
����������
�������

Citation: Wu, T.-Y.; Meng, Q.;

Kumari, S.; Zhang, P. Rotating behind

Security: A Lightweight

Authentication Protocol Based on

IoT-Enabled Cloud Computing

Environments. Sensors 2022, 22, 3858.

https://doi.org/10.3390/s22103858

Academic Editors: Muhammad

Naveed Aman, Shehzad Ashraf

Chaudhry and Chien-Ming Chen

Received: 8 April 2022

Accepted: 16 May 2022

Published: 19 May 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Rotating behind Security: A Lightweight Authentication
Protocol Based on IoT-Enabled Cloud Computing Environments
Tsu-Yang Wu 1 , Qian Meng 1, Saru Kumari 2 and Peng Zhang 1,*

1 College of Computer Science and Engineering, Shandong University of Science and Technology,
Qingdao 266590, China; wutsuyang@gmail.com (T.-Y.W.); MQ15753683129@163.com (Q.M.)

2 Department of Mathematics, Chaudhary Charan Singh University, Meerut 250004, India;
saryusiirohi@gmail.com

* Correspondence: pengzhang_skd@sdust.edu.cn

Abstract: With the rapid development of technology based on the Internet of Things (IoT), numerous
IoT devices are being used on a daily basis. The rise in cloud computing plays a crucial role in solving
the resource constraints of IoT devices and in promoting resource sharing, whereby users can access
IoT services provided in various environments. However, this complex and open wireless network
environment poses security and privacy challenges. Therefore, designing a secure authentication
protocol is crucial to protecting user privacy in IoT services. In this paper, a lightweight authentication
protocol was designed for IoT-enabled cloud computing environments. A real or random model,
and the automatic verification tool ProVerif were used to conduct a formal security analysis. Its
security was further proved through an informal analysis. Finally, through security and performance
comparisons, our protocol was confirmed to be relatively secure and to display a good performance.

Keywords: IoT; cloud computing; authentication protocol; formal security analysis

1. Introduction

The Internet of things (IoT) [1–4] is the “Internet connected by all things”. It is
the combination of networks and various sensing devices and compose a huge network
that can interconnect users and everything whenever and wherever. The emergence of IoT
has driven the development of many industries, such as transportation, agriculture, medical
treatment, and artificial intelligence [5–7]. It has since made significant advancements and
can connect various devices with limited resources, and massive amounts of data can be
shared through the Internet.

Cloud computing [8,9] can connect a large number of resources, such as computation,
software, and storage resources, to compose a large virtually shared resource pool [10].
Its core idea is to continuously lower the processing load of user terminals by increasing the
processing capacity of the “cloud”, allowing users to exploit the “cloud’s” strong computing
processing capacity on demand. With cloud computing, users can access applications
on any device that can connect to the Internet [11]. The progress of cloud computing
technology has penetrated all aspects of people’s lives and significantly increased the level
of convenience during daily life.

In real life, the resource, computing, and communication capabilities of IoT devices
are limited. To address these limitations, cloud computing, as a key technology, provides
an efficient platform for effectively analyzing, managing, and storing the data generated
by IoT devices. Mobile devices allow users to access the cloud server resources at any
time from any location. Figure 1 shows the architecture of IoT-enabled cloud computing.
This architecture has three entities: control server, user, and cloud server. The cloud server
provides the services requested by users conveyed through user IoT devices. The control
server is a trusted organization that authorizes users and the cloud server and creates
system parameters during the registration phase. In addition, when users intend to obtain

Sensors 2022, 22, 3858. https://doi.org/10.3390/s22103858 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s22103858
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0001-8970-2452
https://doi.org/10.3390/s22103858
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s22103858?type=check_update&version=2

Sensors 2022, 22, 3858 2 of 19

the cloud server service, the control server monitors the authentication process, and with
help from the control server, the three parties can consult a session key, which the user uses
to obtain and enjoy the service of the cloud server.

Figure 1. Architecture of IoT-enabled cloud computing.

Motivation

In IoT-enabled cloud computing environments [12–15], information is transmitted to
the public channel, which is open and unprotected, and users are vulnerable to attackers
when obtaining services, resulting in privacy data disclosure issues. Therefore, when users
want to obtain cloud services, they must complete identity authentication and establish a
key to protect the information from disclosure and tampering. At present, some scholars
also use quick response (QR) codes [16] to solve these problems. Many scholars proposed
authentication protocols [13,17–19] for this environment. However, these protocols typically
have security problems, such as an inability to provide perfect forward security, suffering
from man-in-the-middle (MITM) and temporary value disclosure attacks. In addition, the
power of IoT devices is limited, and reducing the calculation of such devices is necessary.

In this paper, we designed a lightweight authentication protocol to solve the above
problems. Both formal and informal security analyses were conducted to verify the security
of our protocol. Through security and performance comparisons, our protocol demon-
strated a good performance and satisfied the security requirements in IoT-enabled cloud
computing environments.

The remainder of this paper is organzed as follows. Section 2 discusses related
work. Section 3 presents our protocol in detail. Section 4 introduces a safety analysis.
Section 5 presents some security and performance comparisons, and Section 6 presents
our conclusions.

2. Related Work

This section reviews authentication and key agreement (AKA) protocols [13,17–26]
applied in IoT, cloud computing, and IoT-enabled cloud computing environments. A summary
of existing protocols is shown in Table 1. Turkanovic et al. [22] designed an AKA scheme for
IoT environments, which are dedicated to the identity authentication of users in wireless sensor
networks. However, Wazid et al. [23] testified that Turkanovic et al.’s scheme [22] was unable
to prevent insider and user impersonation attacks. Subsequently, Wu et al. [24] designed
an AKA protocol and declared that it could prevent many common attacks. Unfortunately,

Sensors 2022, 22, 3858 3 of 19

Sadri et al. [27] indicated that Wu et al.’s protocol was unable to resist sensor capture and
denial of service attacks (DoS) and was, thus, unable to provide perfect forward security.

Table 1. A summary of authentication protocols.

Protocols Advantages Shortcomings

Turkanovic et al. [22] (1) Provides user anonymity (1) Cannot resist
(2) Can resist offline password- insider attacks

guessing attacks (2) Cannot resist user
impersonation attacks

Wazid et al. [23] (1) Can resist user
impersonation attacks

(2) Provides user anonymity -
(3) Provides perfect forward

security

Wu et al. [24] (1) Can resist temporary value (1) Cannot resist sensor
disclosure attacks capture attacks

(2) Can resist offline password- (2) Cannot resist denial
guessing attacks of service attacks

(3) Cannot provide
perfect forward security

Tsai and Lo [25] (1) Can resist temporary value (1) Cannot resist server
disclosure attacks impersonation attacks

(2) Provides perfect forward
security

Irshad et al. [26] (1) Can resist user (1) Lacks user
impersonation attacks registration and

Provides perfect revocation phases
forward security

Amin et al. [13] (1) Can resist temporary value (1) Cannot prevent
disclosure attacks insider attacks

(2) Can resist insider (2) Cannot resist
attacks impersonation attacks

Martinez et al. [17] (1) Can resist user (1) Cannot prevent
impersonation attacks impersonation attacks

(2) Can resist offline password- (2) Cannot resist session
guessing attacks key exposure attacks

(3) Provides user anonymity (3) Cannot achieve
mutual authentication

Zhou et al. [18] (1) Provides user anonymity (1) Cannot prevent replay
(2) Can achieve mutual attacks

authentication (2) Cannot prevent
(3) Can resist insider impersonation attacks

attacks (3) Cannot prevent
temporary value
disclosure attacks

(4) cannot provide perfect
forward security

Kang et al. [19] (1) Can resist (1) Cannot resist offline
impersonation attacks password-guessing attacks
(2) Can achieve mutual

authentication

Tsai and Lo [25] designed an anonymous AKA scheme for cloud computing envi-
ronments. They use bilinear pairing to design the scheme, and without the assistance
of a control server, users can directly obtain the services of the distributed cloud server.
However, He et al. [28] proved that their scheme cannot resist server impersonation attacks.
Irshad et al. [26] designed an AKA scheme using a bilinear pairing method. Unfortunately,
Xiong et al. [29] verified that Irshad et al.’s [26] lacked user registration and revocation
phases. Xiong et al. [29] designed an enhanced scheme and claimed that it can prevent
many common attacks.

Sensors 2022, 22, 3858 4 of 19

Amin et al. [13] also designed a protocol applicable to distributed cloud computing
environments. However, Challa et al. [30] testified that their protocol cannot prevent
insider and impersonation attacks. Martinez et al. [17] designed a lightweight AKA scheme
for cloud computing environments. Unfortunately, Yu et al. [31] determined that the
scheme cannot prevent impersonation and session key exposure attacks or achieve mutual
authentication. Zhou et al. [18] proposed a lightweight AKA scheme. However, Wang et al. [32]
proved that their protocol cannot provide perfect forward security and cannot prevent replay,
impersonation, and temporary value disclosure attacks. Kang et al. [19] designed a protocol
suitable for IoT-enabled cloud computing environments, which supports the authentication of
IoT devices. However, Huang et al. [33] verified that it was unable to resist offline password-
guessing attacks.

