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ABSTRACT
COVID-19 precautions decrease social connectedness. It has been proposed that these measures 
alter the gut microbiota, with potential clinical consequences. We tested this hypothesis in patients 
with acute myeloid leukemia (AML) receiving inpatient chemotherapy, a population with extensive 
exposure to the nosocomial setting and at high risk for infections. Hospitalized patients with AML 
contributed stool samples to a biorepository protocol that was initiated before COVID-19 and 
continued without change through the pandemic. Patient-, disease-, and treatment-related char
acteristics remained the same in the two eras and the only change in clinical care was the 
implementation of COVID-19 precautions in March 2020. The incidence of all-cause nosocomial 
infections during the pandemic was lower than in the pre-COVID-19 era. Multivariable analysis 
revealed an imprint of COVID-19 precautions in the gut microbiota as a viable mechanistic 
explanation. In conclusion, COVID-19 precautions alter the gut microbiota, thereby mediating 
pathogen susceptibility and nosocomial infections.
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Introduction

Hospitals around the world have implemented pre
cautionary measures to limit the spread of the 
severe acute respiratory syndrome coronavirus 2 
(SARS-CoV-2), the causative agent of the ongoing 
coronavirus disease 2019 (COVID-19) pandemic. 
Precautions include the use of face masks and face 
shields, social distancing, fewer in-room staff visits, 
and restricted visitor policies including no food 
brought from outside the hospital. The effect of 
these measures on the gut microbiota and its poten
tial clinical consequences are unknown. 
Understanding gut microbiota changes due to sys
tematic changes in clinical, hygienic, social, or 
behavioral practice is important because the gut 
microbiota is a master regulator of host immunity 
and pathogen susceptibility. Microbial antigens and 
metabolites communicate with the immune system, 
eliciting homeostatic microbiota-specific responses 
that recognize commensal microbes across the gut 
mucosal barrier. Disruptions in the microbiota- 
immune system cross-talk can lead to inflammation 

and aberrant immune responses.1,2 Changes in the 
gut microbiota can increase pathogen susceptibility 
by at least 3 mechanisms: (i) selection for patho
bionts, esp. those harboring antibiotic-resistance 
genes,3 (ii) altered immune response to microbial 
antigens (i.e., disrupted priming of the immune 
system by the microbiota),4 and (iii) decreased pro
duction of beneficial microbial products such as 
short-chain fatty acids with tonic and trophic 
effects on the gut epithelial barrier.5,6

Social distancing may alter the microbiota by 
decreasing person-to-person microbial 
transmission.7,8 In non-human primates, social 
interactions are a major determinant of the gut 
microbiome.9 In human societies alike, isolation 
and socialization in smaller groups (e.g., within 
rather than among families) reduce social contacts, 
resulting in microbiomes that resemble those of 
close family members or friends.10 The increased 
use of disinfectants, sanitizers, and antibiotics for 
containment of the virus has been proposed to 
cause collateral damage to the gut microbiota, com
promising colonization resistance and promoting 
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the growth of antibiotic-resistant species and 
pathogens.11 The “disappearing microbiota 
hypothesis” predicts that reduced acquisition of 
microbes due to decreased exposure to the external 
environment (versatile foods, people, and environ
ment) and increased use of antimicrobial agents 
will cause microbial diversity loss.12 The pandemic 
has led to changes in eating habits and lifestyle, 
such as increased consumption of fruits and vege
tables and higher adherence to the Mediterranean 
diet.13 Changes to exercise habits resulting from 
COVID-19 restrictions may also alter the gut 
microbiota.14

Patients with acute myeloid leukemia (AML) 
receiving chemotherapy represent an ideal popula
tion to test this hypothesis. These patients typically 
spend several weeks in the hospital and suffer 
a high rate of nosocomial infections. Using high- 
throughput bacterial sequencing of stool samples 
collected from patients with AML enrolled in 
a biorepository protocol that started before 
COVID-19 and is continuing without change in 
the COVID-19 era, we investigated the impact of 
COVID-19 precautions on the gut microbiota and 
nosocomial infections. Because patient-, disease-, 
and treatment-related characteristics of the 
enrolled subjects remained unchanged in the two 
eras and the only change in standard of care was the 
implementation of COVID-19 precautions in 
March 2020, this biorepository uniquely positioned 
us to identify changes in the gut microbiota and 
nosocomial infection rates that resulted from 
COVID-19 precautions.

