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Abstract: Breast cancer (BC) is the most prevalent cancer and the one with the highest mortality
among women worldwide. Although the molecular classification of BC has been a helpful tool for
diagnosing and predicting the treatment of BC, developments are still being made to improve the
diagnosis and find new therapeutic targets. Mitochondrial dysfunction is a crucial feature of cancer,
which can be associated with cancer aggressiveness. Although the importance of mitochondrial
dynamics in cancer is well recognized, its involvement in the mitochondrial function and bioenergetics
context in BC molecular subtypes has been scantly explored. In this study, we combined mitochondrial
function and bioenergetics experiments in MCF7 and MDA-MB-231 cell lines with statistical and
bioinformatics analyses of the mitochondrial proteome of luminal A and basal-like tumors. We
demonstrate that basal-like tumors exhibit a vicious cycle between mitochondrial fusion and fission;
impaired but not completely inactive mitochondrial function; and the Warburg effect, associated
with decreased oxidative phosphorylation (OXPHOS) complexes I and III. Together with the results
obtained in the cell lines and the mitochondrial proteome analysis, two mitochondrial signatures
were proposed: one signature reflecting alterations in mitochondrial functions and a second signature
exclusively of OXPHOS, which allow us to distinguish between luminal A and basal-like tumors.

Keywords: luminal A breast cancer; basal-like breast cancer; MCF7 cell line; MDA-MB-231 cell line;
mitochondria dynamics; mitochondrial biogenesis; reactive oxygen species (ROS); mitochondrial proteome

1. Introduction

Breast cancer (BC) is the neoplasia with the highest incidence and mortality among
women worldwide. According to World Health Organization (WHO) data, 2.3 million
women were diagnosed with BC and 685,000 deaths in the world in 2020, making it a global
health problem [1]. BC is a disease characterized by a highly biological heterogeneity, which
is noted by specific pathologic features, clinical behavior differences and different molecular
alterations [2]. Estrogen receptor (ER), progesterone receptor (PR), and expression of the
human epidermal growth factor receptor 2 (HER2) are classical immunohistochemistry
markers that classify BC into four main molecular subtypes: luminal A, luminal B, HER2-
enriched, and basal-like [3,4]. This molecular classification provides an accurate diagnosis
of BC; in addition, it is also valuable for the prediction of tumor behavioral to chemotherapy.
The luminal A subtype is the most common, comprising over 70% of all cases [5], and is
ER and/or PR positive, HER2 negative, and proliferator marker Ki-67 <14%. Luminal A
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tumors are low-grade, they grow slowly, and they have the best prognosis, unlike the basal-
like subtype, which comprises about 20% of all cases; this tumor type is biologically more
aggressive and has the worst prognosis among all BC subtypes [4,6]. Basal-like tumors are
also known as triple-negative, as they lack ER, PR, and HER2 expression; consequently,
these tumors do not benefit from hormonal therapy or medicines that target HER2 protein
receptors. Therefore, it is necessary to find a targeted therapy for basal-like patients [7].

Based on the above, we focus on the luminal A and basal-like subtypes in our present
work. This is because the luminal A subtype, as mentioned, is the molecular subtype of
BC with the highest incidence and the best prognosis compared to the three remaining
subtypes. Although the basal-like subtype is the subtype with the lowest incidence, it is
characterized by being the one with the worst prognosis and therapeutically abandoned
since currently there are no biomarkers towards which to direct a specific treatment. In
addition, these molecular subtypes of BC were chosen to find differences between them,
and which could contribute to enriching the molecular classification of this disease.

Mitochondrial dysfunction is a crucial feature of cancer and is associated with ag-
gressiveness [3]. The altered metabolism in cancer cells is a consequence of changes or
defects in the mitochondrial bioenergetics [4]. In addition, there is evidence that cancer cells
have altered their mitochondrial dynamics (the balance between mitochondrial fusion and
fission), which is directly related to the change in mitochondrial biogenesis and turnover,
giving proliferative and survival advantages for tumor cells [5,6].

Cancer cells are under metabolic changes; this metabolic alteration of mitochondria
has a crucial role in tumorigenesis [3]. Currently, the mitochondrial alterations, regarding
the dynamics and function, are still unknown among BC subtypes and their relationship
with bioenergetics mitochondrial metabolism.

Despite studies reflecting the importance of mitochondrial dynamics in cancer and its
relationship to bioenergetics and alterations in mitochondrial function, these alterations
have been little studied in the molecular subtypes of BC [8,9].

This work aimed to find the differences in mitochondrial bioenergetics and function
associated mainly with changes in mitochondrial dynamics between luminal A and basal-
like subtypes. Comparing functional mitochondrial studies and evaluating mitochondrial
dynamics in MCF7 and MDA-MB-231 cell lines of BC, representative of luminal A and basal-
like subtypes, respectively [7], revealed that the MDA-MB-231 cell line was characterized by
more remarkable mitochondrial alteration associated with changes in energy metabolism.
Additionally, to further deepen the findings found in breast cancer cell lines, a mitochondrial
proteome analysis was performed by statistical analysis of the proteome of BC biopsies
classified as luminal A and basal-like from the experiments of Mertins et al. [10]. A
mitochondrial proteomic signature showing differences in the expression of mitochondrial
proteins involved in mitochondrial bioenergetics and mitochondrial dynamics processes
was proposed for luminal A and basal-like subtypes of BC.

2. Materials and Methods
2.1. Cell Culture

The MCF7 cell line was provided by Dr. Alejandro García-Carrancá and MCF10A
MDA-MB-231 cell lines were provided by Dr. Alejandro Zentella-Dehesa. The MCF7
and MDA-MB-231 BC cell lines were cultured in RPMI-1640 media supplemented with
10% fetal bovine serum (FBS) and 1% antibiotic-antimycotic. MCF10A breast epithelial cell
was cultured in DMEM/F12 media supplemented with 10% FBS, 1% antibiotic-antimycotic,
0.5 µg/mL hydrocortisone, 10 ng/mL endothelial growth factor (EGF), 5 µg/mL insulin.
Cells were cultured at 37 ◦C and 5% CO2 in a humidified atmosphere. The culture medium
was renewed every third day until the cell cultures reached a confluence of 80–90%.

