
Article

A Radiogenomics Ensemble to Predict EGFR and KRAS
Mutations in NSCLC

Silvia Moreno 1,2,* , Mario Bonfante 1, Eduardo Zurek 2 , Dmitry Cherezov 3, Dmitry Goldgof 3,
Lawrence Hall 3 and Matthew Schabath 4

����������
�������

Citation: Moreno, S.; Bonfante, M.;

Zurek, E.; Cherezov, D.; Goldgof, D.;

Hall, L.; Schabath, M. A

Radiogenomics Ensemble to Predict

EGFR and KRAS Mutations in

NSCLC. Tomography 2021, 7, 154–168.

https://doi.org/10.3390/

tomography7020014

Academic Editor: Brian D. Ross

Received: 6 April 2021

Accepted: 27 April 2021

Published: 29 April 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Systems Engineering, Universidad Simon Bolivar, Barranquilla 080001, Colombia;
mbonfante1@unisimonbolivar.edu.co

2 Systems Engineering, Universidad del Norte, Atlántico 080001, Colombia; ezurek@uninorte.edu.co
3 Computer Science and Engineering, University of South Florida, Tampa, FL 33620, USA;

cherezov@mail.usf.edu (D.C.); goldgof@mail.usf.edu (D.G.); lohall@mail.usf.edu (L.H.)
4 Cancer Epidemiology, Moffit Cancer Center, Tampa, FL 33617, USA; Matthew.Schabath@moffitt.org
* Correspondence: smoreno12@unisimonbolivar.edu.co; Tel.: +57-300-555-5132

Abstract: Lung cancer causes more deaths globally than any other type of cancer. To determine the
best treatment, detecting EGFR and KRAS mutations is of interest. However, non-invasive ways
to obtain this information are not available. Furthermore, many times there is a lack of big enough
relevant public datasets, so the performance of single classifiers is not outstanding. In this paper, an
ensemble approach is applied to increase the performance of EGFR and KRAS mutation prediction
using a small dataset. A new voting scheme, Selective Class Average Voting (SCAV), is proposed and
its performance is assessed both for machine learning models and CNNs. For the EGFR mutation,
in the machine learning approach, there was an increase in the sensitivity from 0.66 to 0.75, and an
increase in AUC from 0.68 to 0.70. With the deep learning approach, an AUC of 0.846 was obtained,
and with SCAV, the accuracy of the model was increased from 0.80 to 0.857. For the KRAS mutation,
both in the machine learning models (0.65 to 0.71 AUC) and the deep learning models (0.739 to 0.778
AUC), a significant increase in performance was found. The results obtained in this work show
how to effectively learn from small image datasets to predict EGFR and KRAS mutations, and that
using ensembles with SCAV increases the performance of machine learning classifiers and CNNs.
The results provide confidence that as large datasets become available, tools to augment clinical
capabilities can be fielded.
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1. Introduction

Globally, lung cancer is the leading cause of cancer-related death in men and the
second-leading cause in women. In 2018, an estimated 1.8 million lung cancer deaths
occurred, with 1.2 million in men and over 576,000 in women, accounting for 1 in 5 cancer-
related deaths worldwide [1]. Advances in precision medicine and genomic analyses have
resulted in a paradigm shift whereby lung tumors are characterized and classified by
biomarkers and genetic alterations (e.g., gene expression, mutations, amplifications, and
rearrangements) that are critical to tumor growth and can be exploited with specific targeted
agents or immune checkpoint inhibitors. However, there are many limitations of tissue-
based biomarkers such as they can be subject to sampling bias due to the heterogeneous
nature of tumors, the requirement of tumor specimens for biomarker testing, and the assays
can take significant time and be expensive [2]. As such, high-throughput and minimally
invasive methods that can improve current precision medicine is a critical need.

Liquid biopsy is a good alternative for a non-invasive way to detect EGFR and KRAS
mutations. The use of surrogate sources of DNA, such as blood, serum, and plasma
samples, which often contain circulating free tumor (cft) DNA or circulating tumor cells
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(CTCs), is emerging as a new strategy for tumor genotyping [3]. However, this technique is
pretty recent and still has some disadvantages. Different studies have also shown that the
amount of cftDNA is correlated with disease stage, which may make it difficult to detect in
early stages of cancer. Moreover, non-tumor cfDNA might derive from different processes
including necrosis of normal tissues surrounding the tumor cells or lysis of leukocytes after
blood collection, which may make mutation difficult to detect. Even when recent versions
of liquid biopsy techniques have been approved for clinical use, the sensitivity (or True
Positive Rate) of this test is still a weak point [3]. All these concerns provide space for the
application of other non-invasive techniques that may be more effective in early stages of
cancer and may provide higher sensitivity rates.