3. The Proposed Protocol

This section introduces our protocol. It includes three phases: (1) user registration,
(2) cloud server registration, and (3) login and authentication. The following subsections
describe each in detail. Table 2 lists the symbols used in the protocol.

Table 2. Notations.

Notations Meanings

Sj The jth cloud server
SIDj The Sj’s identity

Ui The ith user
IDi Ui’s identity
PWi Ui’s password
Bi Ui’s biological information

HPWi Ui’s pseudo password
SC Smart card
CS Control server

IDCS CS’s identity
x The secret key of CS

TIDi Ui’s pseudo identity
QIDj Sj’s pseudo identity
h(·) Hash function

Gen(·), Rep(·) Fuzzy extraction function

τi, σi
Two parameters generated by the fuzzy extractor [34],

where τi is public and σi is private.
TS1, TS2, TS3, TS4 Timestamps

3.1. System Model

Our IoT-enabled cloud computing model includes three entities, namely user, cloud
server, and control server. The information exchange between each entity is shown in Figure 2.

(1) User: The user can use IoT devices to obtain cloud server services. We allow the user
to be an untrusted entity, which means that they may be a legitimate user but may
obtain services or launch attacks maliciously.

(2) Cloud server: The cloud server provides the services requested by users conveyed
through user IoT devices. It is a semi-trusted entity, in the sense that it may misbehave
on its own but does not conspire with either of the participants.

(3) Control server: The control server is responsible for registering users and cloud server,
assisting users and cloud server in completing authentication and in establishing
a session key in the login and authentication phase. It is a semi-trusted entity, in
the sense that it may misbehave on its own but does not conspire with either of
the participants.

The purpose of our protocol is to realize mutual authentication and to establish a
session key between the user and cloud server with the help of the control server. Figure 2

Sensors 2022, 22, 3858 5 of 19

shows the exchange of information. The specific process is referred to in Section 3.4 (Login
and Authentication Phase).

Figure 2. Information exchange process.

3.2. User Registration Phase

At this phase, Ui registers with CS as a legal user. The user transmits the parameters
calculated by themselves to CS via a secure channel and finally obtains the smart card
issued by CS. Figure 3 detail the process. The specific process is as follows:

(1) Ui chooses IDi, PWi, and Bi; calculates Gen(Bi) = (σi, τi) and HPWi = h(PWi ‖ σi);
and then sends {IDi, HPWi} to control server CS through a secure channel.

(2) CS checks Ui’s identity. If the identity is new, CS selects a random value ni and
computes TIDi = h(IDi), A1 = h(IDCS ‖ HPWi)⊕ (ni ⊕ Kj), stores {TIDi, HPWi}
in the database, stores {A1, IDCS} in smart card SC, and then sends SC to Ui through
a secure channel.

(3) After receiving message {A1, IDCS} sent by CS, Ui calculates A2 = h(IDi ‖ HPWi)
and then stores {A2, Gen(·), Rep(·), τi} in SC.

Ui CS
Select IDi , PWi , Bi

Compute Gen(Bi) = (σi , τi)
HPWi = h(PWi ‖ σi)

{IDi ,HPWi}−−−−−−→
Check Ui ’s identity, if it is new

Select ni
Compute TIDi = h(IDi)

A1 = h(IDCS ‖ HPWi)⊕ (ni ⊕ x)
Store {TIDi , HPWi}

Store {A1, IDCS} in smart card(SC)
SC←−

Compute A2 = h(IDi ‖ HPWi)
Store {A1, A2, IDCS , Gen(·), Rep(·), τi} in SC

Figure 3. User registration phase.

3.3. Cloud Server Registration Phase

At this phase, cloud server Sj needs to register with CS as a legal entity. It sends
its own parameters to CS via a secure channel, obtains the parameters calculated by the

Sensors 2022, 22, 3858 6 of 19

CS, and stores them in its own memory. Figure 4 shows specific the process. The specific
process is as follows:

(1) Sj selects its identity SIDj and random number nj and then sends {SIDj, nj} to CS
through a secure channel.

(2) CS checks the identity of Sj. If Sj is unregistered, then CS selects a pseudo identity
QIDj for Sj, calculates A3 = h(SIDj ‖ Kj ⊕ nj), and stores {QIDj, nj} in its memory.
Then, CS sends {QIDj, A3} to Sj through a secure channel.

(3) Sj calculates A∗3 = A3 ⊕ SIDj and stores {A∗3 , QIDj} in its memory.

Sj CS
Select SIDj , nj

{SIDj ,nj}−−−−−→
Select a pseudo identity QIDj for Sj

Compute A3 = h(SIDj ‖ x⊕ nj)
Store {QIDj , nj}

{QIDj ,A3}←−−−−−−
Compute A∗3 = A3 ⊕ SIDj

Store {A∗3 , QIDj} in its memory

Figure 4. Cloud server registration phase.

3.4. Login and Authentication Phase

At this phase, the control server CS verifies the identity of the user Ui and cloud server
Sj. After verification, the three establish a common session key for future communication.
The specific process is shown in the Figure 5. The specific process is as follows:

(1) Ui inputs IDi and PWi; imprints Bi; computes Rep(Bi, τi) = σi, HPWi = h(PWi ‖
τi), A′2 = h(IDi ‖ HPWi); and checks the legitimacy of Ui’s identity by verifying

A′2
?
= A2. If this is valid, Ui then chooses a random value ri and timestamp TS1 and

computes (ni ⊕ x) = A1 ⊕ h(IDCS ‖ HPWi), B1 = ri ⊕ h(IDCS ‖ HPWi ⊕ SIDj),
B2 = SIDj ⊕ h(IDCS ‖ HPWi), and B3 = h(TIDi ‖ IDCS ‖ ni ⊕ x)⊕ HPWi. Subse-
quently, M1 = {TIDi, A1, B1, B2, B3, TS1} is sent to Sj through an open channel.

(2) After receiving Ui’s message, Sj checks timestamp |TS1 − TSc| 5 ∆T. If the times-
tamp is valid, Sj then selects a random number rj and timestamp TS2. Sj calcu-
lates A3 = SIDj ⊕ A∗3 , B4 = rj ⊕ h(A3 ‖ SIDj), and B5 = h(rj ‖ A3 ‖ SIDj) and then
sends message M2 = {M1, QIDj, B4, B5, TS2} to CS through an open channel.

(3) After receiving M2, CS checks timestamp |TS2 − TSc| 5 ∆T. If the verification
passes, CS finds HPWi according to TIDi; computes SIDj = B2 ⊕ h(IDCS ‖ HPWi),
ri = B1 ⊕ h(IDCS ‖ HPWi ⊕ SIDj), and B′3 = h(TIDi ‖ IDCS ‖ ni ⊕ x)⊕ HPWi; and

verifies Ui’s identity by checking B′3
?
= B3. If valid, CS then indexes nj according

to the value of QIDj; computes A3 = h(SIDj ‖ x ⊕ nj), rj = B4 ⊕ h(A3 ‖ SIDj),

and B′5 = h(rj ‖ A3 ‖ SIDj); and checks B′5
?
= B5. If valid, CS then selects rk, TS3

computes SK = h(ri ⊕ HPWi ‖ rj ‖ rk ‖ SIDj), B6 = (ri ⊕ HPWi)⊕ A3, B7 = h(A3 ‖
rj ‖ SIDj)⊕ rk, B8 = h(rj ‖ rk ‖ SK ‖ TS3), (ni ⊕ x) = A1 ⊕ h(IDCS ‖ HPWi), B9 =
h(ni ⊕ x ‖ SIDj)⊕ rj, and B10 = h(HPWi ‖ ri)⊕ rk, B11 = h(SK ‖ ni ⊕ x ‖ rk ‖ rj)
and sends message M3 = {B6, B7, B8, B9, B10, B11, TS3} to Sj through an open channel.

(4) After receiving M3, the cloud server checks the timestamp |TS3 − TSc| 5 ∆T. If the
timestamp is valid, Sj then computes (ri ⊕ HPWi) = B6 ⊕ A3, SK = h(ri ⊕ HPWi ‖
rj ‖ rk ‖ SIDj), and B′8 = h(rj ‖ rk ‖ SK ‖ TS3), and checks B8

?
= B8. If true, Sj sends

message M4 = {B9, B10, TS4} to Ui through an open channel.
(5) Ui checks timestamp |TS4 − TSc| 5 ∆T. If the verification passes, Ui then computes

rj = h(ni ⊕ x ‖ SIDj)⊕ B9, rk = h(HPWi ‖ ri)⊕ B10, SK = h(ri ⊕ HPWi ‖ rj ‖ rk ‖

Sensors 2022, 22, 3858 7 of 19

SIDj), and B′11 = h(SK ‖ ni ⊕ x ‖ rk ‖ rj) and checks B′11
?
= B11. If the verification

passes, Ui then computes B12 = h(SK ‖ rj) and sends M5 = {B12} to Sj.

