UV light exposure and chemical

development produced a ‘master wafer’ that carried a relief of the
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desired microstructure. This was used in a polymer molding step

to cast the microstructure into premixed polydimethylsiloxane

(PDMS; Sylgard 184, Dow Corning). After 1h of curing at 65uC,
the PDMS was removed from the master wafer and fluid inlets and

outlets were punched through the polymer using a sharpened

syringe tip (19 gauge61 in., McMaster). The molded PDMS block

was then sealed from below with a glass cover slip (24660 mm,

No. 1, Gerhard Menzel Glasbearbeitungswerk GmbH & Co.

KG). Bonding between the PDMS and the glass was achieved by

a preceding treatment of all surfaces in an air plasma (PDC-002,

Harrick Plsama) for 3 min. 500 mL gastight glass syringes (1750

TTLX, Hamilton Bonaduz AG) were mounted on a precision

syringe pump (PHD 2000, Harvard Apparatus Inc.) and

connected to the microfluidic device with Teflon tubing (39241,

Novodirect GmbH) to ensure a constant supply of liquids. A

detailed review of soft lithography can be found in Ref. [38].

We have performed control experiments with cells migrating in

the microfluidic device under identical flow conditions but in

absence of a chemoattractant gradient. No effect of the fluid flow

on the cell motion could be detected. In particular, the histograms

of the x- and y-components of the velocity were symmetric and

superposed almost perfectly. See Fig. S8 of the electronic

supplementary material, where examples of these histograms are

displayed. Note also, that the parameters were chosen such that

flow-induced distortions of the chemical gradient signal in the

vicinity of the cells were kept minimal [39].

Microscopy and Image Processing
Cell tracks were recorded on a Deltavision RT microscope

imaging system (Applied Precision, Inc.). Pictures were taken with

a 10x plan apochromat (UPLSAPO, Olympus) objective every 40

seconds during 50 minutes using a Photometrics CoolSnap CCD

camera (Princeton Instruments, Inc.) at a resolution of 1024x1024

pixels. Differential interference contrast (DIC) was used to

enhance cell contour visualization. About 120 cell tracks were

recorded for each experiment. The cell contours were automat-

ically detected using a method inspired by Kam [40] that was

implemented in a MATLAB program (Mathworks). The cell

centroid was then computed on the basis of the cell contour. The

error in the contour finding algorithm leads to an error in the

position of the cell centroid. The time interval of 40 sec between

subsequent frames was chosen such that, given the average cell

speed, a cell travels a distance that is larger than the error in the

cell centroid position during one time step. See Ref. [41] for details

of this method. Between subsequent frames, the centroids of the

cell contours were tracked using a custom-made MATLAB

program based on the tracking algorithm of Crocker and Grier

[42]. The first 10 minutes of data were systematically discarded, as

they corresponded to the time where the concentration gradient

was not yet stationary.

Stochastic Data Analysis
For each cell track, the velocity and acceleration of the cell was

calculated at each point by finite differences from the cell

positions. The deterministic and the stochastic parts of motion

were separated according to equation 1. We determined the

functions F(v) and R(v) in equation 1 from experimental data,

using conditional averages as pioneered by Siegert et al. [26]. We

checked that the Chapman-Kolmogorov condition was verified

[26]. We expressed velocity and acceleration in a moving

coordinate frame where the two unit vectors eE and e\ point

parallel and perpendicularly to the current velocity of the cell,

respectively (see Fig. 1A). We denote the speed by DvD~v(t) and the

angle of propagation with respect to the gradient direction by h(t).

To perform conditional averaging, we divided the range of cell

speeds into 20 bins of equal size Dv. The range of propagation

angles was divided into intervals of Dh~p=9. We can then find

FE(v) by approximating.

FE(v0)&
1

Dt
v v(tzDt){v(t)½ �:eE(t)w Dv(t){v0DƒDv,

Dh(t){h0DƒDh

ð4Þ

where eE(t)~
v(t)
v(t)

, Dt is the (discrete) experimental time interval,

and v(t) is within Dv of v0, while the angle h(t) is within Dh of h0
[26,27,43]. The perpendicular component F\(v0) is found in

a similar way, by replacing eE in equation 4 by e\. The noise terms

can be approximated by

RijRjk(v0)&
1

Dt
v½(v(tzDt){v(t)):ei(t){Fi(v0)Dt�|

½(v(tzDt){v(t)):ek(t){Fk(v0)Dt�w Dv(t){v0DƒDv,

Dh(t){h0DƒDh

ð5Þ

The cross-correlation of the acceleration components was found

to be neglectible as compared to the autocorrelation of each

individual component. We could therefore conclude that there

were no mixed stochastic terms, so that the stochastic contribu-

tions in the parallel and perpendicular directions could be

computed according to

RE,\(v0)
2& ð6Þ

DtS
v(tzDt){v(t)