Quantitative image features, or radiomics, have the potential to complement and
improve current precision medicine. Radiomic features are non-invasive, are extracted
from standard-of-care images, and do not require timely and often expensive laboratory
testing. Additionally, radiomic features are not subject to sampling bias since the entire
tumor is analyzed and represents the phenotype of the entire tumor in 3D and not just the
portion that was subjected to biomarker testing, and can be applied for all stages of cancer.

Radiogenomics is an emerging and important field because it utilizes radiomics to
predict genetic mutations, gene expression, and protein expression [4]. In lung cancer, there
has been particular interest in predicting EGFR and KRAS mutations [5]. Epidermal Growth
Factor Receptor (EGFR) is a protein on the surface of cells that regulates signaling pathways
to control cellular proliferation. According to Bethune et al. ([6], p. 1), “Overexpression of
EGFR has been reported and implicated in the pathogenesis of many human malignancies,
including Non-Small Cell Lung Cancer (NSCLC). Some studies have shown that EGFR
expression in NSCLC is associated with reduced survival, frequent lymph node metastasis
and poor chemosensitivity”. Lung adenocarcinomas with mutated EGFR have a significant
response to tyrosine kinase inhibitors [6], which makes the detection of this mutation
significant in determining patient treatment. On the other hand, Kirsten Rat Sarcoma viral
oncogene (KRAS) is also a well-known tumor driver. Mutations of this gene have proven
to be a useful biomarker to predict resistance to EGFR-based therapeutics [7]. Furthermore,
some studies have shown that KRAS can be targetable with promising results in phase III
of NSCLC [8,9].

Other authors have previously tried to predict EGFR and KRAS mutations in Non-
Small Cell Lung Cancer (NSCLC) from image features. In the work presented by Gevaert
et al. [5], the authors attempted to predict these mutations from semantic image features
provided by radiologists. A predictive model for the EGFR mutation was proposed that
achieved an AUC of 0.89; however, conclusive results for the KRAS mutation were not
obtained. Pinheiro et al. [10] also found a correlation between imaging features and
mutation status for EGFR mutation (AUC of 0.745) but could not find the same for the
KRAS mutation. On the other hand, Wang et al. [11] utilized semantic features to predict
EGFR and KRAS mutation and found a significant correlation between EGFR and KRAS
mutations and lesions with a low ground glass opacity (GGO). In particular, the authors
found that L858R point mutations, exon 19 deletions, and KRAS mutations were more
common in lesions with a lower GGO proportion (p = 0.029, 0.027 and 0.018, respectively).
Mei et al. [12] utilized texture features to predict mutations in EGFR at exon 19 and
exon 21. The authors reported an AUC of 0.66 for predicting EGFR exon 21 mutation
using a model that included sex, non-smoking status, and the Size Zone Non-Uniformity
Normalized radiomic feature. Shiri et al. [13] created machine learning models from
PET and CT image features to predict both EGFR and KRAS mutations. These authors
obtained an AUC of 0.75 for both mutations in CT images by applying a combination of
K-Best and a variance threshold feature selector with logistic regression. Incorporating
PET kept AUC values around 0.74. Other authors that utilized features from PET and CT
are Koyasu et al. [14]. These authors applied Random Forest and Gradient Tree Boosting
to predict EGFR mutation, and obtained an AUC of 0.659 with the latter algorithm and
seven types of imaging features. Liu et al. [15] utilized radiomics features and clinical data
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to predict EGFR status and found an AUC of 0.647 with a model based on five radiomic
features, which improved to 0.709 by combining radiomic features and clinical data. Deep
learning has recently been applied in the diagnosis of different types of cancer [16], and
other authors such as Wang et al. [17] have applied these techniques to mutation prediction.
These authors utilized deep learning to the prediction of EGFR mutational status by training
on 14,926 CT images and obtained an AUC of 0.81 on an independent validation cohort.
Other recent studies have applied clinical nomograms to predict EGFR mutation status. In
the work presented by Zhang et al. [18], the authors combined CT features and clinical risk
factors and used them to build a prediction nomogram. They obtained a 0.74 AUC on the
validation cohort.

On the other hand, previous studies have demonstrated that applying ensembles to
predictive models tends to improve the performance of predictions [19]. An ensemble
model is created by generating multiple models and combining them to produce an output
classification. To combine the different models, a voting process is performed among them
to determine the final result. There are different types of voting; for example, average
voting, in which the average of the probabilities for each class of all the models is computed,
and then a classification is performed based on the average probability. Another type of
voting is maximum probability, in which for each case the base model with the higher
pseudo-probability is selected, and the classification of the case is performed based on the
pseudo-probabilities of this classifier alone.