(6) Sj computes B′12 = h(SK ‖ rj) and checks B′12
?
= B12. If the verification passes, then Sj

stores SK for future communication.

Ui Sj CS
Input IDi, PWi, imprint Bi
Compute Rep(Bi, τi) = σi

HPWi = h(PWi ‖ σi)
A′2 = h(IDi ‖ HPWi)

Check A′2
?
= A2

Generate ri, TS1
Compute (ni ⊕ x) = A1 ⊕ h(IDCS ‖ HPWi)

B1 = ri ⊕ h(IDCS ‖ HPWi ⊕ SIDj)
B2 = SIDj ⊕ h(IDCS ‖ HPWi)

B3 = h(TIDi ‖ IDCS ‖ ni ⊕ x)⊕ HPWi
M1={TIDi ,A1,B1,B2,B3,TS1}−−−−−−−−−−−−−−−−→

Check |TS1 − TSc| 5 ∆T
Generate rj, TS2

Compute A3 = SIDj ⊕ A∗3
B4 = rj ⊕ h(A3 ‖ SIDj)
B5 = h(rj ‖ A3 ‖ SIDj)
M2={M1,QIDj ,B4,B5,TS2}−−−−−−−−−−−−−−−→

Check |TS2 − TSc| 5 ∆T
According TIDi to find HPWi

Compute SIDj = B2 ⊕ h(IDCS ‖ HPWi)
ri = B1 ⊕ h(IDCS ‖ HPWi ⊕ SIDj)
(ni ⊕ x) = A1 ⊕ h(IDCS ‖ HPWi)

B′3 = h(TIDi ‖ IDCS ‖ ni ⊕ x)⊕ HPWi

Check B′3
?
= B3

According QIDj to find nj
Compute A3 = h(SIDj ‖ x⊕ nj)

rj = B4 ⊕ h(A3 ‖ SIDj)
B′5 = h(rj ‖ A3 ‖ SIDj)

Check B′5
?
= B5

Generate rk, TS3
Compute SK = h(ri ⊕ HPWi ‖ rj ‖ rk ‖ SIDj)

B6 = (ri ⊕ HPWi)⊕ A3
B7 = h(A3 ‖ rj ‖ SIDj)⊕ rk
B8 = h(rj ‖ rk ‖ SK ‖ TS3)
B9 = h(ni ⊕ x ‖ SIDj)⊕ rj
B10 = h(HPWi ‖ ri)⊕ rk

B11 = h(SK ‖ ni ⊕ x ‖ rk ‖ rj)
M3={B6,B7,B8,B9,B10,B11,TS3}←−−−−−−−−−−−−−−−−−

Check |TS3 − TSc| 5 ∆T
Compute (ri ⊕ HPWi) = B6 ⊕ A3

rk = h(A3 ‖ rj ‖ SIDj)⊕ B7
SK = h(ri ⊕ HPWi ‖ rj ‖ rk ‖ SIDj)

B′8 = h(rj ‖ rk ‖ SK ‖ TS3)

Check B′8
?
= B8

M4={B9,B10,TS4}←−−−−−−−−−−
Checks |TS4 − TSc| 5 ∆T
rj = h(ni ⊕ x ‖ SIDj)⊕ B9
rk = h(HPWi ‖ ri)⊕ B10

SK = h(ri ⊕ HPWi ‖ rj ‖ rk ‖ SIDj)
B′11 = h(SK ‖ ni ⊕ x ‖ rk ‖ rj)

Checks B′11
?
= B11

Compute B12 = h(SK ‖ rj)
M5={B12}−−−−−−→

Compute B′12 = h(SK ‖ rj)

Check B′12
?
= B12

Figure 5. Login and authentication phase.

4. Security Analysis

This section presents an informal security analysis and describes a formal analysis
using ProVerif and the real or random (ROR) model. The subsections introduce these topics.

4.1. Attacker Model

We define the attacker’s ability based on the C-K model [35], which is an extension of
the D-Y model [36]. The following features of an attacker A are defined:

(1) A is assumed to be capable of blocking, modifying, and eavesdropping on messages
transmitted on the open channel. It has complete control over communications
between the various participants.

(2) A can be a malicious insider on the control server and can obtain the content stored
in the control server by the user or cloud server.

(3) A can disclose the established session key, long-term key, and session state.
(4) A can guess the user’s password or identity, but A is unable to guess the user’s

identity or password simultaneously in polynomial time.
(5) Amay extract the information of a user’s SC using power analysis.

4.2. Formal Security Analysis

We use the ROR model and the automated verification tool ProVerif to conduct a
formal security analysis to testify that the protocol is secure and correct.

Sensors 2022, 22, 3858 8 of 19

4.2.1. ROR Model

The protocol security is demonstrated using the ROR model [4,37]. The security is
verified by calculating the probability of session key SK.

The protocol comprises three parties: user, cloud server, and control server. In this
model, Πx

Ui
, Πy

sj , and Πz
CS are the xth user, yth cloud server, and zth control server, re-

spectively. Suppose attacker A’s query capabilities include the following: Z = Πx
Ui

, Πy
Sj

,
and Πz

CS.
Execute(Z): Assuming an attacker A executes the query, they can capture messages

on the open channel.
Send(Z, M): Assuming an attacker A executes the query, they transfer M to Z and

receive an answer from Z.
Hash(string): Suppose an attackerA executes the query; they enter a string and obtain

a hash value.
Corrupt(Z): Assuming an attacker A executes the query, they obtain the private value

of an entity, for example, a long-term key and temporary information of the user’s SC.
Test(Z): Assume that an attacker A executes the query and tosses a coin C into the air.

If C equals 1, A obtains SK. Otherwise, A obtains a string.

Theorem 1. If A executes queries Execute(Z), Send(Z, M), Hash(string), Corrupt(Z), and
Test(Z), the probability P of A cracking the protocol is AdvPA(ξ) ≤ qsend/2l−2 + 3q2

hash/2l−1 +

2max{c′ · qs′
send, qsend/2l}. Here, qsend refers to the numbers of times the queries executed, qhash is

the execution time of the hash function, l is the bit length of biological information [38], and c′ and
s′ are two constants.

Proof. The ROR model played GM0, GM1, GM2, GM3, GM4. SuccGMi
A (ξ) is the probability

that A can win GM0–GM4. The following are the specific query steps in the game: GM0:
GM0 represents the first round of the game, which starts by flipping C. GM0 cannot execute
any queries; hence, the probability that A can break P is as follows:

AdvPA(ξ) = |2Pr[SuccGM0
A (ξ)]− 1|. (1)

GM1: GM1 is for the GM0-added Execute(Z) operation, andA can be used only when
GM1 intercepts the messages M1–M5 transmitted over the open channel. Then, because
the values of HPWi, ri, rj, rk and SIDj cannot be obtained, A cannot obtain the session key
through the Test(Z) query. Thus, GM1’s probability is the same as GM0.

Pr[SuccGM1
A (ξ)] = Pr[SuccGM0

A (ξ)]. (2)

GM2: GM2 extends GM1 by adding the Send(Z, M) query. The probability of GM2 is
calculated using Zipf’s law [39].

|Pr[SuccGM2
A (ξ)]− Pr[SuccGM1

A (ξ)]| ≤ qsend/2l . (3)

GM3: GM3 is for the GM2-added Hash(string) operation and deleted Send(Z, M)
operation. GM3’s probability can be obtained using the birthday paradox.

|Pr[SuccGM3
A (ξ)]− Pr[SuccGM2

A (ξ)]| ≤ q2
hash/2l+1. (4)

GM4: In GM4, a security analysis on two events is conducted to testify the security of
the session key. (1)A obtains CS’s long-term key x; (2)A obtains the temporary information.
This demonstrates that our protocol can guarantee perfect forward security and prevent
temporary information disclosure attacks.

(1) Perfect forward security: A with ΠZ
CSto obtain x of CS or use Πx

Ui
, Πy

Sj
to obtain

private values.

Sensors 2022, 22, 3858 9 of 19

(2) Temporary information disclosure attack: A utilizes Πx
Ui

, Πy
Sj

or ΠZ
CS to obtain the

random number of three entities.