2.2. Western Blot

MCF7, MDA-MB-231 and MCF10A cells were washed twice with cold phosphate-
buffered saline (PBS) and lysed in radioimmunoprecipitation assay (RIPA) buffer (40 mM
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Tris-HCl, 150 mM NaCl, 2 mM EDTA, 5 mM NaF, 1 mM Na3VO4, 1 mM PMSF, 1 mM
Na4P2O7, 0.5% sodium deoxycholate, 0.2% SDS, pH 7.4 and 1× protease inhibitors cocktail)
for 30 min at 4 ◦C with stirring. Lysates were centrifugated at 15,000× g for 10 min at
4 ◦C, and the supernatant was collected and stored at −70 ◦C until the experiment was
carried out. Protein concentrations were quantified by Bradford assay. Equal amounts of
protein (30 µg) were denatured by dilution on 6X Laemmli buffer (60 mM Tris-HCl pH 6.8,
2% SDS, 10% glycerol, 5% β-mercaptoethanol, 0.01% bromophenol blue) and immersion
on boiling water for 5 min, except those employed to determine the subunit levels of
mitochondrial complexes (CI-NDUFB8 and CIV-MTCO1). The samples were separated
on 12% sodium dodecyl sulfate (SDS)–polyacrylamide gel electrophoresis (SDS/PAGE).
Proteins were transferred onto Immobilion PVDF membranes for fluorescent application on
wet transfer. Membranes were blocked for 1 h in at room temperature (RT) in Tris-buffered
saline with 0.1% Tween-20 (TBST) containing 5% nonfat dry milk and incubated overnight
at 4 ◦C with the appropriate primary antibodies (Table S1). Then, the membranes were
incubated for 2 h at RT in darkness with the corresponding IRDye® fluorescent secondary
antibodies (1:10,000). Proteins bands were detected in an Odyssey Sa Infrared System (LI-
COR Biosciences, Lincoln, NE, USA). Signals were then processed employing the software
Image Studio™ 5.2 (LI-COR Biosciences). We used the blots stained with Ponceau red
S as loading control due to the bioenergetics differences and structural changes in the
cytoskeleton of the cell lines used in our study [11]. For this purpose, after the transfer, the
membrane was incubated in 1% Ponceau S solution for 2 min. Immediately, this membrane
was rinsed with phosphate-buffered saline (PBS) to remove staining saturation [12]. The
membrane was then inserted between transparent sheets and scanned at 300 dpi as a
JPG document using a standard scanner (HP Scanjet G4050). Densitometry data for total
protein staining images with Ponceau S were obtained from all visible proteins in each
complete lane. All data normalization processes were performed by dividing the target
protein value by the value of the chosen loading control [13]. Densitometric analysis
was performed using ImageJ software (National Institutes of Health, Bethesda, MD, USA,
https://imagej.nih.gov/ij/index.html, accessed on 10 August 2021) on expression of fusion
and fission markers: optic atrophy 1 (Opa1) (n = 9), mitofusin 1 (Mfn1) (n = 6), mitofusin
2 (Mfn2) (n = 6), and dynamin-1-like protein (Drp1) (n = 9); mitochondrial biogenesis
markers: proliferator-activated receptor γ co-activator-1alpha (PGC-1α) (n = 6), and nuclear
respiratory 2 (NRF2) (n = 3); mitophagy markers: PTEN-induced kinase 1 (PINK1) (n = 6),
ubiquitin binding protein p62 (p62) (n = 3), Parkin RBR E3 ubiquitin-protein ligase (Parkin)
(n = 3), and microtubule-associated proteins 1A/1B light chain 3B (LC3-II) (n = 3); oxidative
metabolism marker: adenine monophosphate-activated protein kinase (AMPK) (n = 12);
glycolytic metabolism marker: hypoxia-inducible factor 1α (HIF1α) (n = 12); and total
oxidative phosphorylation rodent Western blot (WB) antibody cocktail (OXPHOS) (n = 3).

2.3. Mitochondrial Membrane Potential (∆Ψm) Assay

To measure ∆Ψm by JC-1, 10,000 cells were cultured in a 96-well plate, and after 24 h,
cells were incubated with dye JC-1 (1 µg/mL) on non-supplemented medium at 37 ◦C
for 30 min. The cells were washed twice with PBS and then replaced with fresh medium
to remove the excess probe. Depolarized-related (green) fluorescence was measured at
525 nm, and the polarized-related (red) signal was read at 590 nm; both emissions were
obtained at 488 nm excitation. Data and representative images were obtained a Cytation
5 Cell Imaging Reader (Biotek Instruments, Inc., Winoosky, VT, USA), with GFP and RFP
filters. The JC-1 fluorescence was quantified as the red fluorescence/green fluorescence
ratio in MCF10A (n = 7), MCF7 (n = 12), and MDA-MB-231 (n = 11) cell lines. The data
were obtained from three biological replicates.

2.4. Estimation of Mitochondrial Mass

The protocol used to estimate of mitochondrial mass was based on the previous
methodology from [14] with some modifications. Around 10,000 cells were seeded on 96-
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well black plates with the transparent bottom at the previously described culture conditions.
After 24 h, the nuclei and mitochondria were stained with 1 µg/mL Hoechst and 500 nM
MitoTracker Green®, on non-supplemented medium at 37 ◦C for 30 min. To remove the
excess probe, cells were washed three times with PBS; fresh supplemented medium was
placed on cultures. Hoechst fluorescence was measured at 360 nm excitation and 460 nm
emission, while MitoTracker green fluorescence was measured at 480 nm excitation and
521 nm emission. Representative images were taken by using a Cytation 5 with the GFP
and the DAPI filters while using Gen5™ 3.0 software (Biotek) for data acquisition and
analysis. Mitochondrial mass levels was quantified as MitoTracker green fluorescence
intensity/cell ratio in MCF10A, MCF7, and MDA-MB-231 cells. The number of cells
was measured with ImageJ software (National Institutes of Health, Bethesda, MD, USA,
https://imagej.nih.gov/ij/index.htm, accessed on 10 August 2021). The data were obtained
from three biological replicates.

2.5. Determination of Mitochondrial ROS Production

Mitochondrial ROS production was measured using the fluorescent probe, Mito-
SOX™ Red was based on the methodology previously from [15] with some modification.
Around 10,000 cells were seeded on 96 well-black plates with a transparent bottom at
the previously described culture conditions. After 24 h, the cells were incubated with
1 µg/mL Hoechst and 5 µM MitoSOX on non-supplemented medium at 37 ◦C for 30 min.
To remove the excess probe, cells were washed three times with PBS; fresh supplemented
medium was placed on cultures. Hoechst fluorescence was measured at 360 nm excitation
and 460 nm emission, while MitoSOX red was measured at 510 nm excitation and 580 nm
emission. ROS production was quantified as the MitoSOX red/cell ratio in MCF10A,
MCF7, and MDA-MB-231 cells. Representative images were taken by using a Cytation 5
while using Gen5™ 3.0 software for data acquisition and analysis. The number of cells
was measured with ImageJ software (National Institutes of Health, Bethesda, MD, USA,
https://imagej.nih.gov/ij/index.htm, accessed on 10 August 2021). The data were obtained
from three biological replicates.