In this paper, a novel voting scheme for ensembles of machine learning or deep
learning models is proposed, and its effectiveness in predicting EGFR and KRAS mutations
in CT images taken from the TCIA NSCLC Radiogenomics dataset [20] is shown to be state
of the art. Two experiments were performed; first, prediction with radiomic features and
machine learning models, and second, prediction through Convolutional Neural Networks
(CNN). In both cases, first base models are tested and then an ensemble of the best models
with a new voting scheme is applied to observe if there is an improvement of the prediction
performance. Our approach shows that performance can be improved by this scheme and
that good results are possible even with a small dataset where only a few cases present
mutations. With more data becoming available in the future, it is expected that this type of
approach will add to tools for clinicians.

2. Materials and Methods

For this study, a cohort of 99 patients from the TCIA were obtained [20,21], whose
data included CT images with tumor segmentation on the CT image, genomic data (KRAS
mutational status, and EGFR mutational status), and clinical data (age, sex, smoking status,
pathological T stage, pathological N stage, pathological M stage, and histology type).
Details of the cohort and corresponding data are published in a previous study [5]. Patients
with unknown mutational status were eliminated from the analysis, which resulted in 83
patients for the analysis. The list of the exact cases that were used in the study can be
found in the Supplementary Material (Table S7 Features Transpose EGFR, Table S8 Features
Transpose KRAS). This type of data, with curation, is difficult to obtain. This set, while
small, allows for comparisons. The summary of the study cohort is presented in Table 1.
Table 2 summarizes the clinical features of the study cohort.
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Table 1. Mutation status data summary.

Variable Values Number of Cases (%)

EGFR Mutation Status

Mutant 12 (14%)

Wildtype 71 (86%)

Total 83 (100%)

KRAS Mutation Status

Mutant 20 (24%)

Wildtype 63 (76%)

Total 83 (100%)

Table 2. Clinical features data summary.

Variable. Overall
Dataset EGFR Mutant EGFR Wildtype KRAS Mutant KRAS Wildtype

Median Age (Range) 69 (46–85) 72 (55–85) 69 (46–84) 68 (50–81) 69 (46–85)

Gender

Male 65 (78%) 7 (8%) 58 (70%) 16 (19%) 49 (59%)
Female 18 (22%) 5 (6%) 13 (16%) 4 (5%) 14 (17%)

Smoking Status

Current 18 (22%) 1 (1%) 17 (21%) 6 (6%) 12 (16%)
Former 56 (67%) 8 (9%) 48 (58%) 14 (17%) 42 (50%)

Non-smoker 9 (11%) 3 (4%) 6 (7%) 0 (0%) 9 (11%)

Pathological T Stage

Tis 3 (4%) 1 (1%) 2 (3%) 0 (0%) 3 (4%)
T1a 17 (21%) 1 (1%) 16 (20%) 4 (5%) 13 (16%)
T1b 19 (23%) 5 (6%) 14 (17%) 3 (3%) 16 (20%)
T2a 26 (31%) 3 (3%) 23 (28%) 7 (8%) 19 (23%)
T2b 6 (7%) 1 (1%) 5 (6%) 1 (1%) 5 (6%)
T3 8 (9%) 1 (1%) 7 (8%) 5 (6%) 3 (3%)
T4 4 (5%) 0 4 (5%) 0 (0%) 4 (5%)

Pathological N Stage

N0 65 (78%) 10 (12%) 55 (66%) 16 (20%) 49 (58%)
N1 8 (10%) 1 (1%) 7 (9%) 1 (1%) 7 (9%)
N2 10 (12%) 1 (1%) 9 (11%) 3 (3%) 7 (9%)

Pathological M Stage

M0 80 (96%) 12 (14%) 68 (82%) 19 (23%) 61 (73%)
M1b 3 (4%) 0 0% 3 (4%) 1 (1%) 2 (3%)

Histology

Adenocarcinoma 66 (80%) 12(14%) 54 (66%) 19 (23%) 47 (57%)
Squamous cell carcinoma

NSCLC NOS
14 (17%)

3 (3%)
0 (0%)
0 (0%)

14 (17%)
3 (3%)

0 (0%) 14 (17%)
1 (1%) 2 (2%)

For the EGFR mutation case, there is not a significant difference observed between the
mutant and wildtype statuses in terms of age. In terms of gender, for the mutant status there
seems to be a more balanced distribution between the genders, while the wildtype status
seems to be significantly more common among men. In terms of smoking history, the EGFR
mutant status seems to be found more often among former smokers, and non-smokers
in second place, while the wildtype status seems to be more common among former and
current smokers. There is no significant difference between the groups in terms of T cancer
stage, although wildtype status seems to be more common for patients with stage T1a.
Cases with stages N1 and N2 seem to more frequently present wildtype status, as well as



Tomography 2021, 7 158

patients with M1b stage. In terms of histology type, none of the Squamous Cell Carcinoma
patients present the EGFR mutation; this is only present in Adenocarcinoma cases.