For the first case, even if A obtains x or some private values, they cannot calculate
HPWi, ri, rj, rk, or SIDj. Therefore, A cannot calculate SK, where SK = h(ri ⊕ HPWi ‖ rj ‖
rk ‖ SIDj). For the second case, even if A obtains ri but HPWi, rj, rk and SIDj are private,
SK is incalculable. Similarly, even if A can obtain rj or rk, SK is also incalculable. Thus, the
probability of GM4 is obtained:

|Pr[SuccGM4
A (ξ)]− Pr[SuccGM3

A (ξ)]| ≤ qsend/2l + q2
hash/2l+1. (5)

GM5: In GM5, A queries the parameters {A1, A2, IDCS, Gen(·), Rep(·), τi} in the
smart card by executing Corrupt(Z). This proves that our protocol can protect against
offline password-guessing attacks. A attempts to guess A2 = h(IDi ‖ HPWi), where
HPWi = h(PWi ‖ τi). However, IDi and HPWi are private. The probability that A can
guesses l bit of biological information is 1/2l . From Zipf’s law [39], when qsend ≤ 106, the
probability that A can guess the password is more than 1/2. Thus, the probability of GM5
can be obtained:

|Pr[SuccGM5
A (ξ)]− Pr[SuccGM4

A (ξ)]| ≤ max{C′ · qs′
send, qsend/2l} (6)

GM6: GM6 confirms that the protocol can prevent impersonation attacks. A queries
h(ri ⊕ HPWi ‖ rj ‖ rk ‖ SIDj), and the game ends. Therefore, the probability of GM6 can
be obtained:

|Pr[SuccGM6
A (ξ)]− Pr[SuccGM5

A (ξ)]| ≤ q2
hash/2l+1. (7)

Because A’s probability of success is the same as that of failure (i.e., (1)–(2)), A’s
probability of obtaining the session key is

Pr[SuccGM6
A (ξ)] = 1/2. (8)

From all these formulas,

1/2AdvPA(ξ) = |Pr[SuccGM0
A (ξ)]− 1/2|

= |Pr[SuccGM0
A (ξ)]− Pr[SuccGM6

A (ξ)]|

= |Pr[SuccGM1
A (ξ)]− Pr[SuccGM6

A (ξ)]|

≤
5

∑
i=0
|Pr[SuccGMi+1

A (ξ)]− Pr[SuccGMi
A (ξ)]|

= qsend/2l−1 + 3q2
hash/2l + max{c′ · qs′

send, qsend/2l}

(9)

Consequently, we obtain

AdvPA(ξ) ≤ qsend/2l−2 + 3q2
hash/2l−1 + 2max{c′ · qs′

send, qsend/2l}. (10)

4.2.2. ProVerif

ProVerif [40,41] is a powerful and appropriate tool for analyzing and verifying protocol
security. We use it to verify our protocol’s security.

(1) Some functions and queries are also defined, as shown in Figure 6a,b.
(2) Figure 6c shows the defined events and queries. Among them, we define eight queries.

The first three queries prove the session key’s security, while the other five queries
prove the protocol’s correctness. In addition, we also defined eight events. Event User-
Started() indicates that Ui begins authentication, event UserAuthed() indicates that Ui

Sensors 2022, 22, 3858 10 of 19

successfully authenticated, event ControlServerAcUser() represents CS authenticating
Ui successfully, event ControlServerAcCloudServer() represents CS authenticating
Sj successfully, event CloudServerAcControlServer() indicates that Sj successfully
authenticates CS, event UserAcControlServer() represents Ui authenticating CS suc-
cessfully, event UserAcCloudServer() represents Ui authenticating Sj successfully, and
event CloudServerAcUser() represents CS authenticating Ui successfully.

(3) Figure 7a–c shows Ui’s, Sj’s, and CS’s processes, respectively. Finally, Figure 8 presents
the results. The first three results demonstrate that attackers cannot obtain SK, and the
last five outcomes demonstrate that the protocol is correct and reasonable. Therefore, our
protocol can successfully pass the verification of ProVerif and prevent common attacks.

(* channel*)
free ch :channel. (* public channel *)
free sch: channel [private]. (* secure channel, used for registering *)
(* shared keys *)
free SKi : bitstring [private].
free SKj : bitstring [private].
free SKk : bitstring [private].
free IDi : bitstring [private].
(* constants *)
free x:bitstring [private].
(* functions & reductions & equations *)
fun h(bitstring) :bitstring. (* hash function *)
fun mult(bitstring,bitstring) :bitstring. (* scalar multiplication operation *)
fun add(bitstring,bitstring):bitstring. (* Addition operation *)
fun sub(bitstring,bitstring):bitstring. (* Subtraction operation *)
fun mod(bitstring,bitstring):bitstring. (* modulus operation *)
fun con(bitstring,bitstring):bitstring. (* concatenation operation *)
reduc forall m:bitstring, n:bitstring; getmess(con(m,n))=m.
fun xor(bitstring,bitstring):bitstring. (* XOR operation *)
equation forall m:bitstring, n:bitstring; xor(xor(m,n),n)=m.
fun Gen(bitstring):bitstring. (* Generator operation *)
fun Rep(bitstring,bitstring):bitstring.

(a)Definition

(* queries *)
query attacker(SKi).
query attacker(SKj).
query attacker(SKk).
query inj-event(UserAuthed()) ==> inj-event(UserStarted()).
query inj-event(ControlServerAcUser()) ==> inj-event(ControlServerAcCloudServer()).
query inj-event(CloudServerAcControlServer()) ==> inj-event(UserAcControlServer()).
query inj-event(UserAcControlServer()) ==> inj-event(UserAcCloudServer()).
query inj-event(UserAcCloudServer()) ==> inj-event(CloudServerAcUser()).
(* event *)
event UserStarted().
event UserAuthed().
event ControlServerAcUser().
event ControlServerAcCloudServer().
event CloudServerAcControlServer().
event UserAcControlServer().
event UserAcCloudServer().
event CloudServerAcUser().

(c)Events

let ProcessCS = UiReg | SjReg | CSAuth.
(* ----- Main ----- *)
process
(!ProcessUi | ! ProcessSj| !ProcessCS)

(b)Main

Figure 6. Definitions.

(* ----- Ui’s process ----- *)
let ProcessUi =
new IDi:bitstring;
new PWi:bitstring;
new BIOi:bitstring;
let (a: bitstring, b: bitstring)=Gen(BIOi) in
let HPWi=h(con(PWi,b)) in
out(sch,(IDi,HPWi));
in(sch,(xA1:bitstring,xIDcs:bitstring));
let A2=h(con(IDi,HPWi)) in
!(
event UserStarted();
let a=Rep(BIOi,b) in
let HPWi=h(con(PWi,b)) in
let A2'=h(con(IDi,HPWi)) in
if A2'=A2 then
new ri:bitstring;
new SIDj:bitstring;
new TS1:bitstring;
let A4=xor(xA1,h(con(xIDcs,HPWi))) in
let B1=xor(ri,h(con(xIDcs,xor(HPWi,SIDj)))) in
let B2=xor(SIDj,h(con(xIDcs,HPWi))) in
let TIDi=h(IDi) in
let B3=xor(h(con(con(TIDi,xIDcs),A4)),HPWi) in
out(ch,(TIDi,xA1,B1,B2,B3,TS1))
event UserAuthed();
in(ch,(xTS4:bitstring,xB9:bitstring,xB10:bitstring,xB11:bitstr
ing));
let rj=xor(h(con(A4,SIDj)),xB9) in
let rk=xor(h(con(HPWi,ri)),xB10) in
let A5=xor(ri,HPWi) in
let SKi=h(con(con(con(A5,rj),rk),SIDj)) in
let B11'=h(con(con(con(SKi,A4),rk),rj)) in
if B11'=xB11 then event UserAcCloudServer();
0 (* ----- authentication ----- *)
).

(a)Ui's process

(* ----- Sj process ----- *)
let ProcessSj=
new SIDj:bitstring;
new rj:bitstring;
out(sch,(SIDj,rj));
in(sch,(yQIDj:bitstring,yA3:bitstring));
let A3'=xor(yA3,SIDj) in
!(
in(ch,(yTIDi:bitstring,yA1:bitstring,yB1:bitstring,y
B2:bitstring,yB3:bitstring,yTS1:bitstring));
new rj:bitstring;
new TS2:bitstring;
new SIDj:bitstring;
let yA3=xor(A3',SIDj) in
let B4=xor(rj,h(con(yA3,SIDj))) in
let B5=h(con(con(rj,yA3),SIDj)) in
out(ch,(yTIDi,yA1,yB1,yB2,yB3,yQIDj,B4,B5,TS2));
in(ch,(yB6:bitstring,yB7:bitstring,yB8:bitstring,yB
9:bitstring,yB10:bitstring,yB11:bitstring,yTS3:bitst
ring));
let A5=xor(yB6,yA3)in
let rk=h(con(con(con(yA3,rj),SIDj),yB7)) in
let SKj=h(con(con(con(A5,rj),rk),SIDj)) in
let B8'=h(con(con(con(rj,rk),SKj),yTS3)) in
if B8'=yB8 then event
CloudServerAcControlServer();
new TS4:bitstring;
out(ch,(yB9,yB10,yB11,TS4));
in(ch,(yB12:bitstring));
let B12'=h(con(SKj,rj)) in
0
).