Results

Patient age (median [interquartile range, IQR]: 61 
[50–72] vs. 59 [53–68] years]), hospitalization length 
(median [IQR] 32 [25–40] vs. 31 [25–37] days), 
incidence of neutropenic fever (83% vs. 82%), and 
use of parenteral nutrition (34% and 36%) were 
similar in pre-COVID-19 and COVID-19 eras. 
However, the incidence of microbiologically docu
mented infections before COVID-19 was more than 
twice higher than during the pandemic (25.9 vs. 11.9 
events per 1000 patient-days; Table 1). No particular 
infection type or organism seemed to drive the 
observed difference, suggesting that a single under
lying regulator of pathogen susceptibility may be 

involved. The gut microbiota is a master regulator 
of host immunity and infection susceptibility.15 As 
an example, the expansion of Akkermansia in the gut 
increases the risk of neutropenic fever during anti- 
leukemia chemotherapy,16 an effect that may be 
mediated by the mucolytic action of Akkermansia 
promoting bacterial translocation to the 
bloodstream.17 Thus, we compared the gut micro
biota before and during the pandemic as a potential 
explanation for different infection rates in the two 
eras.

After filtering, we analyzed 263 samples (pre- 
COVID-19: 196; COVID-19: 67) containing an 
average of 19,604 high-quality reads per sample. 
Samples collected in the two eras had a different 
microbiome composition (PERMANOVA p = .001, 
R2 = 0.02; no difference in dispersion, p = .78; 
Figure 1a). To find taxa that made the largest con
tributions to the discrimination between eras, we 
performed sparse partial least squares discriminant 
analysis (sPLS-DA)18 on centered log-ratio (clr)- 
transformed abundances (123 genera) (Figure 1b). 
Using the 50 most discriminating taxa, an area 
under the receiver operating characteristic curve 
of 92.8% for era discrimination was obtained 
(Figure 1c). The stability of 47 of these taxa in 
leave-one-out cross-validation was 100%.

Next, we used the clr-transformed abundances of 
the 47 candidate taxa in sPLS-DA as dependent 
variables in separate multivariable linear regression 
models with era being a binary predictor. We quan
tified the “antibiotic history” of each sample by con
sidering the time series of exposures to 7 major 
classes of antibacterial antibiotics between hospital 
admission and the day the sample was collected. For 
a given day, if a given antibiotic was used, exposure 
to that antibiotic was coded 1 and otherwise, zero. 
Next, we applied a decaying average function to the 

Table 1. Microbiologically documented infections per 1000 
patient-days.

Pre-COVID-19 era COVID-19 era

Total: 25.9 
Enterococcal bacteremia: 7.8 
Other Gram-positive bacteremia: 
5.2 
Gram-negative bacteremia: 1.7 
Clostridioides difficile: 6.9 
Invasive fungal infection 
(Aspergillus): 3.5 
Viral infection: 0.8

Total: 11.9 
Enterococcal bacteremia: 3.0 
Other Gram-positive 
bacteremia: 3.0 
Clostridioides difficile: 3.0 
Polymicrobial infection: 3.0
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antibiotic history of each sample – a time series of 0’s 
and 1’s for each antibiotic class – to achieve a single 
numerical value summarizing the exposure history 
of the given sample for the given antibiotic. The 
decaying average method flexibly models both recent 
and less recent exposures by placing more weight on 
exposures in the more recent days preceding the 
sample. In principal component analysis (PCA) 
using antibiotic histories, a slight separation of sam
ples belonging to the two eras was apparent 
(PERMANOVA p = .06, R2 = 0.008; Figure 2a). 

This separation was primarily driven by higher expo
sure to fluoroquinolones (p = .02, t-test on decaying 
averages) in the COVID-19 era and lower exposure 
to metronidazole (p = .02), and carbapenems 
(p = .005) in the pre-COVID-19 era (Figure 2b). 
Therefore, we included the first two PCA axes of 
antibiotic history along with sample collection day 
relative to day 1 of chemotherapy as covariates in the 
regression model. In this analysis, era was a strong 
(absolute value of regression coefficient >2) and sig
nificant (corrected p < .05) predictor of four taxa. 