For the KRAS mutation, there are no significant differences in terms of age and gender
between the mutant and wildtype cases. In terms of smoking history, it can be observed
that none of the non-smokers presented the KRAS mutation. For the pathological stage, it
seems that most patients with stage N1 and N2 are wildtype cases. Moreover, as seen with
the EGFR mutation, mutant status is only found in Adenocarcinoma. For more information
about the distribution of the clinical variables in the Train and Test datasets, please refer
to the Supplementary Material (Table S1. Clinical Variables Training Dataset, Table S2.
Clinical Variables Test Dataset).

With this dataset two experiments were conducted; first, with traditional radiomic
features and machine learning models, and second, with Convolutional Neural Networks
(CNNs). Both experiments consisted of a base classifier performance assessment and then
ensembles of several models were tested with three types of voting: average, maximum,
and the method proposed here, Selective Class Average Voting (SCAV). SCAV is a voting
technique that is particularly useful when dealing with an unbalanced dataset, where
one class (majority class) is much more frequent than the other (minority class). In SCAV,
first we count how many models predicted the minority class (in our case, the mutant
status), and if this quantity is above a threshold value, the final outcome is the minority
class. The pseudo-probability of this particular case is computed by averaging the scores
of all the models where the final result was the minority class. If the value is below the
chosen threshold, the final outcome is the majority class (in this case, the wildtype status),
and the class pseudo probability is computed by finding the average of probabilities of
all the models where the final result was the majority class. Once the probabilities are
averaged according to the previous process, a threshold of 0.5 is applied to the final score
to determine if the sample belongs to the minority (mutant) or to the majority (wildtype)
class. To select the best thresholds for SCAV, that is the threshold for how many models
must vote for the minority class, the performance of the ensemble on the Training set was
assessed, and the thresholds that enabled a higher AUC on this data were selected and
applied to the Test data. Figure 1 describes the algorithm used by SCAV.
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Figure 1. Selective Class Average Voting (SCAV) algorithm.

The use of ensembles increases the probability of obtaining better results, since we
have several diverse models as inputs, and their errors tend to be out voted by the full set of
classifiers. This enables better generalization error. However, there are some disadvantages
to this approach; first that it consumes more time. Several models have to be trained before
an ensemble can be attempted, and it requires more computing power and resources, since
we have several classifiers running at the same time. This last item creates a limitation in
how many total models can be used in the ensemble.

2.1. Experiment 1: Radiomic Features and Machine Learning Classifiers

Quantitative image features (N = 266) presented in [22] were extracted from the seg-
mented 3D regions which included texture and non-texture features. These features were
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computed using the segmented volumes publicly available in the NSCLC Radiogenomics
dataset. Non-texture features include tumor size, tumor shape, and tumor location cate-
gories, and texture features include pixel histogram, run length, co-occurrence, Laws, and
Wavelet features. To extract these features, Definiens Developer XD© (Munich, Germany)
was used [23]. Definiens is based on the Cognition Network Technology that allows the
development and execution of image analysis applications. Here, the Lung Tumor Analysis
application was used. Most of the features were implemented within the Definiens plat-
form, whereas some were computed with an implementation of the algorithms in C/C++
developed in a previous work by some of the authors of this paper [22].

For stage 1, the following experimental workflow was applied to predict mutation
status from image features. First, the data was divided into Train and Test sets as part of a
10-fold cross validation. Second, on the Training set, feature selection was applied to select
the image features with the most predictive power; third, the SMOTE algorithm [24] was
applied to balance the number of examples in each class of the dataset; fourth, a classifier
was trained with the previously selected features as inputs on the balanced Training data,
and finally, the resulting model was applied to the Test set. Figure 2 summarizes the
presented workflow.
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Feature selection was used to determine the image features with more predictive
power. Sets of 5, 10, 15, and 20 features were tested. For feature selection, two methods
were separately applied. The selection approaches were the Mann–Whitney test [25] and
ReliefF [26]. Since this is a case of an unbalanced dataset (one class is much more abundant
than the other), an optional application of the SMOTE algorithm [24] was performed to
create synthetic samples of the minority class. The SMOTE algorithm was applied with the
default settings. These settings make the dataset approximately balanced by class.

Finally, a classifier was trained with the selected features. Four machine learning
classifiers were used: Random Forests [27], Support Vector Machines [28], Stochastic
Gradient Boosting [29], and Neural Networks [30]. For every experiment, standard metrics
were computed: including accuracy, sensitivity, and specificity (assuming the mutant status
as the positive case), and Area Under the ROC Curve (AUC) [31]. The workflow was
applied in a ten-fold cross-validation scheme, where iteratively nine folds were used to
select features and train the classifier, and the left-out fold was used for testing the model.