(b)Sj's process

(* ----- CS process ----- *)
let UiReg =
in(sch,(zIDi:bitstring,zHPWi:bitstring));
new ni:bitstring; new x:bitstring;
let TIDi=h(zIDi) in
new IDcs:bitstring;
let A4=xor(ni,x) in
let A1=xor(h(con(IDcs,zHPWi)),A4) in
out(sch, (A1,IDcs));
0.(* -----Ui registration ----- *)
let SjReg =
in (sch,(zSIDj:bitstring));
new nj:bitstring; new QIDj:bitstring; new x:bitstring;
let A3=h(con(zSIDj,xor(x,nj))) in
out(sch,(QIDj,A3));
0.(* -----Sj registration ----- *)
let CSAuth =
in(ch,(zTIDi:bitstring,zA1:bitstring,zB1:bitstring,zB2:bitstring,zB3:bitstrin
g,ZQIDj:bitstring,zB4:bitstring,zB5:bitstring,zTS2:bitstring));
new x:bitstring; new HPWi:bitstring; new IDcs:bitstring; newA1:bitstring;
let zSIDj=xor(zB2,h(con(IDcs,HPWi))) in
let ri=xor(zB1,h(con(IDcs,xor(HPWi,zSIDj)))) in
let A4=xor(A1,h(con(IDcs,HPWi))) in
let B3'=h(con(con(zTIDi,IDcs),A4)) in
if B3'=zB3 then event ControlServerAcUser();
new nj:bitstring;
let A3=h(con(zSIDj,xor(x,nj))) in
let rj=xor(zB4,h(con(A3,zSIDj))) in
let B5'=h(con(con(rj,A3),zSIDj)) in
if B5'=zB5 then event ControlServerAcCloudServer();
new rk:bitstring; new TS3:bitstring;
let SKk=h(con(con(con(xor(ri,HPWi),rj),rk),zSIDj)) in
let B6=xor(xor(ri,HPWi),A3) in
let B7=xor(h(con(con(A3,rj),zSIDj)),rk) in
let B8=h(con(con(con(rj,rk),SKk),TS3)) in
let B9=xor(h(con(A4,zSIDj)),rj) in
let B10=xor(h(con(HPWi,ri)),rk) in
let B11=h(con(con(con(SKk,A4),rk),ri)) in
out(ch,(B6,B7,B8,B9,B10,B11,TS3));
0.

(c)CS's process

Figure 7. Process.

Sensors 2022, 22, 3858 11 of 19

Figure 8. Results.

4.3. Informal Security Analysis

In this subsection, an informal analysis is adopted to demonstrate the common security
requirements of the proposed protocol.

4.3.1. Man-in-the-Middle Attacks

A computes SK by intercepting messages on the open channel. Let us suppose that
message M1 is intercepted and A attempts to calculate SK = h(ri ⊕ HPWi ‖ rj ‖ rk ‖ SIDj)
but they cannot obtain the values of IDCS, HPWi, SIDj. Therefore, A cannot use the
message {B1, B2, B4, B7} on the open channel to calculate ri, rj, rk, B3, B5; change any values;
or successfully pass the authentication of CS; thus, they cannot successfully calculate SK.
Consequently, the proposed protocol can guard against MITM attacks.

4.3.2. Insider Attacks

Case one: Assume that a malicious attacker A obtains {QIDj, nj, TIDi, HPWi} stored
in the CS database. They use the message on the open channel to compute ri = B1 ⊕
h(IDCS ‖ HPWi ⊕ SIDj). However, A cannot obtain the values of IDCS, SIDj, and thus, ri
cannot be calculated. Similarly, because A cannot obtain the values of A3, SIDj, A cannot
calculate rj = B4 ⊕ h(A3 ‖ SIDj) and rk = h(HPWi ‖ ri)⊕ B10. Therefore, the session key
cannot be computed using A. Therefore, our protocol can prevent insider attacks.

Case two: Assume that the attacker A is an insider of the cloud server and obtains
the information A∗3 , QIDj stored in it. They then try to intercept the information on the
open channel and to calculate the session key SK = h(ri ⊕ HPWi ‖ rj ‖ rk ‖ SIDj). They
intercepted B4 and tried to calculate rj = B4 ⊕ h(A3 ‖ SIDj) but cannot calculate the value
of A3 and thus cannot obtain the value of rj. Similarly, A attempts to intercept B6 and
B7 to calculate (ri ⊕ HPWi) = B6 ⊕ A3, and rk = h(A3 ‖ rj ‖ SIDj)⊕ B7. However, they
cannot obtain the value of A3 and thus cannot calculate (ri ⊕ HPWi) and rk, so they cannot
successfully calculate SK.

By analyzing these two situations, we can prove that our protocol can resist insider attacks.

4.3.3. DDoS Attacks

During the login and authentication phase, Ui sends service request message
M1 = {TIDi, A1, B1, B2, B3, TS1} to Sj. After Sj receives M1, whether the timestamp is valid
is checked first. If the timestamp is valid, Sj performs the following calculation. Therefore, if
attackerAwants to launch DDoS attacks, it must be within a valid time, and it is not possible
in this protocol to deny a service only by sending a huge service request. Therefore, the
protocol is immune to this attack.

4.3.4. Masquerading Attacks

Case one: Attacker A attempts to impersonate any legitimate user, cloud server, or
control server. Suppose that A obtains the information {QIDj, nj, TIDi, HPWi} stored
in CS and intercepts the messages {M1, M2, M3, M4} on the public channel. A wants to
impersonate a legitimate Ui by calculating B3 = h(TIDi ‖ IDCS ‖ ni ⊕ x)⊕ HPWi, but A
cannot obtain values of IDCS and (ni ⊕ x). Therefore, they cannot successfully calculate the

Sensors 2022, 22, 3858 12 of 19

value of B3 and cannot impersonate a legitimate user by changing B3 to pass the verification
of CS and thus cannot pretend to be a legitimate user.

Case two: Similarly, A wants to impersonate a Sj through B5 = h(rj ‖ A3 ‖ SIDj)
but cannot obtain values of rj, A3 and SIDj, so they cannot pass the verification of CS.
Therefore, A cannot successfully impersonate a legal Sj. It can be concluded that the
proposed protocol can resist impersonation attacks.

To sum up, our protocol can resist masquerading attacks.

4.3.5. Identity Theft Attacks

Suppose that an attacker A obtains the user’s smart card and tries to impersonate a
legitimate user to establish a session with the cloud server and the control server. They
obtain {A1, A2, IDCS, Gen(·), Rep(·), τi} and try to calculate the authentication value B3 =
h(TIDi ‖ IDCS ‖ ni ⊕ x)⊕ HPWi by intercepting the information on the open channel.
Because they cannot obtain PWi, τi, they cannot calculate HPWi = h(PWi ‖ τi) and thus
cannot successfully calculate B3 and pass the authentication of CS. Therefore, our protocol
can resist identity theft attacks.

4.3.6. Replay Attacks

According to our defined attacker model, an attacker A can forward the intercepted
message to the receiver on the open channel and prove that they are a legitimate entity if the
receiver authenticates the message. However, each transmitted message has a timestamp.
If A transmits a previously intercepted message, the recipient rejects the request because of
the invalid timestamp. Thus, the protocol is resistant to replay attacks.

4.3.7. Perfect Forward Secrecy

In our protocol, SK = h(ri ⊕ HPWi ‖ rj ‖ rk ‖ SIDj). Case one: Suppose that an
attacker A can obtain x but SIDj and HPWi cannot be computed and A cannot obtain
random numbers ri, rj, and rk. Therefore, there is no way to calculate the current SK or the
previous SK, so the proposed protocol can provide perfect forward security.

Case two: Assume that an attacker A obtains the user’s password PWi to attack. Be-
cause the user’s biological information Bi cannot be obtained, A cannot compute HPWi,
where HPWi = h(PWi ‖ τi). Additionally, {ri, rj, rk, SIDj} is unknown. A cannot success-
fully compute SK.

Case three: Assume that an attacker A can obtain the private value A∗3 of a cloud
server for an attack. Because the identity SIDj of the Sj cannot be obtained, A cannot
calculate A3, where A3 = h(SIDj ‖ x⊕ nj). Furthermore,A cannot calculate rj and rk; here,
ri = B1 ⊕ h(IDCS ‖ HPWi ⊕ SIDj) and rk = h(A3 ‖ rj ‖ SIDj)⊕ B7. Additionally, HPWi
is unknown, and A cannot successfully calculate SK.