Figure 1. Gut microbiota in pre-COVID-19 vs. COVID-19 era. (a) Principal component analysis using operational taxonomic units and 
Aitchison’s distance. Each circle represents a stool sample and its color indicates the era in which it was collected. The first 3 principal 
component (PC) axes are shown, with numbers in parentheses indicating the proportion of total data variation explained by the 
corresponding axis. p value and R2 are from an adonis test with 999 permutations. (b) Loadings of the 50 most discriminant taxa on 
component 1 from sparse partial least squares discriminant analysis (sPLS-DA). Bars to the right indicate differentially abundant taxa in 
the COVID-19 era and those to the left indicate differentially abundant taxa in the pre-COVID-19 era. The length of each bar indicates 
the strength of the association. All taxa are at the level of genus, except those with inconclusive genus-level characterization; the latter 
are shown at the level of family (f) or order (o). (c) Group separation by era using candidate taxa from sPLS-DA listed in panel b. Each 
item (triangle for COVID-19 era and circle for pre-COVID-19 era) represents a sample. The receiver operating characteristic curve 
corresponding to the main plot is shown as an inset. AUC: area under the curve.
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Two taxa (Pseudomonas and Akkermansia) were 
associated with the pre-COVID-19 era and two 
(Acidaminococcus and Sutterella) were associated 
with the COVID-19 era (Figure 2c). Decreasing the 
decay rate from 2 to 1.5 to increase the relative 

importance of antibiotic exposures in less recent 
days did not change the results (Supplementary 
Fig. 1). Finally, because most patients contributed 
more than one sample, we explored the possibility of 
our results being driven by samples from a single 

Figure 2. Taxonomic differentiation of pre-COVID-19 and COVID-19 eras in multivariable analysis. (a) Principal component analysis 
applied to the antibacterial antibiotic exposure history of the samples. Each circle represents a stool sample and its color indicates the 
era in which it was collected. The first 2 axes are shown, with numbers in parentheses indicating the proportion of total data variation 
explained by the corresponding axis. p value and R2 are from an adonis test with 999 permutations. Samples with an identical antibiotic 
history are superimposed, visually creating fewer data points than the actual number of samples. (b) Antibacterial antibiotic exposures 
in the two groups. Seven common classes of antibiotics were considered. p values are from chi-squared tests with Fisher’s exact test 
when appropriate. (c) Volcano plot showing association between taxa abundances and era in multivariable linear regression. clr- 
transformed taxa abundances were the dependent variables in separate models, with era (COVID-19 vs. pre-COVID-19) as a binary 
predictor and sample collection day and the first two axes of antibiotic history as covariates. Samples were the units of analysis. Each 
circle represents a taxon. Only the 100% stable taxa from sPLS-DA were considered. The regression coefficient for era was considered 
its effect size and plotted along the x-axis. A positive (negative) effect size means that the corresponding taxon is associated with 
COVID-19 (pre-COVID-19) era. The p value corresponding to the regression coefficient for era was corrected for multiple testing and 
plotted along the y-axis after logarithmic transformation. The horizontal dashed line indicates a corrected p value threshold of 0.05. 
The points above this line indicate statistically significant taxa. The two vertical dashed lines on the sides indicate thresholds of −2 and 
2 for the effect size to define a strong association. Points to the right of x = 2 or to the left of x = −2 represent taxa that are strongly 
associated with era. Taxon identity is shown for strong significant taxa. (d-e) Univariate comparison between the two eras for strong 
significant taxa in panel c which were also significant in all leave-one-patient-out runs. p values are from t-tests.
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patient. To evaluate this possibility, we re-ran the 
regression models on subsets of the database, each 
lacking samples from a different patient. 
Reassuringly, two of the four genera from the pre
vious step (Pseudomonas and Akkermansia) 
remained the only two taxa with an effect size larger 
in absolute value than 2 and corrected p < .05 in 
100% of the runs (univariate comparisons shown in 
Figure 2d,e).