2.6. Cell Respirometry

The oxygen consumption experiments in cells were evaluated with a high-resolution
respirometry equipment O2K (Oroboros Instruments, Innsbruck, Austria) according to
the previous protocol from [16] with some modification. Cells were washed with PBS,
harvested with trypsin, and quantified by trypan blue assay. Determinations were made
with approximately 1 million cells in 2 mL of culture medium with 10% FBS at 37 ◦C. The
respiratory parameters evaluated were: (1) Routine respiration, corresponding to oxygen
consumption of the cells; (2) Leak of the respiration, corresponding to oxygen consumption
in the presence of 5 µM oligomycin; (3) Respiratory control (RC), that corresponding to
the routine/leak ratio; (4) Respiration attributable to oxidative phosphorylation (P), was
calculated by the difference between Routine and Leak. All parameters were corrected by
subtracting the non-mitochondrial respiration, obtained by the addition of 1 µM rotenone,
5 µM antimycin A, 100 µM sodium azide and normalized by the number of cells determined
by trypan blue.

2.7. Statistical Analysis

The results obtained from the cell lines were analyzed with the R package Rapport [17]
to eliminate outliers. The data were tested for normality and analyzed by one-way analysis
of variance (ANOVA), followed by the Tukey’s multiple comparisons test. Data were
plotted to show three or more independent experiments, and every figure shows the mean
with standard deviation. All data were analyzed using the software R (version 4.1.0,
Foundation for Statistical Computing).

https://imagej.nih.gov/ij/index.htm
https://imagej.nih.gov/ij/index.htm
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2.8. Analysis of the Mitochondrial Proteome in Breast Cancer Tumors

To complement and validate the changes found in mitochondrial dynamics and mito-
chondrial bioenergetics between cell lines of BC, global proteome abundance data from
43 tumors (18 classified as basal-like, 22 luminal A, and 3 non-cancerous as controls) stored
in supplementary Table S3 reported by Mertins et al. [10] were selected to be reanalyzed.
Briefly, in order to correlate the genome, transcriptome and proteome in luminal A, luminal
B, HER2, and basal-like molecular subtypes of BC, Mertins et al. [10] analyzed using tan-
dem mass spectrometry (MS) the total proteome of 102 cancerous tumors histopathological
and molecularly classified by The Cancer Genome Atlas (TCGA), in the four main intrinsic
subtypes and three controls. A detailed explanation of the experiment and spectrometry
analysis of tumors can be seen in [10].

In the first part of our analysis, all the proteins identified and quantified by Mertins et al. [10]
were cross-referenced with a list of mitochondrial or mitochondrial traffic proteins reported by
MitoMiner [18]. Of these mitochondrial proteins, only those with abundance values in at least
50% of the samples were selected.

Next, an exploratory analysis of the abundance data was carried out with the Rap-
port of R package [17] to eliminate from the analysis, both the samples as proteins with
extreme behavior.

After eliminating the extreme data, a hierarchical cluster analysis of the tumors by the
Ward method based on the Euclidian distance matrix of the samples was carried out to find
homogenous groups between subtypes. Fifteen tumor samples were eliminated because
they were confounded in the same cancerous subtype of BC.

With 28 final samples (14 basal-like, 11 luminal A and 3 controls), missing values were
imputed with the Random Forest method (missForest, R package) [19]. Next, a PCA was
applied on the protein abundance correlation matrix [20] to obtain an abundance landscape
of mitochondrial proteins for the subtypes and control group [21].

Finally, only proteins with an absolute value of association equal or greater than 0.5
with both first components [22] were selected for comparative overrepresentation analysis
based on Gene Ontology [23]. Overrepresentation was performed online employing the
Gene List Analysis tool on the PANTHER Classification System site. As inputs, we up-
loaded the official gene symbols as identifiers. We select those involved in the dynamics
processes, mitochondrial biogenesis, mitophagy, mitochondrial ROS, mitochondrial mem-
brane potential and mitochondrial metabolism to conform to the mitochondrial signature
of luminal A and basal-like subtypes. A flow chart of the processing and analysis of these
data can be seen in Figure S1.

3. Results
3.1. Reduction in Drp1-Related Mitochondrial Fission in the Basal-like Cell Line

Alteration in the mitochondrial dynamics in cancer cells are tightly associated with
mitochondrial morphology, with alterations in mitochondrial mass, mitochondrial biogene-
sis, dysregulation of the bioenergetics and redox functions [24,25]. We first assessed the
expression of the fusion markers mitofusins 1 and 2 (Mfn1 and Mfn2) and optic atrophy
type 1 (Opa1), as well as expression of the fission marker dynamin-related protein 1 (Drp1)
in cell lines MCF7 representative luminal A subtype of BC, MDA-MB-231 representative
basal-like subtype of BC, and MCF10A as a non-tumorigenic (control) (Figure 1A) [7]. We
found a significant increase in Opa1 in the MDA-MB-231 cell line compared to the MCF10A
cell line; however, no significant differences were found between the BC cell lines, but a
tendency to increase this protein can be observed in the cell line MDA-MB-231 compared
to the MCF7 cell line (Figure 1B). In the Mfn1 protein, no expression changes were found
between cell lines (Figure 1C). However, in the Mfn2 protein, a significant decrease was
found in the MCF7 cell line compared to the MCF10A cell line and a significantly higher ex-
pression in the MDA-MB-231 cell line compared to MCF7 cell line (Figure 1D). In addition,
we observed that Drp1 protein expression decreased in both cell lines of BC compared to
the MCF10A cell line, although this decrease was only significant in the MDA-MB-231 cell
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line (Figure 1E). To our surprise, it was found that the decrease in Drp1 protein expression
was mainly marked in the MDA-MB-231 cell line that is representative of the basal-like
subtype. In contrast, previous studies have reported that mitochondrial fission tends to
increase in cancer cells and that this increase can be associated with the aggressiveness
of this disease [26]. These data suggest changes in mitochondrial control and quality and
important differences in mitochondrial biology among BC subtypes and that mitochondrial
fission in basal-like BC may be mediated by other Drp1-independent proteins.

Figure 1. Mitochondrial dynamics in breast cancer cell lines. (A) Representative blots.
(B–D) Expression of fusion markers, optic atrophy 1 (Opa1), n = 9; mitofusin 1 (Mfn1), n = 6; mitofusin
2 (Mfn2), n = 6. (E) Expression of fission marker, dynamin-1-like protein (Drp1), n = 9. Densitometry
values were normalized by Ponceau S red staining. The data are presented as mean ± SD. * p < 0.05,
** p < 0.01, *** p < 0.001.