Therefore, the proposed protocol can provide perfect forward security.

4.3.8. Session Key Disclosure Attacks

It is assumed that the attacker A attempts to intercept the transmission of information
on the open channel. Even if the attacker intercepts the messages M1 − M5, they cannot
compute rj = B4⊕ h(A3 ‖ SIDj), rk = h(A3 ‖ rj ‖ SIDj)⊕ B7, and (ri ⊕ HPWi) = B6⊕ A3
because they cannot obtain the values of HPWi, SIDj, A3. Obviously, they cannot compute
the session key SK = h(ri ⊕ HPWi ‖ rj ‖ rk ‖ SIDj) by intercepting the information on the
public channel. Therefore, our proposed protocol can resist session key disclosure attacks.

4.3.9. Mutual Authentication

In the login and authentication phase, CS verifies the user and cloud server through
B3 and B5, respectively, and B8 and B11 are the values of Ui and Sj used to verify mutual
identity, respectively. Although B3 and B5 are transmitted over the open channel, the values
of (ni ⊕ x), HPWi, rj, and A3 cannot be obtained by an attackerA. Similarly, B8 and B11 are
also transmitted over the open channel, but A cannot obtain the values of rk and SK, and

Sensors 2022, 22, 3858 13 of 19

thus, the protocol cannot break by changing the authentication value. Hence, our protocol
can provide mutual authentication.

4.3.10. Privacy and Anonymity

An attacker A attempts to identify a user by intercepting messages on the open
channel. However, in our proposed method, A can only obtain Ui’s pseudo identity TIDi.
Thus, A cannot compute the user’s real IDi. Similarly, A can only obtain the Sj’s pseudo
identity QIDj. A cannot determine the true identity of Ui and Sj based on the pseudo
identity, which protects the privacy of Ui and Sj. Therefore, our protocol can provide
privacy and anonymity.

4.3.11. Traceability and Non-Repudiation

When cloud server finds that Ui has bad behavior, it will report to CS, and CS will
find the value of the user’s HPWi according to TIDi, which can be used to identify Ui.
Therefore, once a user exhibits malicious behavior, CS can track the user, which ensures
traceability. Since the transmitted message M1 = {TIDi, A1, B1, B2, B3, TS1} contains the
value of authenticating the user’s identity B3, once a legitimate user exhibits bad behavior,
CS will verify the user’s identity according to B3 = h(TIDi ‖ IDCS ‖ ni ⊕ x)⊕ HPWi. If
the verification is passed, this indicates that the bad behavior is indeed sent by the user,
and the user cannot deny it. Therefore, non-repudiation is guaranteed.

4.3.12. Integrity

Integrity is the guarantee that an attackerA cannot change the transmitted information.
Even if A is able to successfully tamper with the information, the system will detect and
discover that the information has been modified.

It is assumed that an attacker A can intercept and tamper with the messages {M1, M2,
M3, M4} transmitted on the open channel. For example, A intercepts and tampers with
message M1, where M1 = {TIDi, A1, B1, B2, B3, TS1}. If A tampers with TIDi, CS cannot
retrieve HPWi and the authentication is suspended. If A tampers with A1, B1, B2, B3, then
CS calculates that B′3 is not equal to the received B3 = h(TIDi ‖ IDCS ‖ ni ⊕ x)⊕ HPWi,
which indicates that the user is not legal or M1 is tampered with, and the authentication is
suspended. Similarly, if an attacker intercepts and tampers with {M2, M3, M4}, all three
entities will be checked accordingly. Therefore, the proposed protocol can ensure the
integrity of information.

4.3.13. Confidentiality

From the Section 4.3.2 (Insider Attacks) and Section 4.3.4 (Masquerading Attacks), it
can be seen that the attacker cannot obtain SK = h(ri ⊕ HPWi ‖ rj ‖ rk ‖ SIDj). Therefore,
it can be seen that our protocol ensures confidentiality.

5. Security and Performance Comparison

We compared the protocols of Amin et al. [13], Martinez et al. [17], Zhou et al. [18],
and Kang et al. [19] in terms of performance and security. The specific comparison results
are described in the following subsection.

5.1. Security Comparison

This subsection compares the five protocols in terms of security. Specifically, X
indicates that the security characteristics are met, and × indicates that they are not met.
In addition, S1–S8 are defined as follows: S1: Perfect forward secrecy; S2: Man-in-the-
middle attack; S3: Mutual authentication; S4: Impersonation attack; S5: Replay attack;
S6: Temporary value disclosure attack; S7: Offline password-guessing attack; and S8:
Insider attack.

Table 3 lists the security results. From Table 3, Zhou et al.’s [18] scheme was unable to
provide perfect forward security and cannot prevent replay, user and server impersonation,

Sensors 2022, 22, 3858 14 of 19

and temporary value disclosure attacks. The protocol of Kang et al. [19] cannot resist
offline password-guessing attacks; Amin et al.’s [13] protocol cannot prevent insider or
impersonation attacks; and the protocol of Martinez et al. [17] was unable to prevent
impersonation or replay attacks, or even enable mutual authentication. The proposed
protocol can evidently prevent many common attacks.

Table 3. Comparisons of security.

Security Properties [13] [17] [18] [19] Ours

S1 X X × X X
S2 × X X X X
S3 X × X X X
S4 × × × X X
S5 X × × X X
S6 X X × X X
S7 X X X × X
S8 × X X X X

5.2. Performance Comparison

We calculated the time required by the user and server. To estimate the user’s computing
cost, we developed an app that uses the Java pairing library, signature library, and symmetric
encryption/decryption function to calculate the running time of various operations. We
used smart phones produced by different manufacturers to imitate the user. We ran various
operations on the following mobile phones ten times and used the average value as the
reference time. Table 4 lists the results of various operations on different mobile phones. D1
is a Huawei Mate 30 mobile phone with a harmony operating system, Huawei Kirin 990
processor, and 8G running memory; D2 is a Redmi Note 9 Pro mobile phone with an Android
operating system, Qualcomm Snapdragon 750 g CPU, and 8G of RAM; and D3 represents
a Oneplus phone with an Android operating system, Snapdragon 865 processor, and 8G
running memory. Table 5 and Figure 9 present the comparative results of the client calculation
costs of the five protocols. Table 5 shows that the protocol of Amin et al. [13] requires 9Th,
the protocol of Martinez et al. [17] requires 11Th + Tde, Zhou et al.’s [18] protocol requires
10Th, Kang et al.’s protocol [19] requires 8Th, and our proposed protocol requires Tm + 10Th.
Although we are not as good as Amin et al. [13], Zhou et al. [18], and Kang et al. [19] in
terms of performance, we are better than them in terms of security.

Table 4. The computational costs of complex operations.

Operations Symbolic D1 (ms) D2 (ms) D3 (ms) Server (Cloud,
Contorl)

Symmetric Decryption Tde 0.04125 0.2 0.2 0.1347
Symmetric Encryption Ten 0.2 0.0392 0.0591 4.7

Hash function Th 0.00103 0.00251 0.00102 0.0052
Fuzzy function Tf 0.05665 0.143 0.00561 -

Table 5. Comparative results of user computational costs.

Protocols User D1 (ms) D2 (ms) D3 (ms)

Amin et al. [13] 9Th 0.0093 0.0226 0.0092
Martinez et al. [17] 11Th + Tde 0.0526 0.2275 0.2112

Zhou et al. [18] 10Th 0.0103 0.0251 0.0102
Kang et al. [19] 8Th 0.0082 0.0201 0.0082

Ours Tf + 10Th 0.0697 0.1681 0.0158

Sensors 2022, 22, 3858 15 of 19

ms

Figure 9. Comparative results of user computational costs [13,17–19].

We used a computer with a windows 10 operating system, Intel (R) core (TM) i5-8500CPU@
3.00GHz3.00G processor, and 8 GB memory, to simulate the server’s computational costs. IntelliJ
idea software version 2019.3 was used for development. It is based on the Java pairing library,
signature library, and symmetric encryption/decryption function. Various operations were run
10 times on this computer, and the average value was used as the reference time. Table 4 lists the
results. Table 6 shows the comparison results. As shown in Table 6, the time required for our
proposed protocol was only four hashes more than Kang et al.’s [19] and Amin et al.’s [13]
protocols, that is, 0.0208 ms.

Table 6. Comparative results of server computational costs.

