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Pupylation plays a key role in regulating various protein functions as a crucial posttranslational modification of prokaryotes. In
order to understand the molecular mechanism of pupylation, it is important to identify pupylation substrates and sites accurately.
Several computational methods have been developed to identify pupylation sites because the traditional experimental methods
are time-consuming and labor-sensitive. With the existing computational methods, the experimentally annotated pupylation sites
are used as the positive training set and the remaining nonannotated lysine residues as the negative training set to build classifiers
to predict new pupylation sites from the unknown proteins. However, the remaining nonannotated lysine residues may contain
pupylation sites which have not been experimentally validated yet. Unlike previous methods, in this study, the experimentally
annotated pupylation sites were used as the positive training set whereas the remaining nonannotated lysine residues were used
as the unlabeled training set. A novel method named PUL-PUP was proposed to predict pupylation sites by using positive-
unlabeled learning technique. Our experimental results indicated that PUL-PUP outperforms the other methods significantly
for the prediction of pupylation sites. As an application, PUL-PUP was also used to predict the most likely pupylation sites in
nonannotated lysine sites.

1. Introduction

Recently, a prokaryotic ubiquitin-like protein (Pup) has
been identified in prokaryotes [1, 2]. Pup is an intrinsically
disordered protein with 64 amino acids and marks the target
proteins which are needed to be degraded [3, 4]. The process
of Pup linking substrate lysine by isopeptide bonds is named
pupylation which plays an important role in regulating pro-
tein degradation and signal transduction in prokaryotic cells
[5]. Although pupylation and ubiquitylation are functional
analogues, the enzymology involved in them is different
[6]. In contrast to ubiquitylation requiring three enzymes
E1 (activating enzyme), E2 (conjugating enzyme), and E3
(protein ligase), pupylation requires only two enzymes: the
deamidase of Pup (DOP) and the proteasome accessory
factor A (PafA) [7].

To understand the molecular mechanisms of pupyla-
tion, it is important to identify pupylation substrates and
sites accurately. As the large-scale proteomics methods [8–
11] are usually time-consuming and labor-intensive, several

computational methods have been developed to predict the
pupylation sites in recent researches. Liu et al. had developed
the first predictor GPS-PUP for the prediction of the pupy-
lation sites on the basis of group-based prediction system
(GPS) 2.2 algorithm [12]; Tung developed a predictor, iPUP,
by using SVM algorithm and the composition of k-space
amino acid pairs (CKSAAPs) feature [13]; Chen et al. also
proposed SVM-based predictor named PupPred, in which
amino acid pairs feature was employed to encode lysine-
centered peptides [14]. Recently, Hasan et al. introduced a
Profile-Based Composition of k-Spaced Amino Acid Pairs
for the prediction of protein pupylation sites and built a web
server named pbPUP [15].

Note that in the aforementioned three existing compu-
tational methods, the experimentally annotated pupylation
sites are used as the positive training set and the remaining
nonannotated lysine residues are used as the negative training
set to build classifiers for prediction of new pupylation sites
from the unknown proteins. However, due to the limitations
of experimental condition and technique, the remaining
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nonannotated lysine residues may contain some pupylation
sites which are not experimentally validated yet [13, 14].Thus,
the classifiers are actually trained on a noisy negative set. As
a result, the performance of the classifiers may not be as good
as it was supposed to be.

In contrast to existing prediction methods, experimen-
tally annotated pupylation sites were used as the positive
training set and the remaining nonannotated lysine residues
were used as the unlabeled training set in this study. We
developed a novel method to predict pupylation sites by
using the positive-unlabeled (PU) learning technique. This
method was called PUL-PUP (PU learning for pupylation
sites prediction). Experimental results show that the perfor-
mance of our method significantly outperforms the other
methods on both training and test sets. As an application, the
most likely pupylation sites were predicted in nonannotated
lysine sites by the method we proposed in this paper.
PUL-PUP Matlab software package is freely accessible at
https://pul-pup.github.io/.

2. Materials and Methods

2.1. Dataset. Tung’s training set and independent test set [13]
were used in this study. The training set consisted of 162
proteins with 183 experimentally annotated pupylation sites
and 2258 nonannotated pupylation sites; the independent
test set consisted of 20 proteins with 29 experimentally
annotated pupylation sites and 408 nonannotated pupylation
sites. Slidingwindowmethodwas used to encode every lysine
residue K of dataset because pupylation only occurred in
lysine residues K. According to [13], window size was selected
as 21 in our study.