3.2. Mitochondrial Biogenesis and Mitophagy in MCF7 and MDA-MB-231 Cells

Mitochondrial homeostasis is preserved by coordination between mitochondrial bio-
genesis and mitophagy [27]. To assess the effect of differences in mitochondrial dynamics
on mitochondrial mass and biogenesis among BC cell lines, we measured mitochondrial
mass using MitoTracker Green probe (Figure 2A). We found a significant increase in the
fluorescence intensity of the MitoTracker Green in the MDA-MB-231 cell line compared to in
the control and MCF7 cell lines, suggesting a higher mitochondrial mass content in the cell
line representative of basal-like molecular subtype of BC. In contrast, the MitoTracker Green
intensity values obtained in the MCF7 cell line suggest a lower mitochondrial mass content
than the control and MDA-MB-231 cell lines (Figure 2B). To validate the mitochondrial mass
results found in the cell lines of BC, we evaluated the expression of proliferator-activated
receptor γ co-activator-1alpha (PGC1α) and nuclear respiratory 2 (NRF2) proteins involved
in mitochondrial biogenesis (Figure 2C) [27]. We found a correlation with the data obtained
by MitoTracker Green; we found a significant increase in the expression of the PGC1α pro-
tein in the MDA-MB-231 cell line compared to the MCF10A and MCF7 cell lines (Figure 2D).
Although we found no significant changes in NRF2 protein expression, we observed an
increment trend in the expression of this protein in the MDA-MB-231 cell line (Figure 2E).

In addition, we evaluated mitophagy markers since it is a mitochondrial quality con-
trol process and a mechanism of mitochondrial mass regulation by which dysfunctional
mitochondria are eliminated [28,29]. Thus, we evaluated the expression of mitophagy-
related proteins PTEN-induced kinase 1 (PINK1) and Parkin, and autophagic proteins,
ubiquitin-binding protein p62 (p62) and microtubule-associated proteins 1A/1B light chain
3B (LC3-II) (Figure 3A). We found that PINK1 and p62 showed a significant increase in the
MDA-MB-231 cell line compared to the MCF10A cell line (Figure 3B,C). Additionally, we
found a significant increase in the expression of p62 in the MDA-MB-231 cell line compared
to the MCF7 cell line (Figure 3C). However, we did not find significant changes in Parkin
LC3-II proteins expression between the cell lines (Figure 3D,E). Although we found no
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significance changes in LC3-II, we observed an increment trend in the expression of this
protein in the MDA-MB-231 cell line (Figure 3E). Overall, the results of both mitochondrial
biogenesis and mitophagy correlate with the previously obtained results with the mito-
chondrial dynamics markers. This is because increased mitochondrial fusion processes are
related to increased mitochondrial mass as observed in the MDA-MB-231 line [30].

Figure 2. Increased mitochondrial mass in MDA-MB-231 cell line. (A) Confocal microscopy images
of MitoTracker Green fluorescence to assess mitochondrial mass in MCF10A, MCF7 and MDA-MB-
231 cells, and total nuclei were stained with Hoechst (blue). (B) Mitochondrial mass levels were
quantified as MitoTracker green fluorescence intensity/cell ratio. Data were obtained from three
biological replicates. The data are presented as mean ± SD of cells (n = 151–251). * p < 0.05. (C) Rep-
resentative blots. (D,E) Expression of mitochondrial biogenesis markers: peroxisome proliferator-
activated receptor-gamma coactivator-1alpha (PGC-1α), n = 6 and nuclear respiratory factor 2 (NRF2),
n = 3. Densitometry values were normalized by Ponceau S red staining. The data are presented as
mean ± SD. *** p < 0.001.

Additionally, these results suggest alterations in mitochondrial quality control and
reveal differences in mitochondrial biology between luminal A and basal-like BC subtypes.

3.3. Mitochondrial Uncoupling in Luminal A and Basal-like Cell Lines of Breast Cancer

To assess this functional state and investigate the ATP-generating capacity of mitochon-
dria, we evaluated the membrane potential as a driver for ATP generation (Figure 4A) [31].
As expected, the ∆Ψm decreased in both BC cell lines (Figure 4A,B); however, although no
significant differences were found between the BC cell lines, it is observed that the ∆Ψm is
little higher in the MCF7 cell line than MDA-MB-231 cell line, as indicated by a higher ratio
of JC-1 red to green fluorescence (Figure 4B). These results correlate with the results found
in mitophagy, suggesting that reduction in ∆Ψm favors mitochondrial mass reduction by
mitophagy induction and that mitochondrial inner membrane is better maintained in the
luminal A MCF7 cell line than in basal type MDA-MB-231 cell line.



Biomolecules 2022, 12, 379 8 of 21

Figure 3. Increased mitophagy markers in the MDA-MB-231 cell line. (A) Representative blots.
(B–E) Expression of mitophagy markers, PTEN-induced kinase 1 (PINK1), n = 6; ubiquitin-binding
protein p62 (p62), n = 3; Parkin, n = 3; and microtubule-associated proteins 1A/1B light chain 3B
(LC3-II), n = 3. Densitometry values were normalized by Ponceau S red staining. The data are
presented as mean ± SD. * p < 0.05, ** p < 0.01.

Figure 4. Decrease in mitochondrial membrane potential (∆Ψm) in the MDA-MB-231 cell line.
(A) ∆Ψm levels were assessed by JC-1 probe; MCF10A cells with highly polarized mitochondria
accumulate JC-1 dye in the mitochondrial matrix, forming bright red fluorescent J aggregates. In-
creased green fluorescence indicates decreased mitochondrial potential. (B) The JC-1 fluorescence
was quantified as the red fluorescence/green fluorescence ratio in MCF10A (n = 7), MCF7 (n = 12),
and MDA-MB-231 (n = 11) cell lines. Data were obtained from three biological replicates. The data
were normalized with the values of MCF10A cells and are presented as mean ± SD. *** p < 0.001.

3.4. Overexpression of HIF-1α Associated with Metabolic Reprogramming in MCF7 and
MDA-MB-231 Cell Lines

Although glycolysis is a dominant metabolism in cancer cells, there is evidence that
mitochondrial OXPHOS is also used by cancer cells [32–34]. Moreover, since the BC cell
lines studied here showed a different mitochondrial function, we analyzed the expression
of adenine monophosphate-activated protein kinase (AMPK) and hypoxia-inducible factor
1α (HIF1α) (Figure 5A) [35], to evaluate the relative contribution of oxidative and glycolytic
metabolism, respectively, in both BC cell lines. We first observed a significant decrease in
AMPK expression in both cell lines of BC compared to the MCF10A cell line, suggesting
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that both MCF7 and MDA-MB-231 cell lines decreased oxidative metabolism (Figure 5B).
In contrast, HIF1α expression was found to be significantly increased in both cell lines of
BC compared to the MCF10A cell line (Figure 5C), suggesting that both MCF7 and MDA-
MB-231 lines had a preference for glycolytic metabolism. Then, through the AMPK/HIF1α
ratio, we found that it was less than one in the two cell lines of BC (Figure 5D), which
reaffirms that both cell lines have a predominantly glycolytic metabolism compared to the
cell line MCF10A.