The whole process was coded and executed in R 3.5.1 using the package FSelector [32]
for the ReliefF feature selection, package DMwR [33] for the SMOTE algorithm, and
package caret [34] to test the four different classifiers. These classifiers were executed
with the default hyperparameters of the caret package. The implementation of the Mann–
Whitney Feature Selector was coded in R.3.5.1 using the wilcox.test function to compute
the p-value of every feature (every column of the dataset) and then features were sorted by
this value in increasing order.

In the second stage of the experiment, an ensemble of base models was applied using
a subset of the 32 learned models (obtained from 4 feature sets, 4 machine learning models,
and 2 feature rankers). Sets of the top ranked 5, 10, and 20 existing models were tested,
based on computational restrictions and the desire to have larger ensembles for typically
better accuracy. To select which base models would be part of the ensemble, the average
performance on the Training set was considered. The base models were sorted according
to their average AUC on the Training set, and the top 5, 10, and 20 were selected.
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2.2. Experiment 2: Convolutional Neural Networks

In the second experiment, CNNs were applied to the problem of predicting EGFR and
KRAS mutations. CNNs are a type of deep neural network that have proven to be useful
in detecting patterns on images [35]. From the same TCIA dataset, the CT images from
the 83 patients that had both tumor segmentation and mutation information were selected
and processed so a volume with only the tumor would be obtained. Then images of the
Region of Interest (ROI) with a uniform size of 128 × 128 pixels per slice were extracted.
From the whole volume, up to three slices per patient were selected to be part of the final
dataset. The slice that had the largest tumor area was selected by manual visual inspection
by the lead author of the segmented images. Then, we left one out in both directions of
the z-axis and selected the two slices that where closest to the chosen slice up and down.
The immediately consecutive slices were not used, assuming they were too similar to the
central image. A slice without a clear piece of tumor in it was discarded. The dataset was
then split into three: Training (65%), Validation (15%), and Test (20%) datasets. Since there
was more than one image from each patient, we verified that images from the same patient
were assigned to the same dataset.

In the first stage of the second experiment, several CNN models were applied to
predict EGFR and KRAS mutations, varying conditions such as the CNN architecture,
data augmentation, the optimizer, the learning rate, and the number of epochs of training.
Since this is a very small dataset, small CNN architectures were tested. For the CNN
experiments, we varied the CNN architecture (3 architectures), the optimizer (SGD and
Adam), the Initial Learning rate (0.01, 0.005, and 0.0005), and the number of epochs (10, 20,
and 30). Other numbers of epochs were also tested, based on the performance observed
when the first three options were assessed. Furthermore, other architectures were tested (up
to 10), but not with all the combinations. Figures 3–5 show the three best CNN architectures
used in this experiment. The others can be found in Supplementary Material (Figure S1
CNN ARCHITECTURES).
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More than 54 models were trained with different combinations of the before mentioned
parameters. When enough good results were obtained using the base CNN models, a
second stage of ensembles of CNN models was performed. Combinations of several models
from the ones trained in the previous stage were tested. The models were ranked according
to their performance on the Training set, and the best ones were selected for the ensembles.
Different types of voting were applied: average, maximum, and SCAV.

The second experiment was coded in Python 3, and the library OpenCV was used for
the image processing tasks. For the CNN generation, the library Keras with TensorFlow
backend was utilized.

3. Results
3.1. Machine Learning Models: EGFR Mutation

The ten best results of the performance of the base classifiers for the EGFR mutation on
the Test dataset are presented in Table 3, sorted by their AUC. The results on the Training
set are included in the Supplementary Material (Table S3. EGFR Mutation Prediction
Results Base Classifiers). The classifiers are Gradient Based Method (gbm), Random Forest
(RF), Support Vector Machine (SVM), and Neural Network (nnet).

Table 3. EGFR mutation prediction results on Test dataset, base classifiers.

Feature Selection Classifier SMOTE Accuracy Sensitivity Specificity AUC

MW (5 features) nnet No 0.83 0.00 0.98 0.43

ReliefF (15 features) SVM Yes 0.76 0.66 0.78 0.68

ReliefF (10 features) RF Yes 0.76 0.41 0.82 0.67

ReliefF (15 features) nnet Yes 0.76 0.58 0.79 0.67

ReliefF (5 features) RF Yes 0.77 0.50 0.82 0.64

ReliefF (20 features) RF Yes 0.73 0.16 0.83 0.63

ReliefF (20 features) SVM Yes 0.68 0.66 0.69 0.63

ReliefF (5 features) nnet Yes 0.71 0.50 0.75 0.60

ReliefF (5 features) SVM Yes 0.79 0.25 0.89 0.59

ReliefF (15 features) RF Yes 0.72 0.25 0.80 0.57

MW (5 features) gbm Yes 0.68 0.16 0.78 0.53

The highest AUC for EGFR mutation prediction was 0.68 with an SVM classifier. For
this mutation, much better results were obtained with ReliefF as feature selector.