2.2. Feature Extraction and Feature Selection. The CKSAAP
encoding has been widely used to various posttranslational
modifications’ site prediction [16–18]. The CKSAAP features
[13, 19] with 𝑘 = 0, 1, 2, 3, and 4 were used to encode each
residue of lysine fragment in this study. Thus, each sample
was represented by 2205 features. In Tung’s paper [13], chi-
square test and backward feature elimination algorithm were
used to remove the irrelevant and redundant features. Firstly,
chi-square test was employed to rank the importance of the
2205 features.Then, the backward feature selection algorithm
was used to eliminate 50 featureswith the lowest ranks in each
iteration. Here, the top 150 CKSAAP features were selected as
optimal feature set which were also same as Tung’s paper [13].

2.3. Development of PUL-PUP. The experimentally anno-
tated pupylation sites were used as the positive training set
and the remaining nonannotated lysine residues were used as
the unlabeled training set to build classifier in this study. In
this way, two types of subset were received in the training set:
(1) the positive dataset𝑃 and (2) the unlabeled dataset𝑈.Thus
our problem became learning from positive and unlabeled
samples. We proposed a novel PU learning algorithm named
PUL-PUP to predict pupylation sites. The core learning
algorithm of PUL-PUP is support vector machine (SVM)
which has been widely used in various biological problems

[20–22]. The flowchart of PUL-PUP algorithm is shown as
follows:

Input

(i) positive training data 𝑃
(ii) unlabeled data 𝑈

Output

(i) final classifier 𝑓

Stage 1 (selection of initial reliable negatives).

(i) RN0 = argmax
𝑁⊂𝑈, |𝑁|=|𝑃|

𝑑(𝑁, 𝑃)

Stage 2 (expansion of reliable negative example set).

(i) 𝑖 = 0;
(ii) Repeat
(iii) 𝑈 = 𝑈 \ RN𝑖;
(iv) Construct two-class SVM 𝑓𝑖 based on P and RN𝑖;
(v) Classify 𝑈 by 𝑓𝑖;
(vi) 𝑁𝑖pred is the predicted negative set, where |𝑁

𝑖

pred| ≤ 2∗

|𝑃| and 𝑓𝑖(𝑁𝑖pred) < −0.25;

(vii) RN𝑖+1 = 𝑁𝑖pred ∪ 𝑁
𝑖

sv ∪ �̃�
𝑖

sv where𝑁
𝑖

sv is the negative
SVs of 𝑓𝑖, �̃�𝑖sv is the surrounding points of𝑁

𝑖

sv in𝑁
𝑖

and |𝑁𝑖sv| = |�̃�
𝑖

sv|;
(viii) 𝑖 = 𝑖 + 1;
(ix) until |𝑈| ≤ 4 ∗ |𝑃|;

Stage 3 (acquisition of final classifier).

(i) A final SVM classifier 𝑓 was trained on positive set 𝑃
and representative reliable negative set RN

There are three stages in PUL-PUP algorithm as follows.

Stage 1 (selection of initial reliable negatives). PUL-PUP
selected the initial reliable negative set RN0 from unlabeled
set U by maximum distance rule. RN0 should be located as
far away from P as possible to ensure that the reliable negative
set was the most dissimilar from the positive set P. Therefore,
RN0 would satisfy the formula described below:

RN0 = arg max
𝑁⊂𝑈

|𝑁|=|𝑃|

𝑑 (𝑁, 𝑃) , (1)

where 𝑑(𝑁, 𝑃) is Euclidean distance between𝑁 and 𝑃:

𝑑 (𝑁, 𝑃) = min
𝑝∈𝑃

∑

𝑛∈𝑁

𝑛 − 𝑝
 . (2)