Figure 5. Metabolic reprogramming in breast cancer cell lines. (A) Representative blots. (B) Expres-
sion of oxidative metabolism marker, adenine mono-phosphate-activated protein kinase (AMPK),
n = 12. (C) Expression of glycolytic metabolism marker, hypoxia-inducible factor 1α (HIF1α), n = 12.
(D) AMPK/HIF1α ratio in MCF10A, MCF7 and MDA-MB-231 cell lines, a ratio less than one (black
line) reflects a preferential glycolytic metabolism. Densitometry values were normalized by Ponceau
S red staining. The data are presented as mean ± SD. * p < 0.05, ** p < 0.01, *** p < 0.001.

3.5. Functional Status Mitochondrial in Luminal A and Basal-like Breast Cancer Cell Lines

To assess the compromised function of mitochondria and to confirm the finding of
decreased OXPHOS in BC cell lines, we evaluated cellular oxygen consumption (Routine)
(Figure 6A), respiration associated with oxidative phosphorylation (P) (Figure 6B), and
mitochondrial respiratory efficiency (RC) (Figure 6C). We found a significant decrease in
Routine and P parameters in BC cell lines, notably more marked for the MDA-MB-231
than for MCF7. These confirm the reduction in mitochondria bioenergetics, specifically in
OXPHOS, in cell lines of BC, which agrees with mitochondrial mass reduction. Furthermore,
these results also suggest a higher mitochondrial decoupling in the MDA-MB-231 cell line,
as is shown by a low RC value.

3.6. Increased ROS Production in the Basal-like Cell Line

Increased ROS production is a feature associated with mitochondrial dysfunction [36,37].
Additionally, evidence associated increased ROS production with cancer cell malignancy [38,39].
MitoSOX red has been used to measure mitochondrial ROS production since it preferentially
accumulates within the mitochondrial matrix [38–40]. To evaluate the differences in ROS
generation, we used the MitoSOX red probe in cell lines of BC and control cell line (Figure 7A).
We detected a significant increase in ROS in both cell lines of BC compared to the control cell
line. Furthermore, we found that ROS production was higher in the MDA-MB-231 cell line
than in the MCF7 cell line (Figure 7B); this strongly agreed with the mitochondrial uncoupling
observed in this cell line. These results indicate a more remarkable mitochondrial alteration
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in the basal-like cell line, which may be related to alterations in the mitochondrial electron
transport chain.

Figure 6. Mitochondrial respiratory efficiency of breast cancer cell lines. (A) Schematic representation
of O2 consumption rate by addition in order of OLIGO (oligomycin) and ANT + ROT + AZIDA
(antimycin A plus rotenone plus sodium azide) inhibitors to determine the respiratory parameters in
MCF10A, MCF7 and MDA-MB-231 cell lines. The blue line shows the oxygen concentration in the
chamber while the red line indicates the oxygen consumption rate. (B) Cellular routine respiration
(Routine), that correspond to oxygen consumption of the cells. (C) Respiration associated with
oxidative phosphorylation (P); (D) respiratory control (RC) calculated as routine/leak ratio. All
parameters were corrected by subtracting the non-mitochondrial respiration, obtained by the addition
of ANT + ROT + AZIDA. The data are presented as mean ± SD, n = 3–4. * p < 0.05, ** p < 0.01,
*** p < 0.001.

3.7. Landscape of the Mitochondrial Proteome of Luminal A and Basal-like Subtypes of
Breast Cancer

After cross-checking the 12,553 proteins identified by Mertins et al. [10] against the
Mitominer database [18], we were left with 1152 mitochondrial or mitochondrial-transiting
proteins (Table S2). Of these, 51 proteins were eliminated because they had no abundance
values in at least 50% of the samples or showed atypical abundance values. Nineteen
samples were also eliminated from the analysis, two showing atypical abundance patterns
and 17 confounded in the hierarchical cluster analysis (Figure S2). Finally, the analysis was
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carried out with 1103 proteins, 42 exclusively expressed in cancer (Table S3) and 1061 with
abundance values in at least 50% of all samples (Table S4) and 28 samples.

Figure 7. Increased levels of reactive oxygen species (ROS) in the MDA-MB-231 line. (A) Confocal
microscopy images of mitochondrial ROS were stained by MitoSOX red (red) in MCF10A, MCF7
and MDA-MB-231 cell and total nuclei were stained with Hoechst (blue). (B) ROS production was
quantified as MitoSOX red fluorescence intensity/cell ratio. Data were obtained from three biological
replicates. The data are presented as mean ± SD of cells (n = 153–200). * p < 0.05, ** p < 0.01.

The principal component analysis (PCA) showed that total protein abundance varia-
tion between samples is explained by 27 Principal Components (PCs); the first two PCs
embrace 31% of whole abundance variability (Table S5) and can differentiate between
luminal A and basal-like subtypes of BC and the control group (Figure 8A).

The heatmap shows that 477 proteins whose correlation with PC 1 or PC 2 is less
than −0.5 or greater than 0.5 (Table S6) present a different abundance pattern between
samples belonging to each of the subtypes and the control group (Figure 8B). Four patterns
of expression can be distinguished in the heat map one in which a set of proteins are
overregulated in luminal A and control samples and downregulated in basal-like, a second
pattern in which proteins are downregulated in controls and moderately expressed in BC
molecular subtypes, in the third pattern a set of proteins are downregulated in luminal
A tumors and control and overexpressed in basal tumors and in the fourth pattern a set
of proteins are observed with heterogeneous expression among molecular subtypes and
control samples.

Additionally, a hierarchical clustering analysis applied to the abundance data in the
heatmap revealed the formation of three groups. The first cluster (yellow lines) was
enriched by the luminal A tumors, the control samples enriched the second cluster (blue
lines), and the third cluster (gray line) was enriched by basal-like tumors, which reflected
the differences in mitochondrial proteome abundance patterns between these BC subtypes
(Figure 8B).