Then, ensembles of different numbers of models with three different types of voting
were tested. Table 4 presents the best results with ensembles. The best AUC was 0.70 with
SCAV. This model also had the higher sensitivity (0.75). Moreover, in another model, an
accuracy of 80% was obtained with a 0.68 AUC. It can be observed for the machine learning
experiment that a higher accuracy, sensitivity, specificity, and AUC can be obtained by
applying ensembles and SCAV. Different ensemble combinations can be used to favor
certain metrics.
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Table 4. EGFR mutation prediction best results on Test dataset, ensembles.

Ensemble Combination Classifiers Accuracy Sensitivity Specificity AUC

Ensemble SCAV thresh 3
(10 models)

gbm, SVM,
nnet 0.59 0.75 0.57 0.70

Ensemble SCAV thresh 6
(10 models)

gbm, SVM,
nnet 0.80 0.33 0.89 0.68

Ensemble Average
(10 models)

gbm, SVM,
nnet 0.78 0.16 0.89 0.68

Ensemble Average
(5 models) All 0.78 0.16 0.89 0.67

Ensemble Average
(5 models)

RF, SVM,
nnet 0.79 0.33 0.87 0.66

Ensemble Maximum
(10 models)

gbm, SVM,
nnet 0.75 0.41 0.82 0.59

3.2. Machine Learning Models: KRAS Mutation

The results of the performance of the ten best base classifiers for the KRAS mutation
on the Test dataset are presented in Table 5. The results on the Training set are included in
the Supplementary Material (Table S4. KRAS Mutation Prediction Results, Base Classifiers).
The best AUC is 0.65. For this mutation, similar results could be obtained with both feature
selection methods, though ReliefF was still best.

Table 5. KRAS mutation prediction results on Test dataset, base classifiers.

Feature Selection Classifier SMOTE Accuracy Sensitivity Specificity AUC

MW (10 features) nnet No 0.72 0.10 0.93 0.44

Relief (10 features) nnet No 0.75 0.00 1.00 0.44

ReliefF (5 features) SVM Yes 0.70 0.35 0.81 0.65

MW (15 features) SVM Yes 0.64 0.40 0.72 0.64

ReliefF (5 features) gbm Yes 0.64 0.60 0.65 0.63

ReliefF (20 features) gbm Yes 0.63 0.50 0.67 0.63

MW (10 features) SVM Yes 0.64 0.45 0.70 0.63

MW (20 features) SVM Yes 0.71 0.40 0.81 0.63

ReliefF (15 features) SVM Yes 0.67 0.45 0.75 0.62

MW (5 features) SVM Yes 0.71 0.35 0.83 0.62

MW (15 features) gbm Yes 0.67 0.40 0.77 0.62

ReliefF (15 features) RF Yes 0.62 0.40 0.70 0.60

Then, ensembles of different numbers of models with three different types of voting
were tested. Table 6 presents the best results with ensembles. The ensemble approach
resulted in an improved AUC of 0.71 with a 72% accuracy using SCAV. Again, the mod-
els with best accuracy and best AUC were obtained with the proposed voting scheme.
This was the best AUC that could be obtained for the KRAS mutation with the machine
learning models.
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Table 6. KRAS mutation prediction best results on Test dataset, ensembles.

Ensemble Combination Classifiers Accuracy Sensitivity Specificity AUC

Ensemble SCAV thresh 8
(10 models) SVM, nnet 0.72 0.20 0.89 0.71

Ensemble SCAV thresh 6
(10 models) SVM, nnet 0.73 0.30 0.87 0.69

Ensemble Average
(5 models) SVM 0.70 0.35 0.81 0.67

Ensemble Maximum
(5 models) SVM 0.70 0.40 0.80 0.66

Ensemble Average
(10 models) SVM, nnet 0.66 0.35 0.76 0.65

3.3. Convolutional Neural Networks: EGFR Mutation

The best results of EGFR mutation prediction applying CNNs on the Test set are
presented in Table 7. Please refer to the Supplementary Material (Table S5. EGFR Mutation
Best Results, CNNs) for the results on the Train set. It can be observed that all the best
results were obtained with SGD as optimizer; this suggests that SGD can be a good choice
when dealing with small datasets with small CNN architectures. The best result was
obtained with Architecture 4, which is presented on Figure 4. This model had an AUC
of 0.846 and an accuracy of 0.800. This was the best AUC that could be obtained for the
EGFR mutation.

Table 7. EGFR mutation best results on Test dataset, CNNs.