Protocols Cloud Server Control Server Total (ms)

Amin et al. [13] 4Th 10Th 0.0728
Martinez et al. [17] 6Th + 2Tde + Ten 34Th + 2Ten 14.5774

Zhou et al. [18] 7Th 20Th 0.1404
Kang et al. [19] 3Th 11Th 0.0728

Ours 5Th 13Th 0.0936

To calculate the communication cost, we set the length of one-way hash H as 256 bits,
timestamp T to 32 bits, string s to 160 bits, identity ID to 160 bits, random number Z∗p to
160 bits, and encryption operation E to 256 bits. In addition, assume that the fuzzy extractor
needs to store 8 bits. From this definition, the protocol of Zhou et al. [18] can be concluded to
require 3|ID|+ 10|s|+ 6|H|+ 3|T|, that of Amin et al. [13] requires 3|ID|+ 8|s|+ 6|H|+ 3|T|,
that of Martinez et al. [17] requires 3|ID|+ 18|s|+ |H|+ 2|E|+ 2|Z∗p|, that of Kang et al. [19]
requires 3|ID|+ 10|s|+ 6|H|+ 3|T|, and our protocol requires 3|ID|+ 15|s|+ 5|H|+ 3|T|.
Table 7 and Figure 10 present the detailed comparison results. Evidently, our protocol has
a lower communication cost than that of Martinez et al. [17], although the communication
cost is higher than that of the other three protocols. Our protocol also provides higher
security; their protocols have been proven to have various security problems. Therefore, our
proposed protocol is secure, has a relatively good performance, and is suitable for cloud
computing environments.

For the storage costs, we consider the parameters required to store each entity in each
entity in the registration phase. The number of numbers required for various parameters is
the same as discussed above. The comparison results are shown in Figure 11. It can be seen
from the figure that our storage cost is slightly higher than the protocols of Amin et al. [13]
and Kang et al. [19].

Sensors 2022, 22, 3858 16 of 19

bits

Figure 10. Comparative results of communication costs [13,17–19].

Table 7. Comparisons in terms of communication and storage costs.

Protocols Number of
Rounds

Communication
Costs (Bits)

Storage Costs
(Bits) Secruity

Amin et al. [13] 5 3680 1152 Insecure
Martinez et al. [17] 6 6016 1664 Insecure

Zhou et al. [18] 4 4448 2112 Insecure
Kang et al. [19] 2 4000 1278 Cannot resist offline password guessing attack

Ours 5 4544 1320 Provable secruity

bits

Figure 11. Comparative results of storage costs [13,17–19].

In terms of energy costs, due to the strong computing power and good performance of
the server, we do not consider its energy cost. We use “ampere” APP to measure the current
and voltage of each mobile phone the three devices during operation, and the results are
shown in the Table 8. According to the formula W = U · I · t, the power consumption required
by each device was calculated. The results are shown in Table 9 and Figure 12. The energy

Sensors 2022, 22, 3858 17 of 19

costs are different for different devices. It can be seen from the figure that, although our
protocol is not the best, it is better than that of Martinez et al. [17] and our protocol is secure.

Table 8. Voltage and current of devices.

Devices U (V) I (mA)

D1 4.08 531
D2 610 3.58
D3 508 4.08

Table 9. Energy costs.

Protocols D1 (uJ) D2 (uJ) D3 (uJ)

Amin et al. [13] 20.148 49.354 19.068
Martinez et al. [17] 113.957 496.814 437.74

Zhou et al. [18] 22.315 54.813 21.14
Kang et al. [19] 17.751 43.894 16.996

Ours 151.004 367.097 32.748

uJ

Figure 12. Comparative results of energy costs [13,17–19].

6. Conclusions and Disscussion

IoT-enabled cloud computing environment is an open environment, and its main
threat is data leakage. Because a large number of customers’ privacy data are stored on
the cloud server, once the data is leaked, it will lead to not only the disclosure of trade
secrets, intellectual property rights, and personal privacy but also a devastating blow to the
enterprise. In addition, the communication information of various entities is transmitted
on the open channel. Attackers can launch attacks by intercepting the information on the
open channel. Moreover, from Table 1, we can know that most of the existing schemes
have been attacked, such as man in the middle attack, simulation attack, etc.

In this paper, we propose a protocol to solve the security problem in this environment.
To verify the security, an informal security analysis was conducted, and the ProVerif and
ROR models were adopted for formal security analysis. Finally, the protocol’s security and
performance were measured against those of other protocols. The proposed protocol can be
concluded to satisfy basic security requirements. Therefore, our protocol is more suitable
for this environment.

Author Contributions: Conceptualization, T.-Y.W.; methodology, T.-Y.W. and Q.M.; software, S.K.;
formal analysis, P.Z.; investigation, T.-Y.W.; writing—original draft preparation, T.-Y.W., Q.M., S.K.
and P.Z. All authors have read and agreed to the published version of the manuscript.

Funding: This research study received no external funding.

Sensors 2022, 22, 3858 18 of 19

Data Availability Statement: The data are contained within the article.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations
The following abbreviations are used in this manuscript:

IoT Internet of Things
ROR real-oracle random
AKA authentication and key agreement
DoS denial of service

References
1. Goudos, S.K.; Dallas, P.I.; Chatziefthymiou, S.; Kyriazakos, S. A survey of IoT key enabling and future technologies: 5G, mobile

IoT, sematic web and applications. Wirel. Pers. Commun. 2017, 97, 1645–1675. [CrossRef]
2. Huang, X.; Xiong, H.; Chen, J.; Yang, M. Efficient Revocable Storage Attribute-based Encryption with Arithmetic Span Programs

in Cloud-assisted Internet of Things. IEEE Trans. Cloud Comput. 2021. [CrossRef]
3. Xiong, H.; Chen, J.; Mei, Q.; Zhao, Y. Conditional privacy-preserving authentication protocol with dynamic membership updating

for VANETs. IEEE Trans. Dependable Secur. Comput. 2022, 19, 2089–2104. [CrossRef]
4. Wu, T.Y.; Wang, T.; Lee, Y.Q.; Zheng, W.; Kumari, S.; Kumar, S. Improved authenticated key agreement scheme for fog-driven IoT

healthcare system. Secur. Commun. Netw. 2021, 2021, 6658041. [CrossRef]
5. Meng, Z.; Pan, J.S.; Tseng, K.K. PaDE: An enhanced Differential Evolution algorithm with novel control parameter adaptation

schemes for numerical optimization. Knowl. Based Syst. 2019, 168, 80–99. [CrossRef]
6. Xue, X.; Zhang, J. Matching large-scale biomedical ontologies with central concept based partitioning algorithm and adaptive

compact evolutionary algorithm. Appl. Soft Comput. 2021, 106, 107343. [CrossRef]
7. Pan, J.S.; Liu, N.; Chu, S.C.; Lai, T. An efficient surrogate-assisted hybrid optimization algorithm for expensive optimization

problems. Inf. Sci. 2021, 561, 304–325. [CrossRef]
8. Chandra, S.; Yafeng, W. Cloud things construction—The integration of Internet of Things and cloud computing. Future Gener.

Comput. Syst. 2016, 56, 684–700.
9. Díaz, M.; Martín, C.; Rubio, B. State-of-the-art, challenges, and open issues in the integration of Internet of Things and cloud

computing. J. Netw. Comput. Appl. 2016, 67, 99–117. [CrossRef]
10. Sun, P. Security and privacy protection in cloud computing: Discussions and challenges. J. Netw. Comput. Appl. 2020, 160, 102642.

[CrossRef]
11. Rashid, A.; Chaturvedi, A. Cloud computing characteristics and services: A brief review. Int. J. Comput. Sci. Eng. 2019, 7, 421–426.

[CrossRef]
12. Odelu, V.; Das, A.K.; Kumari, S.; Huang, X.; Wazid, M. Provably secure authenticated key agreement scheme for distributed

mobile cloud computing services. Future Gener. Comput. Syst. 2017, 68, 74–88. [CrossRef]
13. Amin, R.; Kumar, N.; Biswas, G.; Iqbal, R.; Chang, V. A light weight authentication protocol for IoT-enabled devices in distributed

Cloud Computing environment. Future Gener. Comput. Syst. 2018, 78, 1005–1019. [CrossRef]
14. Wu, F.; Li, X.; Xu, L.; Sangaiah, A.K.; Rodrigues, J.J. Authentication protocol for distributed cloud computing: An explanation of

the security situations for Internet-of-Things-enabled devices. IEEE Consum. Electron. Mag. 2018, 7, 38–44. [CrossRef]
15. Wang, C.; Ding, K.; Li, B.; Zhao, Y.; Xu, G.; Guo, Y.; Wang, P. An enhanced user authentication protocol based on elliptic curve

cryptosystem in cloud computing environment. Wirel. Commun. Mob. Comput. 2018, 2018, 3048697. [CrossRef]
16. Pan, J.S.; Sun, X.X.; Chu, S.C.; Abraham, A.; Yan, B. Digital watermarking with improved SMS applied for QR code. Eng. Appl.