3.8. Signature Mitochondrial Alterations in Luminal Type A and Basal-like Breast Cancer

To validate and deepen the results found in cell lines on the mitochondrial processes
of fusion (FUS), fission (FIS), mitophagy (MIT), ROS, ∆Ψm (PMM) and mitochondrial mem-
brane organization (MMO) processes, an overrepresentation analysis of these processes
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were performed using the proteins that presented an absolute value of association with the
first two components equal to greater than 0.5, to distinguish between molecular subtypes.
When the analysis of the overrepresentation of biological processes with mitochondrial
proteins was performed, the process of mitochondrial biogenesis was not localized, pos-
sibly because mitochondrial biogenesis is a process that requires the intervention of the
cell nucleus. To provide information on mitochondrial biogenesis, we chose the MMO
process. Of the 519 mitochondrial proteins used for overrepresentation analysis (Table
S7), 15,717 biological processes were found to be overrepresented (Table S8), and a total of
54 proteins were found to be involved in the biological processes analyzed in this study.

Figure 8. Analysis of the mitochondrial proteome of luminal A and basal-like tumors. (A) Principal
component analysis of the mitochondrial proteome in samples control (Ctl), luminal A (LA), and
basal-like (BL) breast cancer tumors. (B) Heatmap and hierarchical cluster analysis of mitochondrial
proteins abundance identify in samples control, luminal A, and basal-like tumors of breast cancer.

A mitochondrial signature was obtained with the 54 mitochondrial proteins that show
us patterns of abundance of proteins involved in mitochondrial dynamics, biogenesis,
mitophagy, potential and ROS (Figure 9). In the signature proposed here, it is observed
that proteins may be involved in one or several processes.

Additionally, characteristic protein expression patterns were found for each of the
samples. In luminal A tumors, we found overexpression of GPX1, CCS, ENDOG, MAPK3,
and RIPK3 proteins involved in ROS; PRDX3 and SOD1 in the ROS and PMM processes;
TIMM10B, NDUFA13, APOOL, MICOS13 and TIMM10 of the MMO process; BCL2 involved
in the MMO, PMM and ROS processes; PARK7 in MIT, PMM and ROS processes; ATG2B in
MIT; FIS1 in FIS and MIT and MTFR1L in FIS compared to basal-like BC tumors. However,
we found underexpression of the proteins CDK1, TRAP1 and TXNRD2 related to ROS; SRC,
ABCD1 and LRRK2 in PMM and ROS; ROMO1 in MMO and ROS; STOML2, TOMM22,
SLC25A31, MTX1, TIMM50, LETM1, OXA1L and MAIP1 in MMO; TSPO, SLC25A4 and
PHB2 in MIT; and MFN2 and MFN1 in FUS compared to basal-like BC tumors.

In basal-like tumors, we found the overexpression of EEF2, CDK1, TRAP1 and
TXNRD2 involved in ROS; SRC, ABCD1 and LRRK2 in ROS and PMM processes; ROMO1
in ROS and MMO; STOML2, MTX2, TOMM22, SLC25A31, MTX1, TIMM50, LETM1, OXA1L
and MAIP1 in MMO; PHB2 in MIT; TSPO in MIT and PMM; SLC25A4 in MIT and MMO
processes; MFN1 in FUS; MFN2 in FUS and MMO processes; and MIEF1 in FIS compared
to luminal A tumors. However, we found underexpression of the proteins: PRDX2, GPX1,
CCS, PRDX5, ENDOG, MAPK3, AIFM1 and RIPK3 involved in ROS; TUSC2 in PMM;
PRDX3 and SOD1 in PMM and ROS processes; TIMM22, TIMM10B, NDUFA13, APOOL,
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MICOS13, TIMM10, ALKBH7, RHOT1 in MMO; BCL2 in MMO, PMM and ROS processes;
PARK7 in MIT, PMM and ROS processes; ATG2B and FUNDC2 in MIT; MTFR1L in FIS;
and FIS1 in FIS and MIT processes compared to luminal A tumors.

Figure 9. Signature mitochondrial alterations in luminal type A and basal-like breast cancer. Ex-
pression profiles of proteins involved in regulation and formation of reactive oxygen species (ROS),
mitochondrial membrane potential (MMP), mitochondrial membrane organization (MMO), mi-
tophagy (MIT), mitochondrial fusion (FUS) and mitochondrial fission (FIS), in control samples,
luminal A and basal-like breast cancer tumors.

Moreover, in the case of control samples, we found overexpression of the proteins:
PRDX2, PRDX5 and AIFM1 involved in ROS; TUSC2 in PMM; ALKBH7, RHOT1, SAMM50,
IMMT and HSPA9 in the MMO; and FUNDC2 in MIT compared to luminal A and basal-like
breast cancer tumors. However, we found underexpression of EEF2 and GLRX2 proteins
involved in ROS; MTX2 in MMO; USP30 in MIT; TSPO in MIT and PPM processes; BAX
in FUS; and MTFR1L and MIEF1 in FIS compared to luminal A and basal-like breast
cancer tumors.
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In general, these previously described protein expression profiles allow us to distin-
guish between luminal A and basal-like tumors and distinguish between women with and
without cancer. It is also worth mentioning that these results obtained in women with
luminal A and basal-like BC correlate with the data found in MCF7 and MDA-MB-231
cell lines.

3.9. Protein Signature of OXPHOS in Luminal A and Basal-like Breast Cancer

In addition, we generated a signature that exclusively shows abundance patterns of
OXPHOS proteins between BC molecular subtypes and control samples to delve deeper
into mitochondria’s functional status and the potential it may have in detecting therapeutic
targets of OXPHOS in BC [41,42].

We first evaluated the expression of mitochondrial complexes in cell lines by WB, using
a cocktail containing antibodies against a labile subunit when its complex is not assembled.
The following subunits of the OXPHOS complexes were immunodetected: NADH: Subunit
B8 of ubiquinone oxidoreductase (CI-NDUFB8), subunit B of the iron-sulfur succinate
dehydrogenase complex (CII-SDHB), ubiquinol-cytochrome c reductase core protein 2
(CIII-UQCRC2), mitochondrial cytochrome c oxidase catalytic subunit (CIV-MTCO1) and
ATP synthase F alpha subunit (CV-ATP5A) (Figure 10A). However, we found no significant
differences, but we observed a tendency to decrease the expression of the CIII-UQCR2,
CIV-MTCOI and the CV-ATP5A in the MDA-MB-231 line (Figure 10B).

Figure 10. OXPHOS protein expression profiles in luminal A and basal-like subtypes of breast cancer.
(A,B) Western blotting and expression of total oxidative phosphorylation (OXPHOS) cocktail in
MCF10A, MCF7 and MDA-MB-231 cell lines. Densitometry values were normalized by Ponceau red
staining. The data are presented as mean ± SD, n = 3. (C) Proteins expression profiles of OXPHOS
complexes in control samples, luminal A, basal-like breast cancer tumors.