Because COVID-19 precautions were implemen
ted at our hospital in one step, the effect of indivi
dual components of these precautions on the gut 
microbiota cannot be determined. Considering the 
well-established effects of diet on the gut 
microbiota,19,20 we explored the possibility that 
the “no food from outside” policy might have 
been the primary determinant of microbiota differ
ences between the two eras. First, an informal sur
vey of 3 nursing staff who took care of our acute 
leukemia patients in both eras suggested that even 
in the pre-COVID-19 era, more than 80% of meals 
were ordered from the hospital food services. Next, 
we reasoned that the new food policy could reduce 
gut microbiota variability caused by different food 
preparations in different outside sources, thus the 
microbiota of different samples would become 
more similar over time in the COVID-19 era. We 
tested this hypothesis by comparing the composi
tional dispersion of samples collected in different 
weeks of chemotherapy (week 1: hospitalization 
through day 7 of chemotherapy; week 2: days 8– 
14, week 3: days 15–21, week 4: day 22 and later). 
This analysis, done using betadisper in R, did not 
support a change in dispersion over time (Figure 3; 
p = .37, 999 permutations).

Discussion

Our study represents a before/after comparison 
where the only difference in clinical care between 
the two eras was the implementation of COVID-19 
precautions during the pandemic. The incidence of 
nosocomial infections was lower during the pan
demic, a finding potentially explained by gut micro
biota changes. We found a lower abundance of 
Pseudomonas and Akkermansia in the gut micro
biome during the pandemic. By thinning the mucus 
layer, Akkermansia potentiates pathogen transloca
tion to the bloodstream.16,17 Similarly, the PA-I 

lectin of Pseudomonas aeruginosa impairs tight 
junction integrity of the intestinal barrier, promot
ing gut-derived sepsis in stressed hospitalized 
patients.21 Considering that the standards of leuke
mia care did not change over the lifetime of this 
study, COVID-19 precautions are the most likely 
cause of the observed changes in the microbiota. 
Importantly, we adjusted our analysis for antibiotic 
exposures, a known cause of microbiota changes. 
The extent to which the gut microbiota mediated 
the effect of COVID-19 precautions on nosocomial 
infection rates is not clear because a direct effect of 
the implemented measures on reducing clinical 
infections is also possible.

Decreased person-to-person and environment- 
to-person transmission of specific taxa can result 
in their lower abundance in the gut microbiota. 
Pseudomonas colonizes medical devices and water 
and can be transmitted from the environment or 
other individuals to the patient.22 Although the 
ability of ingested Pseudomonas to reach and colo
nize the colon is unknown, decreased transmission 
resulting from COVID-19 precautions is a potential 
explanation for our findings. Alternatively, reduced 
microbial transmission could make the microbiota 
less accommodating to specific taxa. Akkermansia 
resides in the mucus layer and uses mucin as its sole 
carbon and nitrogen source.23 Short-chain fatty 
acids, produced by several commensal members 
of the gut microbiota, stimulate mucin production 
by goblet cells.24 As a possible mechanism, 
a reduction in such bacteria resulting from 
decreased transmission could make the gut 
a suboptimal environment for Akkermansia. 
Direct transmissibility of Akkermansia has not 
been evaluated.

Thus far, the effect of COVID-19 precautions on 
the gut microbiota has been an attractive, but lar
gely untested, question. Our study supports this 
notion in an extreme nosocomial scenario where 
heavily immunosuppressed patients are exposed to 
the healthcare personnel and environment for 
a prolonged period. The extent to which these 
findings can be generalized to less ill patients with 
less intense nosocomial exposure requires further 
research. Another unclear aspect of our findings is 
the durability of the observed changes in the gut 
microbiota and their clinical consequences in the 
outpatient setting and for the next phases of 
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treatment. Finally, and considering microbiome 
transmissibility among close contacts,10 nosoco
mial changes in the gut microbiota may impact 
the microbiome of the patients’ families and socia
lizing partners after discharge from the hospital, 
with potential consequences for the “social” and 
“communal” microbiome.8 We postulate that 
society-level COVID-19-related precautions may 
prevent rapid dilution and ultimate resolution of 
nosocomial changes in the gut microbiota.