Dt
:eE,\(t){FE,\(v0)

� �2

T Dv(t){v0DƒDv,

Dh(t){h0DƒDh

Furthermore, because no angle dependence was found in either

of the stochastic components, we re-evaluated them without

angular binning and fitted the results by a first order polynomial

q\,E(v)~r1,\,Ezr2,\,Ev.

Simulations
An Euler-Maruyama scheme was used to simulate the equations

2 and 3 with the parameters obtained from our experimental data

[44]. The time step of the simulations was the same as the time

step used for the conditional averaging (40 seconds). We simulated

100 tracks, each track being 200 points long (33 minutes).

Supporting Information

Figure S1 Directional dependence of the friction
coefficientc. The friction coefficient is shown as a function of

H. It is independent of the cell’s direction with respect to the

gradient.

(TIFF)

Figure S2 Effective force term F . To establish a relation

between the amplitudes F1 and F2 of the angle dependent

contributions, we display arctan½F\(h)=(a(h){a0)� as a function
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of h. It can be seen thatarctan½F\(h)=(a(h){a0)�~h, demon-

strating that F1~F2~F .
(TIFF)

Figure S3 Noise perpendicular to the direction of
motion. (A) Stochastic component of the perpendicular acceler-

ation. Black dots show the experimental data, the red lines show

a linear fit R\~r1,\(h)zr2,\(h)v: (B, C) r1,\(h) and r2,\(h) do
not depend on h. The red lines show constant fits.

(TIFF)

Figure S4 Gradient dependence of the stochastic part.
Constants r1,E, r1,\, r2,E and r2,\ retrieved from linear fitting of the

stochastic part for different gradients (red: perpendicular, black:

parallel). As in Fig. 1D of the main text, the data point displayed at

very low gradient values (10{5nM/mm) corresponds to an

experiment where no gradient of cAMP was applied.

(TIFF)

Figure S5 Stochastic part of subpopulations. Constants

r1,E, r1,\, r2,E and r2,\ retrieved from linear fitting of the stochastic

parts of different subpopulations.

(TIFF)

Figure S6 Conditional averaging for the non-directional
case. Left: The parallel acceleration (red datapoints) can be fitted

by a quadratic term (red line) while the perpendicular acceleration

is zero and independent of the velocity (green datapoints and

constant fit). Right: The stochastic components in the parallel (red)

and perpendicular direction (green) can be fitted by a first-order

polynomial.

(TIFF)

Figure S7 Stochastic components of the Langevin equa-
tion. Stochastic component of parallel acceleration, for (a)

h~{80
0
and (b) h~180

0
. (c) Stochastic component of parallel

acceleration, averaged over all angles. Black dots show the

experimental data, the red line shows a linear fit RE~r1,Ezr2,Ev.

(TIFF)

Figure S8 Testing the influence of flow forces.Histograms

of the velocity components in x- and y-direction in absence of

a chemoattractant gradient (the x-direction corresponding to the

direction of fluid flow). Both histograms superpose closely,

indicating that the fluid flow does not induce any preferred

direction of cell motion.

(TIFF)

Figure S9 Testing the influence of cell position in the
chamber. Scatter plot displaying each cell according to its mean

speed and chemotactic index as a dot in the (�vv,CI)-plane. Black
dots denote cells in the lower half of the microfluidic device (i.e.,

lower half of the gradient), red dots mark cells in the upper half.

On average, the black cells move faster (8.5 mm/min) than the red

cells (7.6 mm/min) but their chemotactic index is lower (0.25) than

the chemotactic index of the red cells (0.36).

(TIFF)
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19. Bödeker HU, Beta C, Frank T, Bodenschatz E (2010) Quantitative analysis of

random ameboid motion. EPL (Europhysics Letters) 90: 28005.

20. Romanczuk P, Schimansky-Geier L (2011) Brownian motion with active

fluctuations. Phys Rev Lett 106: 230601.

21. Weber C, Radtke P, Schimansky-Geier L, Ḧanggi P (2011) Active motion
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