In addition, we performed an overrepresentation analysis of OXPHOS with PCA
proteins to generate expression profiles with OXPHOS proteins (Figure 10C).

We found that in luminal A tumors overexpression of the NDUFS3, NDUFV2, NDUFV3,
NDUFA2, NDUFV1 and NDUFA10, and underexpression of the NDUFB9, NDUFA4,
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NDUFB10, NDUFS2 and NDUFB5 proteins of the CI; and underexpression of the COX5A,
COX5B, COX7A2, COX7C and COX4I1 proteins of the CIV.

In basal-like tumors, we found overexpression of the NDUFB9, NDUFA4, NDUFS2 and
NDUFB5 proteins of the CI; overexpression of the SDHA protein of the CII; overexpression
of the CYCS and CYC1 proteins of the CIII and overexpression of the UQCR2 protein
of the CIII, confirming the findings in cell lines by Western blot. Furthermore, in this
same tumor type, we observed overexpression of the COX5A, COX5B, COX7A2, COX7C
and COX4I1 proteins of the CIV; and underexpression of the ATP5F1D, ATP5L, ATP5H,
ATP5F1A, ATP5I, ATP5O, ATP5F1B and ATP5F1 proteins of the CV.

We also observed heterogeneous expression of CI and CIII proteins in the two molecu-
lar subtypes of BC.

These findings show that the defects in the OXPHOS complexes impaired mitochon-
drial function, as found in past experiments. We believe that these marked differences in
expression between the proteins of the OXPHOS complexes could be of diagnostic value,
as they show a correlation with the aggressiveness of the type of BC.

In brief, analysis of mitochondrial protein expression shows that through the mitochon-
drial proteome it is possible to distinguish between BC samples and non-cancerous and to
identify molecular subtypes. In addition, the analysis captures bioenergetics differences
between BC types but also captures mitochondrial functional differences and their associa-
tion with the aggressiveness that characterizes each type of BC. These results highlight the
importance of studying differences in mitochondrial function between BC subtypes.

4. Discussion

Despite all the evidence of the critical role of mitochondria in cancer, few studies to
date have focused on showing mitochondrial differences between BC subtypes, as well as
few that reflect alterations in mitochondrial dynamics and their relationship to different
mitochondrial and cellular processes.

The balance between mitochondrial fusion and fission is crucial to the preservation
of mitochondrial function. Changes in mitochondrial dynamics have been associated
with alteration in mitochondrial content, bioenergetics function and malignancy in cancer
cells [43,44].

In different types of cancer, including BC, it has been reported that increased mitochon-
drial fission is associated mainly with Drp1 and Fis1 proteins and decreased mitochondrial
fusion, which has been associated with poor prognosis and cancer aggressiveness [45–48].
This work demonstrates differential expression of proteins related to mitochondrial dy-
namics between luminal A and basal-like of BC. From both analyses of BC cell lines and
analysis of the mitochondrial proteome in women with BC, we found decreased expression
of the mitochondrial fission proteins Drp1 in MDA-MB-231 cell line (Figure 1E) and Fis1
in basal-like tumors (Figure 9). In contrast, Mfn 1 and 2 proteins overexpression was
observed in basal-like tumors (Figure 9) and overexpression of Opa1 in the MDA-MB-
231 cell line (Figure 1B). These findings suggest an increase in mitochondrial fusion for
basal-like tumors. However, proteomics data suggest a decrease in mitochondrial fusion in
luminal A subtype tumors. Similar results have been reported in gastric and lung cancer,
in which Mfn2 overexpression has also been found [49,50]. Additionally, in Y. Lou et al.’s
study, they also observed that silencing of Mfn2 in lung cancer results in inhibition of cell
proliferation without impacting cell apoptosis [50]. Likewise, a recent study in patients
with BC provided evidence that mitochondrial fission inhibits metastasis in triple-negative
BC and that genes associated with mitochondrial fission correlate with better survival. In
comparison, fusion genes correlate with worse survival [26]. In addition, these findings
suggest that the mitochondrial dynamics have a more complex effect on BC cells than has
been considered ultimately, which has not been fully elucidated.

Moreover, according to the mitochondrial proteome analysis (Figure 9), we believe
that mitochondrial elongation factor 1 (MIEF1) may be a central regulator of mitochondrial
fission in basal-like tumors. Research in colorectal cancer has reported that mitochondrial
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division is affected by MIEF1 [51]. However, few studies have explored the influence of
MIEF in BC.

On the other hand, this controversial finding may be related to the increased mito-
chondrial mass observed in basal-like cells (Figure 2A,B). It is well established that both
mitochondrial biogenesis and mitophagy are essential to preserving mitochondrial quality
control [52,53]. As mentioned, we surprisingly found an increase in PGC1α biogenesis-
related protein in the MDA-MB-231 cell line (basal-like) when compared to MCF7 (luminal
A) and MCF10A (control) cell lines (Figure 2D). This increase in PGC1α levels may be the
result of a compensatory mechanism induced by the decrease in mitochondrial respiration
and decoupling in OXPHOS (Figure 6B,C), as PGC-1α-mediated mitochondrial biogenesis
increases the number of mitochondria and replaces damaged mitochondria. Furthermore,
mitofusin-mediated fusion decreases the damage that accumulates in mitochondria [30].
Therefore, these data suggest a significantly altered mitochondrial function in MDA-MB-
231 BC than in MCF7. Furthermore, we found a significant increase in the expression of
PINK1 and p62 mitophagy proteins that contribute to removing mitochondria damage
(Figure 3B,C). Additionally, although no significant difference in LC3-II expression was
observed among the BC cell lines, an increasing trend was observed, especially in the
MDA-MB-231 cell line (Figure 3E). This increase in the expression of mitophagy-associated
proteins may be related to the decrease in both OXPHOS in both cell lines of BC. In addition
to decreased mitochondrial function, we show that activation of mitophagy is a response
to the decreased mitochondrial membrane potential (Figure 4A,B). Consistent with our
results, previous research has reported that high LC3, PINK1 and p62 protein levels are
associated with triple-negative BC (TNBC) patients and with poor response to chemother-
apy, similar results have also been found in colorectal cancer, gastric, malignant melanoma,
and esophageal cancer [54–61]. This demonstrates that deficiency of mitochondrial activity
correlates with the invasiveness and metastatic capacity of the basal-like subtype of BC [62].

In addition, researchers have found that FUNDC1, a mammalian mitophagy re-
ceptor, regulates mitochondrial fusion-fission and mitophagy through the interaction
of DNM1L/Drp1 and Opa1 and can also recruit LC3 to induce mitophagy [63]. However,
it was not identified in this work, but the FUN14 domain containing 2 (FUNDC2) protein
was identified, which is also associated with mitochondria autophagy [64]. In a previous
study, FUNDC2 gene overexpression was found in BC brain metastases [65]; unfortunately,
so far, there are few studies on this protein in cancer.