Stage 2 (expansion of reliable negative example set). After the
selection of initial reliable negative set, PUL-PUP algorithm
iteratively trained a series of two-class SVM classifiers and
gradually extended reliable negative set. Specifically, at the 𝑖th
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iteration, an SVM classifier 𝑓𝑖 was firstly trained in positive
set 𝑃 and current reliable negative training set RN𝑖; then, 𝑓𝑖

would be used to classify the current unlabeled set 𝑈𝑖 and
calculate its decision value. To guarantee the reliability of
the negative set, samples with the decision value less than
a threshold (𝑇) were selected as newly predicted negatives
𝑁
𝑖

pred; here 𝑇 was set to −0.25. To overcome the problem of
imbalance during the iteration, the negative support vectors
𝑁
𝑖

sv and their surrounding points in RN𝑖, named �̃�𝑖sv, were
used to represent the existing negative set RN𝑖, and the size
of𝑁𝑖pred was controlled less than 2∗|𝑃|. At the 𝑖+ 1th iteration,
𝑈
𝑖+1
= 𝑈
𝑖
\𝑁
𝑖

pred; RN
𝑖+1
= 𝑁
𝑖

pred∪𝑁
𝑖

sv∪�̃�
𝑖

sv. Classifier𝑓
𝑖+1was

trained in positive set 𝑃 and current reliable negative training
set RN𝑖+1. As this process continues, RNi may contain more
and more false positive examples; therefore, iteration should
be terminated at some point. Iteration was repeated until the
size of 𝑈𝑖 goes below a threshold 𝑟 ∗ |𝑃|; here 𝑟 was set to 4.

Stage 3 (acquisition of final classifier). After the extraction
of representative reliable negative set, a final SVM classifier
𝑓 was trained on positive set 𝑃 and representative reliable
negative set RN.

2.4. SVM Parameter Selection. The core learning algorithm
of PUL-PUP is support vector machine (SVM) with
radial basis function (RBF) kernel. Libsvm [23] was used
for training SVM models, and the grid search method
was applied to tune the parameters in cross-validation.
Parameter 𝐶 was selected from {0.1, 0.2, 0.5, 1, 2, 5, 10, 20,
50, 100, 200, 500, 1000, 2000, 5000, 10000}; and kernel pa-
rameter 𝛾 was selected from {0.00001, 0.00002, 0.00005,
0.0001, 0.0002, 0.0005, 0.001, 0.002, 0.005, 0.01, 0.02, 0.05,

0.1, 0.2, 0.5, 1}. The parameters of SVMwere fixed during the
expansion of reliable negative example set.

2.5. Performance Evaluation of PUL-PUP. Five widely
acceptedmeasurements, including sensitivity (Sn), specificity
(Sp), accuracy (ACC), Matthew’s correlation coefficient
(MCC), and area under receiver operating characteristic
curve (AUC), were used to evaluate prediction performances
of PUL-PUP. They are defined as

Sn = TP
TP + FN

,

Sp = TN
TN + FP

,

ACC = TP + TN
TP + FP + TN + FN

,

MCC

=
TP × TN − FN × FP

√(TP + FN) × (TN + FP) × (TP + FP) × (TN + FN)
,

(3)

where TP, TN, FP, and FN denote the number of true
positives, true negatives, false positives, and false negatives,
respectively.

Table 1: 10-fold cross-validation performance of PUL-PUP, PSoL,
SVM, and SVM balance.

Method Sn (%) Sp (%) ACC (%) MCC AUC
PUL-PUP 82.24 91.57 88.92 0.74 0.92
PSoL 67.50 73.60 70.55 0.42 0.80
SVM balance 76.71 63.65 69.88 0.40 0.77

Table 2: Independent test performance of PUL-PUP, PSoL, SVM,
and SVM balance.

Method Sn (%) Sp (%) ACC (%) MCC AUC
PUL-PUP 68.97 70.83 70.71 0.22 0.77
PSoL 51.72 73.14 71.62 0.13 0.74
SVM balance 62.07 67.40 67.05 0.15 0.70

3. Results and Discussions

3.1. Performance of 10-Fold Cross-Validation on Training
Set. In order to evaluate the effectiveness of the selected
representative reliable negative samples on pupylation sites
prediction, we compared our method with two other meth-
ods including SVM balance and PSoL [24] on training set
because the core learning algorithm of our method was
SVM and our method was inspired by PSoL. For PUL-PUP
and PSoL algorithms, the nonannotated lysine sites were
used as the unlabeled training samples. The 10-fold cross-
validation of them was performed on positive set 𝑃 and
representative reliable negative set RN. For SVM balance,
a balanced negative training set which had the same size
with the positive training set was randomly selected from the
nonannotated lysine sites and the 10-fold cross-validationwas
also performed on the positive training set and the balanced
negative training set to find the best parameters of SVM.The
10-fold cross-validation of the four methods was shown in
Table 1. As shown in Table 1, PUL-PUP reached the highest
Sn, Sp, ACC, MCC, and AUC values of 82.24%, 91.57%,
88.92%, 0.74, and 0.92, respectively, on training dataset.
As the selected representative reliable negative samples, the
PUL-PUP achieved an excellent performance on training set.