In a previous study of patients with acute leuke
mia, we showed that the expansion of Akkermansia 
within the gut microbiota predicts higher levels of 
flagellin in the serum in subsequent days.16 This 
observation suggested that the mucus-thinning 
effect of Akkermansia may promote translocation 
of motile bacteria to the bloodstream. In this con
text, our finding of decreased Akkermansia in the 
COVID-19 era may indicate a reduced risk of 
bloodstream infection during chemotherapy. In 
contrast, Akkermansia has a plethora of long-term 
beneficial impacts on the host such as anti- 
inflammatory effects and protective effects against 

metabolic syndrome.25,26 Therefore, if the reduc
tion in Akkermansia in our patients is durable, it 
may have long-term detrimental effects on the host.

In conclusion, COVID-19 precautions changed 
the gut microbiota and led to a lower incidence of 
nosocomial infections in patients with AML. This 
study supports the theory that social distancing 
influences the gut microbiota, with potential clin
ical consequences. In addition, our findings indi
cate that microbiome results obtained during the 
pandemic may not be directly comparable to earlier 
results.

Patients and methods

Biorepository

Adult patients with newly diagnosed or relapsed/ 
refractory AML receiving inpatient chemotherapy 
were eligible for this biorepository protocol 
(ClinicalTrials.gov NCT03316456). The protocol 
was approved by the University of Minnesota 
Institutional Review Board. Written informed 

Figure 3. Microbiota composition over time in the COVID-19 era. Samples collected in the COVID-19 era were classified in the PCA 
space (top two principal components) according to the week they were collected relative to day 1 of chemotherapy. Each circle 
represents a stool sample and its color indicates the week of collection. The numbers in parentheses indicate the proportion of total 
variation explained by the corresponding axis. The p value is from a betadisper test with 999 permutations.
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consent was obtained from participants prior to 
inclusion in the study. An expected ~4 weeks of 
hospitalization was required. No other inclusion or 
exclusion criteria were used. Stool samples were 
collected twice weekly (Mondays and Thursdays 
±1 day window) between hospital admission 
and day 28 of chemotherapy or discharge (which
ever occurred first). Supportive care including anti
biotic stewardship and nutrition remained 
unchanged throughout the study, with the excep
tion of the following COVID-19 precautions that 
were initiated on March 20, 2020: (i) universal face 
masking in the hospital, (ii) mandatory use of face 
mask and face shield by the treatment team, (iii) 
“no visitor” policy, and (iv) “no food from outside” 
policy. Patients continued to order food from the 
hospital’s food services, which maintained an 
unchanged menu. However, more orders included 
individually packed or boxed items. Our antibiotic 
stewardship recommends acyclovir for viral, an 
azole for fungal, and levofloxacin for bacterial pro
phylaxis for the duration of neutropenia. Bacterial 
prophylaxis is continued until the development of 
neutropenic fever or first neutrophil count rise 
above 1x109/L, whichever occurs first. When oral 
intake decreases to <60% of the lower limit of 
estimated energy and protein needs for 7 days, we 
generally initiate parenteral nutrition. Patients are 
asked to avoid flossing and to use soft toothbrushes. 
Stool samples were collected in 95% ethanol-filled 
sterile tubes and stored at −80°C.

16S ribosomal RNA (rRNA) gene sequencing

DNA was extracted using the DNeasy PowerSoil 
DNA isolation kit (QIAGEN, Hilden, Germany). 
The V4 hypervariable region of the 16S rRNA 
gene was amplified on an Illumina MiSeq platform 
(2 x 300 paired-end mode) by the University of 
Minnesota Genomics Center. Sequences were pro
cessed in QIIME 2.27 Quality filtering, adaptor 
trimming, and stitching of raw sequences were 
done using the quality control pipeline SHI7 (trim 
threshold 32, threshold of Q37).28 Paired ends were 
merged using FLASH.29 Operational taxonomic 
unit (OTU) picking was done using NINJA-OPS 
(default parameters and 97% similarity threshold) 
and the Greengenes database; Bowtie2 was used for 
alignment.30–32 OTUs with a frequency <0.01% of 

the reads and samples with fewer than 500 reads 
were removed. The BIOM table was exported from 
QIIME into R 3.4 (Vienna, Austria). Raw sequence 
reads were uploaded to the NCBI Sequence Read 
Archive and are accessible under BioProject ID 
SRP141394. Sample identifiers in the online data
base appear as “7D” (title of our acute leukemia 
unit) followed by patient number followed by col
lection date. For example, 7D069_28Nov20 indi
cates a sample collected on Nov 28, 2020 from 
patient number 69. Further details can be obtained 
from the corresponding author upon request by 
e-mail.