Artif. Intell. 2021, 97, 104049. [CrossRef]
17. Martínez-Peláez, R.; Toral-Cruz, H.; Parra-Michel, J.R.; García, V.; Mena, L.J.; Félix, V.G.; Ochoa-Brust, A. An enhanced lightweight

IoT-based authentication scheme in cloud computing circumstances. Sensors 2019, 19, 2098. [CrossRef]
18. Zhou, L.; Li, X.; Yeh, K.H.; Su, C.; Chiu, W. Lightweight IoT-based authentication scheme in cloud computing circumstance.

Future Gener. Comput. Syst. 2019, 91, 244–251. [CrossRef]
19. Kang, B.; Han, Y.; Qian, K.; Du, J. Analysis and improvement on an authentication protocol for IoT-enabled devices in distributed

cloud computing environment. Math. Probl. Eng. 2020, 2020, 1970798. [CrossRef]
20. Luo, Y.; Zheng, W.; Chen, Y.C. An anonymous authentication and key exchange protocol in smart grid. J. Netw. Intell. 2021,

6, 206–215.
21. Wu, T.Y.; Yang, L.; Luo, J.N.; Ming-Tai Wu, J. A Provably Secure Authentication and Key Agreement Protocol in Cloud-Based

Smart Healthcare Environments. Secur. Commun. Netw. 2021, 2021, 2299632. [CrossRef]
22. Turkanović, M.; Brumen, B.; Hölbl, M. A novel user authentication and key agreement scheme for heterogeneous ad hoc wireless

sensor networks, based on the Internet of Things notion. Ad Hoc Netw. 2014, 20, 96–112. [CrossRef]
23. Wazid, M.; Das, A.K.; Odelu, V.; Kumar, N.; Conti, M.; Jo, M. Design of secure user authenticated key management protocol for

generic IoT networks. IEEE Internet Things J. 2017, 5, 269–282. [CrossRef]

http://doi.org/10.1007/s11277-017-4647-8
http://dx.doi.org/10.1109/TCC.2021.3131686
http://dx.doi.org/10.1109/TDSC.2020.3047872
http://dx.doi.org/10.1155/2021/6658041
http://dx.doi.org/10.1016/j.knosys.2019.01.006
http://dx.doi.org/10.1016/j.asoc.2021.107343
http://dx.doi.org/10.1016/j.ins.2020.11.056
http://dx.doi.org/10.1016/j.jnca.2016.01.010
http://dx.doi.org/10.1016/j.jnca.2020.102642
http://dx.doi.org/10.26438/ijcse/v7i2.421426
http://dx.doi.org/10.1016/j.future.2016.09.009
http://dx.doi.org/10.1016/j.future.2016.12.028
http://dx.doi.org/10.1109/MCE.2018.2851744
http://dx.doi.org/10.1155/2018/3048697
http://dx.doi.org/10.1016/j.engappai.2020.104049
http://dx.doi.org/10.3390/s19092098
http://dx.doi.org/10.1016/j.future.2018.08.038
http://dx.doi.org/10.1155/2020/1970798
http://dx.doi.org/10.1155/2021/2299632
http://dx.doi.org/10.1016/j.adhoc.2014.03.009
http://dx.doi.org/10.1109/JIOT.2017.2780232

Sensors 2022, 22, 3858 19 of 19

24. Wu, F.; Li, X.; Xu, L.; Vijayakumar, P.; Kumar, N. A novel three-factor authentication protocol for wireless sensor networks with
IoT notion. IEEE Syst. J. 2020, 15, 1120–1129. [CrossRef]

25. Tsai, J.L.; Lo, N.W. A privacy-aware authentication scheme for distributed mobile cloud computing services. IEEE Syst. J. 2015,
9, 805–815. [CrossRef]

26. Irshad, A.; Sher, M.; Ahmad, H.F.; Alzahrani, B.A.; Chaudhry, S.A.; Kumar, R. An improved multi-server authentication scheme
for distributed mobile cloud computing services. KSII Trans. Internet Inf. Syst. (TIIS) 2016, 10, 5529–5552.

27. Sadri, M.J.; Asaar, M.R. An anonymous two-factor authentication protocol for IoT-based applications. Comput. Netw. 2021,
199, 108460. [CrossRef]

28. He, D.; Kumar, N.; Khan, M.K.; Wang, L.; Shen, J. Efficient privacy-aware authentication scheme for mobile cloud computing
services. IEEE Syst. J. 2016, 12, 1621–1631. [CrossRef]

29. Xiong, L.; Peng, D.; Peng, T.; Liang, H. An enhanced privacy-aware authentication scheme for distributed mobile cloud computing
services. KSII Trans. Internet Inf. Syst. (TIIS) 2017, 11, 6169–6187.

30. Challa, S.; Das, A.K.; Gope, P.; Kumar, N.; Wu, F.; Vasilakos, A.V. Design and analysis of authenticated key agreement scheme in
cloud-assisted cyber–physical systems. Future Gener. Comput. Syst. 2020, 108, 1267–1286. [CrossRef]

31. Yu, S.; Park, K.; Park, Y. A secure lightweight three-factor authentication scheme for IoT in cloud computing environment. Sensors
2019, 19, 3598. [CrossRef] [PubMed]

32. Wang, F.; Xu, G.; Xu, G.; Wang, Y.; Peng, J. A robust IoT-based three-factor authentication scheme for cloud computing resistant
to session key exposure. Wirel. Commun. Mob. Comput. 2020, 2020, 3805058. [CrossRef]

33. Huang, H.; Lu, S.; Wu, Z.; Wei, Q. An efficient authentication and key agreement protocol for IoT-enabled devices in distributed
cloud computing architecture. EURASIP J. Wirel. Commun. Netw. 2021, 2021, 1–21. [CrossRef]

34. Li, N.; Guo, F.; Mu, Y.; Susilo, W.; Nepal, S. Fuzzy extractors for biometric identification. In Proceedings of the IEEE 37th
International Conference on Distributed Computing Systems (ICDCS), Atlanta, GA, USA, 5–8 June 2017; pp. 667–677.

35. Canetti, R.; Krawczyk, H. Analysis of key-exchange protocols and their use for building secure channels. In International
Conference on the Theory And Applications of Cryptographic Techniques; Springer: Berlin/Heidelberg, Germany, 2001; Volume 2045,
pp. 453–474.

36. Dolev, D.; Yao, A. On the security of public key protocols. IEEE Trans. Inf. Theory 1983, 29, 198–208. [CrossRef]
37. Canetti, R.; Goldreich, O.; Halevi, S. The random oracle methodology, revisited. J. ACM 2004, 51, 557–594. [CrossRef]
38. Odelu, V.; Das, A.K.; Goswami, A. A secure biometrics-based multi-server authentication protocol using smart cards. IEEE Trans.

Inf. Forensics Secur. 2015, 10, 1953–1966. [CrossRef]
39. Wang, D.; Cheng, H.; Wang, P.; Huang, X.; Jian, G. Zipf’s law in passwords. IEEE Trans. Inf. Forensics Secur. 2017, 12, 2776–2791.

[CrossRef]
40. Blanchet, B. A computationally sound mechanized prover for security protocols. IEEE Trans. Dependable Secur. Comput. 2008,

5, 193–207. [CrossRef]
41. Abadi, M.; Fournet, C. Mobile values, new names, and secure communication. ACM Sigplan Not. 2001, 36, 104–115. [CrossRef]

http://dx.doi.org/10.1109/JSYST.2020.2981049
http://dx.doi.org/10.1109/JSYST.2014.2322973
http://dx.doi.org/10.1016/j.comnet.2021.108460
http://dx.doi.org/10.1109/JSYST.2016.2633809
http://dx.doi.org/10.1016/j.future.2018.04.019
http://dx.doi.org/10.3390/s19163598
http://www.ncbi.nlm.nih.gov/pubmed/31430911
http://dx.doi.org/10.1155/2020/3805058
http://dx.doi.org/10.1186/s13638-021-02022-1
http://dx.doi.org/10.1109/TIT.1983.1056650
http://dx.doi.org/10.1145/1008731.1008734
http://dx.doi.org/10.1109/TIFS.2015.2439964
http://dx.doi.org/10.1109/TIFS.2017.2721359
http://dx.doi.org/10.1109/TDSC.2007.1005
http://dx.doi.org/10.1145/373243.360213

	Introduction
	Related Work
	The Proposed Protocol
	System Model
	User Registration Phase
	Cloud Server Registration Phase
	Login and Authentication Phase

	Security Analysis
	Attacker Model
	Formal Security Analysis
	ROR Model
	ProVerif

	Informal Security Analysis
	Man-in-the-Middle Attacks
	Insider Attacks
	DDoS Attacks
	Masquerading Attacks
	Identity Theft Attacks
	Replay Attacks
	Perfect Forward Secrecy
	Session Key Disclosure Attacks
	Mutual Authentication
	Privacy and Anonymity
	Traceability and Non-Repudiation
	Integrity
	Confidentiality

	Security and Performance Comparison
	Security Comparison
	Performance Comparison

	Conclusions and Disscussion
	References