3.2. Comparison of PUL-PUP with Other Methods on Inde-
pendent Test Set. To further evaluate the performance of
pupylation sites prediction by PUL-PUP, we firstly compared
it with PSoL and SVM balance on independent test set. The
compared results of different methods are shown in Table 2.
Although SVM balance can avoid the imbalanced problem,
the performance of SVM balance cannot be as good as the
PUL-PUP because the negative training set in SVM balance
is randomly selected and cannot truly reflect the distribution
of negative set well. It should be pointed out that stage 2 of
PUL-PUP was similar to the negative set expansion in PSoL.
But, in PUL-PUP, RN𝑖 was represented by 𝑁𝑖sv ∪ �̃�

𝑖

sv rather
than 𝑁𝑖sv merely. Thus, more information in RN𝑖 is included
and makes our algorithm more effective than PSoL.

We also compared our method with three existing pupy-
lation sites predictors: GPS-PUP [12], iPUP [13], and pbPUP
[15] on independent test set. Three thresholds of “High,”
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Table 3: Independent test performance of PUL-PUP and three
existing pupylation sites predictors.

Method Threshold Sn (%) Sp (%) ACC (%) MCC AUC

GPS-PUP
High 31.03 89.46 85.62 0.16

0.60Medium 34.48 85.54 82.19 0.14
Low 41.38 76.72 74.43 0.10

iPUP
High 48.28 82.84 80.55 0.20

0.66Medium 51.72 76.47 74.83 0.16
Low 55.17 72.06 70.94 0.15

pbPUP
High 17.24 88.48 83.75 0.04

0.60Medium 31.03 80.15 76.89 0.07
Low 41.38 69.85 67.96 0.07

PUL-PUP
High 51.72 83.33 81.24 0.22

0.77Medium 65.52 76.72 75.97 0.24
Low 68.97 72.79 72.54 0.23

“Medium,” and “Low” were defined for PUL-PUP according
to the SVM scores which were higher than 0.9672, 0.4032,
and 0.1088, respectively. The performances of PUL-PUP and
three existing pupylation sites predictors were shown in
Table 3. As we can see from Table 3, the performance of
our algorithm outperformed the existing three predictors
significantly. Taking threshold “Medium,” for example, the
MCC of PUL-PUP (0.24) was higher than that of GPS-PUP
(0.14), iPUP (0.16), and pbPUP (0.07). Moreover, PUL-PUP
achieved the highest AUC value (0.77). As our classifier is
iteratively trained on the positive and reliable negative set in
this paper, the performance of our algorithm outperformed
the existing three predictors significantly. This demonstrates
that PUL-PUP is more suitable for predicting the pupylation
sites than other methods.

3.3. Prediction of the Most Likely Pupylation Sites in Nonanno-
tated Lysine Sites. For the 183 pupylated proteins in PupDB
[6], there are 212 experimentally annotated pupylation sites
and 2666 nonannotated lysine sites. As mentioned earlier,
those nonannotated lysine sites may contain some pupy-
lation sites which have not been experimentally validated
yet. To predict the most likely pupylation sites in nonan-
notated lysine sites, we run PUL-PUP algorithm on all
data of the PupDB. The top 20 most likely pupylation
sites in nonannotated lysine sites were listed in Supple-
mentary S1 (see Supplementary Material available online at
http://dx.doi.org/10.1155/2016/4525786). Here, we just give a
possible hypothesis; whether those sites will cause pupylation
or not remains to be experimentally verified.

4. Conclusions

In this study, we have developed novel pupylation sites
prediction method PUL-PUP by using the PU learning.
To the best of our knowledge, this is the first time PU
learning has been applied to predict the pupylation sites.
Experimental results have shown that our method outper-
formed the existing pupylation sites predictors significantly.
Moreover, the most likely pupylation sites were predicted in

nonannotated lysine sites by using PUL-PUP.We believe that
our method can also be applied to predict the other types
of posttranslational modification sites. In future research, we
will develop a web server for the PUL-PUP.
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