Model Optimizer Learning Rate Epochs Accuracy Sensitivity Specificity AUC

Arch. 4 SGD 0.0005 30 0.800 0.667 0.846 0.846

Arch. 6 SGD 0.0005 30 0.771 0.222 0.961 0.752

Arch. 1 SGD 0.01 8 0.400 1.000 0.192 0.688

Arch. 6 SGD 0.01 10 0.657 0.666 0.654 0.675

Arch. 3 SGD 0.01 7 0.543 0.778 0.461 0.671

Arch. 4 SGD 0.01 10 0.543 0.778 0.461 0.628

Arch. 1 SGD 0.01 30 0.514 0.778 0.423 0.623

Arch. 2 SGD 0.01 30 0.542 0.667 0.538 0.571

Arch. 4 SGD 0.01 20 0.600 0.444 0.654 0.559

After the base CNN models were obtained, an ensemble of the best CNN models
was created. Table 8 presents the results of the best ensembles of CNN models. The best
result in terms of AUC was 0.820 and an accuracy of 0.828, this result was obtained with
a combination of the three best models and SCAV. An even better accuracy (0.857) was
obtained with the combination of the five best models. This was the best accuracy for the
EGFR mutation. Even if in this case there was not an increase in performance in terms of
AUC, a better accuracy was obtained by applying SCAV.
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Table 8. EGFR mutation best results on Test dataset, ensembles of CNNs.

Model Accuracy Sensitivity Specificity AUC

Ensemble (3 models) SCAV thresh 3 0.828 0.667 0.885 0.820

Ensemble (5 models) SCAV thresh 5 0.857 0.667 0.923 0.778

Ensemble (3 models) Average 0.486 0.778 0.385 0.743

Ensemble (5 models) Average 0.628 0.778 0.577 0.641

Ensemble (3 models) Maximum 0.371 0.778 0.231 0.624

3.4. Convolutional Neural Networks: KRAS Mutation

The best results of KRAS mutation prediction using CNNs on the Test set are presented
in Table 9. The results on the Training set can be found in the Supplementary Material
(Table S6. KRAS Mutation Best Results, CNNs). Analyzing the results for KRAS, we can
see there is not a model that performs well according to all three metrics. The best result
according to AUC is 0.739, however the sensitivity of this model is zero, so none of the
mutant cases were detected. The model with the best accuracy has 72.2% and a sensitivity
of 0.25, so it is a more balanced result, however the AUC is only 0.566.

Table 9. KRAS mutation best results on Test dataset, CNNs.

Model Optimizer Learning Rate Epochs Accuracy Sensitivity Specificity AUC

Arch. 1 SGD 0.01 60 0.667 0.000 1.000 0.739

Arch. 6 Adam 0.005 10 0.333 1.000 0.000 0.607

Arch. 6 Adam 0.001 10 0.667 0.000 1.000 0.593

Arch. 1 Adam 0.005 15 0.722 0.250 0.958 0.566

Arch. 1 SGD 0.01 90 0.667 0.000 1.000 0.555

Arch. 1 SGD 0.01 10 0.555 0.667 0.500 0.531

In order to improve the results, an ensemble of the best CNN models was created.
Table 10 shows the best results with ensembles of CNNs. The best AUC that could be
obtained in this stage was 0.778, which was obtained with an ensemble of the three best
models and average voting. This was the best AUC that could be obtained for the KRAS
mutation. This was the only stage where the best results in terms of AUC were not obtained
with SCAV; however, an equal accuracy could be obtained applying SCAV with the best
three models.

Table 10. KRAS mutation best results on Test dataset, ensembles of CNNs.

Model Accuracy Sensitivity Specificity AUC

Ensemble (3 models) Average 0.722 0.250 0.958 0.778

Ensemble (3 models) SCAV thresh 2 0.722 0.250 0.958 0.722

Ensemble (4 models) SCAV thresh 3 0.722 0.250 0.958 0.642

Ensemble (7 models) SCAV thresh 4 0.694 0.416 0.833 0.618

Ensemble (7 models) SCAV thresh 5 0.694 0.083 1.000 0.604

4. Discussion
4.1. EGFR Mutation

Several observations can be made from these results. Our first observation is that
for the machine learning models, the use of SMOTE greatly improves the performance of
the models when dealing with unbalanced datasets. Without the SMOTE algorithm, the
sensitivity was zero, but while using it several of the mutant cases were properly detected.
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For the EGFR mutation, good results could be obtained with the machine learning approach;
however, despite the small training dataset, better results could be obtained with CNNs.
In both cases, the base models could be improved by using ensembles. For the machine
learning models, the best base performance was with ReliefF as feature selector, 15 features,
and SVM as the classifier.

For the machine learning approach, better results in terms of accuracy, sensitivity,
and AUC could be obtained with different combinations of ensembles and SCAV. The best
features in the sense that they were more commonly selected in the best machine learning
models are: 3D Wavelet features, 3D Laws features, GLSZM Grey level variance, 90th
percentile, GLSZM Small zone low grey level emphasis, Flatness, Asymmetry, Orientation,
and Surface to volume ratio.