Statistics

All analyses were performed using custom scripts 
and phyloseq, vegan, and mixOmics packages in 
R. Samples, rather than patients, were the units of 
analysis throughout. Ordination using Aitchison’s 
distance and centered log-ratio (clr) transformed 
taxa abundances33 was visualized by principal com
ponent analysis (PCA) as an unsupervised method. 
clr transformation is suitable for the analysis of 
compositional data.33 We compared microbiome 
composition between samples from the two eras 
by permutational multivariate analysis of variance 
(PERMANOVA)34 with an adonis test and 999 per
mutations. We compared microbiome dispersion 
among samples collected in different weeks of che
motherapy using betadisper in R. To identify the 
most discriminatory taxa between the two eras, we 
performed sparse partial least squares discriminant 
analysis (sPLS-DA) as a supervised method. To 
avoid overfitting, we decided a priori to choose 
the 50 most discriminant genera in component 1 
for further analysis. Loading weights were deter
mined using maximal mean values of the contribu
tion by the corresponding taxa. The performance of 
the model was assessed by leave-one-out cross- 
validation and the stability of the selected genera 
across cross-validation folds was determined. The 
list of the most discriminant genera with 100% 
stability was stored for multivariable regression 
(see below).

We quantified the “antibiotic history” of each 
sample using the time series of exposures to 7 
major classes of antibacterial antibiotics between 
hospital admission and the day the sample was 
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collected. The antibiotic classes considered were 
fluoroquinolones, third or higher generation 
cephalosporins, metronidazole, piperacillin- 
tazobactam, intravenous vancomycin/daptomycin/ 
linezolid, oral vancomycin, and carbapenems. For 
a given day, if a given antibiotic was used, it was 
coded 1 and otherwise, zero. Day 0 was defined as 
the first day of chemotherapy. Next, we applied 
a decaying average function to the time series of 
0’s and 1’s for each antibiotic class to achieve 
a single numerical value summarizing the exposure 
history for the given sample and antibiotic. As an 
example, if levofloxacin was used on days 1–3 for 
a patient admitted on day −1 (one day before start
ing chemotherapy), the time series for levofloxacin 
for a sample collected on day 5 of chemotherapy 
from this patient would be (0,0,1,1,1,0), indicating 
that the antibiotic was not used on days −1, 0 
(first day of chemotherapy), and 4, but was used 
on days 1, 2, and 3. With a decay factor of 2, the 
levofloxacin history for this sample would be quan
tified and summarized as 0 × 2° + 1×2−1 + 1 × 2−2 + 
1 × 2−3 + 0 × 2−4 + 0 × 2−5 + 0 × 2−6 = 0.875. With 
this decay factor, exposure on a given day receives 
twice higher weight than exposure on the 
previous day. A smaller decay factor would make 
the weights assigned to antibiotic exposures along 
time more homogenous. The first two axes of PCA 
applied to antibiotic histories were stored for multi
variable regression (see below). We tested two 
values of the decaying factor, namely 2 and 1.5, as 
a sensitivity analysis.

Finally, we built multivariable linear regression 
models to predict the abundance of the most discri
minant taxa from sPLS-DA by era. A separate model 
was built for each selected taxon (clr-transformed 
abundance) as the dependent variable, using era as 
the binary predictor. The first two PCA axes of 
antibiotic history and sample collection day relative 
to day 1 of chemotherapy were included as covari
ates. To generate volcano plots, the regression coef
ficient for era was considered the effect size and 
plotted along the x-axis, while its corresponding 
logarithmically transformed p value, corrected by 
the Benjamini-Hochberg method35 due to multiple 
taxa/models, was plotted along the y-axis. 
A threshold of 0.05 for the corrected p value was 
used to define statistical significance and a threshold 
of 2 for the absolute value of the effect size was used 

to define a strong association. In the last step, we 
explored the possibility of our results being driven 
by samples from a single patient by re-running the 
regression models on subsets of the database, each 
lacking samples from a different patient. A taxon 
was considered significant if in all the runs its corre
sponding corrected p value and absolute effect size 
were <0.05 and >2, respectively.
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