Cancer cells have particular metabolic demands for proliferation and survival. Al-
though the role of mitochondrial dynamics in the regulation of metabolism is still not
well elucidated, it has been shown that mitochondrial fusion can promote OXPHOS ca-
pacity; thus, mitochondrial fission may be primarily related to a glycolytic phenotype [9].
Metabolic plasticity has been shown in BC to have the ability to promote late-stage tumor
cell survival and relapsing tumor and metastasis formation in patients. To investigate the
metabolic preference in breast cancer cell lines, we evaluated the expression of AMPK and
HIF1α, which have been considered key modulators of oxidative and glycolytic metabolism,
respectively [35,66–68]. We confirmed that both MCF7 and MDA-MB-231 cell lines exhibit
a switch from mitochondrial OXPHOS to glycolytic metabolism (Figure 5D). This prefer-
ence for glycolytic metabolism in both cell lines of BC may be due to a decrease in the
mitochondrial respiratory capacity, which was more evident in basal-like cell line by a
marked decrease in mitochondrial respiration and decoupling of oxidative phosphorylation
compared to luminal A cell line (Figure 6B,C). Concerning these mitochondrial alterations,
here, through proteomic analysis, we showed a unique OXPHOS signature capturing the
differential expression of complexes proteins between luminal A and basal-like tumors
(Figure 10C), which could be of great use in exploring new therapeutic targets for BC [69].
This signature demonstrates a lower expression mainly of complexes I and V in basal-
like tumors than luminal A tumors. Our results agree with a previous study by Lunetti
et al. [70] in which it was suggested that complex I deficiency appears to be compensated
by increased complex IV activity [70]. Supporting the idea of the therapeutic application of
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OXPHOS targeted inhibitors, our data show concordance with this approach, which could
also help to sensitize advanced BC. For instance, Raninga et al. [71] demonstrated that mari-
zomib (Mzb), a proteasome inhibitor, inhibits complex II, which leads to reduced OXPHOS,
induces caspase-3 dependent apoptosis and reduce tumor growth in TNBC, and reduces
metastases in lung and brain cancers [71]. Another approach is the use of metformin as
an anticancer therapy, showing that metformin reduces mitochondrial metabolite levels
and inhibits complex I of the mitochondrial respiratory chain. However, the mechanism of
action of metformin is still unclear; studies suggest that it may activate AMPK o reduce
phosphorylated protein kinase B (pAKT) [42,72].

It is well established that alterations in the respiratory chain and the increase in HIF1α,
demonstrated here, can increase ROS production, and might be involved as initiators,
promoters, and neoplastic transformation since it can act as mutation-driving agents and
interact with signaling pathways [73,74]. It has also been suggested that increased ROS
generation may play an important role in autophagy by activating signaling pathways [75].
We demonstrated that basal-like cell line produces more significant ROS levels than lu-
minal A cell line (Figure 7A,B). This increase in ROS production may be associated with
the impairment of mitochondrial complex I [70]. These differences in ROS production
between the subtypes we found correlate with previous studies demonstrating that in-
creased ROS production in TNBC cell lines has a protumorigenic role in the oncogenic
signaling necessary for their proliferation and survival and maybe to promote metastatic
potential [37,70].

On the other hand, there are drawbacks such as genetic and phenotypic drift and
the lack of ability to reflect the intertumoral heterogeneity that cell lines present [76,77].
In this work, we demonstrate that exploiting proteomic data from repositories can be a
valuable strategy/alternative that allowed us to integrate and deepen into the process
of mitochondrial dynamics and bioenergetics. This strategy allowed us to obtain mito-
chondrial proteome expression profiles that distinguish between luminal A and basal-like
tumors and discriminate between disease and normality (Figure 9). Overall, analysis of
the mitochondrial proteome shows us that: (1) mitochondria play an essential role in the
development of BC; (2) mitochondrial alterations are associated with increased aggres-
siveness and metastatic potential of this disease; (3) mitochondria may reflect functional
differences between luminal A and basal-like subtypes; and (4) mitochondria proteome
may be complementary to the molecular classification of BC, and of the great utility for
patient stratification and the search for the new markers of diagnostic and therapeutic value.
We believe that the inclusion of mitochondrial biomarkers in BC molecular signatures, such
as PAM50, Oncotype DX, MammaPrint, and IHC4 [78], is crucial to improving the capture
of intrinsic differences between molecular subtypes, which would have an impact on the
diagnosis and even treatment of patients. This is because these signatures are still not
sufficient to distinguish between subtypes, as shown in Figure S1A, where it can be seen
that some luminal A are mistaken with basal-like tumors.

Therefore, in this work, we propose two mitochondrial signatures that allow us to
distinguish between luminal A and basal type breast cancer tumors, from which potential
biomarkers for diagnostic and/or therapeutic use could be identified.

5. Conclusions

Despite limitations of using cell lines, here it is demonstrated that through an ap-
propriate selection, it was possible to reflect the differences between the luminal A and
basal-like and the high heterogeneous that characterize BC. In addition, we demonstrated
that through the complementarity of functional studies in BC cell lines and exploiting
Mertins et al. [10] proteomics data analyses of BC samples, a functional mitochondrial pro-
teomic signature was generated to distinguish between luminal A and basal-like subtypes
of BC.

Furthermore, we show that the imbalance of mitochondrial dynamics may be associ-
ated with the loss of mitochondrial quality control and with alterations in bioenergetics in
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luminal A and basal-like subtypes of BC. We show that although both breast cancer lines
representing luminal A and basal-like subtypes possess a Warburg phenotype, the MCF7
(luminal A) cell line was characterized by a more conserved bioenergetics efficiency, even
with the capacity to generate ATP via OXPHOS. In contrast, the MDA-MB-231 (basal-like)
cell line showed a significant decrease in mitochondrial respiration and a marked uncou-
pling of OXPHOS. It was also shown that both cell lines were characterized by a significant
increase in ROS, which may be due to alterations in OXPHOS complexes, mainly in CIII,
CIV and CV.
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//www.mdpi.com/article/10.3390/biom12030379/s1, Figure S1: Flow chart of the statistical and
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cluster analysis, Table S1: Antibodies for Western blot and reagents, Table S2: Mitochondrial proteins,
Table S3: Mitochondrial proteins expressed in Luminal A and basal-like subtypes of breast cancer,
Table S4: Abundance data for PCA, Table S5: Explained variance of PCA, Table S6: Correlation matrix,
Table S7: Proteins for analysis of overrepresentation biological processes, Table S8: Overrepresentation
of biological processes.
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