In the tests applying CNNs, the best performance of the base models was with
Architecture 4 and SGD as the optimizer. After applying ensembles, we got an improvement
in accuracy. This result was obtained using our proposed voting scheme, SCAV. In general,
we obtained better results working with CNNs than with the machine learning models.
We also observed that the ensembles with SCAV outperformed the ones with average and
maximum voting. This suggests that the proposed scheme can obtain better performance
when applying ensembles, even if the performance of the base models is not optimal.

Our results, where features are extracted automatically, while slightly less than the
AUC of 0.89 obtained by Gevaert et al. [5] with the same dataset, did not require medical
experts to produce semantic features. However, our AUC is superior to the ones obtained
by other previous works with an automated approach. Other metrics such as accuracy
were not reported and cannot be compared.

4.2. KRAS Mutation

For the base classifiers of the machine learning approach, good results could be
obtained both with the ReliefF feature selector and the Mann–Whitney test. The best AUC
was obtained with a model of ReliefF’s best five features and SVM as the classifier. The
best features in the sense that they were more commonly selected in this model were 3D
Laws features, 3D Wavelet features, average GLN Grey level non-uniformity, and GLSZM
Grey level non-uniformity. With the ensemble approach, an important increase in the
performance was obtained by applying SCAV as the voting scheme. The best results with
ensembles and machine learning models were always obtained with SCAV as the voting
scheme. This shows that ensembles can significantly improve the performance of classifiers.

For the CNN models, there were no models that achieved high scores in all the three
metrics (accuracy, sensitivity, and AUC). The best AUC was obtained with Architecture 1
and SGD as the optimizer, and the best accuracy was with Architecture 1 and Adam as the
optimizer. After applying ensembles of CNN models, the performance improved in AUC
and the accuracy was maintained. In this case, the best result was obtained with average
voting; however, the second best result was obtained with SCAV. It can be observed that in
terms of AUC, better results could be obtained with CNNs over machine learning models.
In both cases, an improvement was observed with the ensemble approach.

If we compare these results with the ones obtained by Gevaert et al. [5] with the same
dataset, the authors could not find a conclusive model for KRAS mutation with semantic
features (AUC of 0.55). We did find a good predictive model for KRAS mutation on the
same dataset with an AUC of 0.778 and using a deep learning approach that does not need
human input to generate features.

4.3. Limitations

A limitation of this study is the small dataset. Furthermore, even if separate training,
validation, and test datasets are used, it would be more conclusive if the trained model
could be tested on a dataset from a different source, which would prove the generalization
of the model. Both these limitations will be addressed as future work, when more data that
fits the requirements of the study is available. Finally, for the machine learning approach,
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because we chose features on each fold of a cross validation, the very best set is the one
that occurred most often and could differ when more data is available.

5. Conclusions

In this study, we analyzed the effectiveness of using ensembles in the prediction of
EGFR and KRAS mutations using a small dataset; in particular, we assessed the perfor-
mance of a novel voting scheme SCAV. We tested this scheme with both ensembles of
machine learning models and ensembles of CNNs and a significant improvement from the
base classifiers was observed.

For the EGFR mutation, the performance of our model was similar to that obtained by
Gevaert et al. with the same dataset, and our model did not require semantic features man-
ually specified by a radiologist. Further, our best model obtained a higher AUC than the
ones presented by the most recent works that used deep learning [17] and nomograms [18].

For the KRAS mutation, the results are much better than the ones obtained in [5],
where a conclusive model for KRAS mutation could not be found for this same dataset.
Moreover, this is probably the best result for the KRAS mutation prediction that can be
found in the literature, since most works only focus on the EGFR mutation.

In general, for both mutations, better results were be obtained by applying ensembles
with SCAV as the voting method, rather than average and maximum voting; however, a
more rigorous method to determine the best threshold is still necessary. This work indicates
that applying ensembles and SCAV for voting may lead to a significant increase in the per-
formance of the base models, both for machine learning and deep learning models, which
offers a good strategy to handle small datasets when no more data is available. Furthermore,
higher sensitivity was obtained when applying the SMOTE algorithm for the machine
learning models, which is an effective strategy to handle unbalanced classification datasets.

This work showed novel ways to use ensembles of CNNs and non-neural classifiers
on small data to achieve state-of-the-art results. Our proposed approach, which is to
use ensembles with SCAV, shows in this study that the performance of classifiers can be
improved, even when the base models do not perform that well, and this is an important
contribution from this paper. Since larger datasets will enable better models, we firmly
believe that if our approach is applied with more data it will yield outstanding performance
and may generate models that can be used in clinical practice. This indicates a promising
future for detecting these mutations in a non-invasive way.
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