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Abstract

The postnatal subventricular zone (SVZ) contains proliferating neural progenitor cells in close proximity to blood vessels.
Insults and drug treatments acutely stimulate cell proliferation in the SVZ, which was assessed by labeling cells entering S
phase. Although G1-to-S progression is metabolically demanding on a minute-to-hour time scale, it remains unknown
whether increased SVZ cell proliferation is accompanied by a local hemodynamic response. This neurovascular coupling
provides energy substrates to active neuronal assemblies. Transcardial dye perfusion revealed the presence of capillaries
throughout the SVZ that constrict upon applications of the thromboxane A2 receptor agonist U-46119 in acute brain slice
preparations. We then monitored in vivo blood flow using laser Doppler flowmetry via a microprobe located either in the
SVZ or a mature network. U-46119 injections into the lateral ventricle decreased blood flow in the SVZ and the striatum,
which are near the ventricle. A 1-hour ventricular injection of epidermal and basic fibroblast growth factor (EGF and bFGF)
significantly increased the percentage of Sox2 transcription factor-positive cells in S phase 1.5 hours post-injection. This
increase was accompanied by a sustained rise in blood flow in the SVZ but not in the striatum. Direct growth factor
injections into the cortex did not alter local blood flow, ruling out direct effects on capillaries. These findings suggest that an
acute increase in the number of G1-to-S cycling SVZ cells is accompanied by neurometabolic-vascular coupling, which may
provide energy and nutrient for cell cycle progression.
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Introduction

In the adult brain, neuronal activity dictates transfer of oxygen

and nutrients from circulation into active neuronal assemblies

through a local ‘‘neurovascular coupling’’ process described long

ago [1]. Such coupling results in a local hemodynamic (i.e.

increased blood flow and volume) and metabolic (i.e. increased

cerebral oxygen consumption) responses in activated regions that

form the basis of functional magnetic resonance imaging [2]. The

adult brain also contains two neurogenic zones rich in neural

progenitor cells (NPCs) and neuroblasts in all animal species

examined, including humans [3–6]. The largest pool of NPCs is in

the subventricular zone (SVZ) along the lateral ventricle that

contains a large network of blood vessels [6–9]. Although SVZ

cells do not generate action potentials, they are active in terms of

entering and progressing through the cell cycle, which is a

metabolically demanding process ([10,11] for reviews). In

particular, the G1 phase of the cell cycle contains restriction

points or checkpoints that are sensitive to growth factor

stimulation and nutrient availability necessary for cell growth

including DNA replication and protein synthesis (for review see

[12]). These latter processes are ATP-dependent and occur on a

minute-to-hour time scale [13–15].

At any given time, about 15–20% of SVZ cells are actively

cycling as assessed by labeling with the nucleoside analog

bromodeoxyuridine (BrdU), which is taken up during S phase

(e.g. [16,17]). Nutrients and metabolites supplied through blood

perfusion may be sufficient to maintain basal cell proliferation.

However, insults (e.g. seizures) and drug treatments acutely

increase SVZ cell proliferation as shown by an increase in the

percentage of BrdU-positive cells as short as 2–4 hrs post-insult or

treatment [18,19] (for review see [20]). Although such an acute

increase in cell proliferation is expected to require increased

nutrient availability for G1 and G1-S progression on a minute-to-

hour time scale, a correlated hemodynamic response has not been

examined.
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Here, we examined whether an acute increase in the number of

G1-to-S cycling cells in the SVZ is accompanied by a local change in

blood flow. We used laser Doppler flowmetry (LDF), which is a well-

established method to monitor cerebral blood flow [21] and is very

sensitive for even short dynamic blood flow changes [22]. Cell cycle

progression and entry into S phase are stimulated by the application

of growth factors (EGF and bFGF). EGF and bFGF are well known

to increase cell proliferation in the SVZ, and EGF activates the

mammalian target of rapamycin (mTOR) pathway known to be

necessary for progression through G1 and into S [12,23–27].

Results

SVZ capillaries constrict upon U-46119 application in
acute slices

Blood vessels were visualized by either staining for the endothelial

cell marker PECAM in fixed section (Figure 1A) or by imaging the

fluorescence of transcardially perfused Texas Red dextran (TR-

dextran) prior to preparing acute murine slices (Figure 1B). Co-

immunostaining for PECAM and the astrocytic marker glial fibrillary

acidic protein (GFAP) in a horizontal section illustrates a capillary bed

throughout the SVZ (Figure 1A). In these sections, the SVZ is easily

distinguished from the striatum by long GFAP-positive processes that

span the SVZ from ventricle to capillaries. In acute sagittal slices, red

fluorescent arterioles are visible at the junction between the striatum

and the SVZ, which displays lipid droplets in ependymal cells

(Figure 1B). Arterioles branched into capillaries, which enter the

SVZ. Blood vessels were identified as capillaries based on their small

diameters (4.660.4 mm, n = 30 vessels) and the lack of smooth muscle

cells, which are visible on arterioles (white arrow, Figure 1B). We

next examined whether SVZ capillaries contain pericytes, which are

contractile cells and the functional equivalent of smooth muscle cells

found on arterioles [28,29]. We immunostained for the chondroitin

sulphate proteoglycan NG2, a marker of pericytes. Although NG2 is

also a marker of oligodendrocyte precursor cells (OPC) [30], NG2-

positive pericytes have strikingly different morphology from OPCs

and lie juxtaposed to capillaries in the SVZ (Figure 1C). Finally, to

examine whether SVZ capillaries could display a hemodynamic

response, we applied the thromboxane A2 receptor agonist U-46119

known to constrict capillaries in mature brain networks in acute slices

[31]. Capillary diameters were monitored with time-lapse imaging in

acute slices from 1 month old mice before, during, and after U-46119

applications. Capillary diameters decreased by 19.061.1% (n = 3

capillaries, Figure 1D and E). Collectively, these data suggest that

the SVZ contains a bed of capillaries that contain the necessary

machinery to elicit a hemodynamic response.

Blood flow measurements in vivo using LDF
To monitor blood flow in vivo, we used a LDF microprobe with a

,100 mm sampling radius. The tip of a drug- and cell tracker

Figure 1. U-46119 constricts SVZ capillaries in acute slices. (A) Z-stack projection of GFAP staining (green, mature and SVZ astrocytes) and
PECAM (red, blood vessels) in a horizontal section. The dashed lines encompass the SVZ. LV: lateral ventricle. (B) Texas Red (TR)-Dextran-filled vessels
coursing through the SVZ in a live sagittal section. An arteriole (arrow) branches into capillaries. Note the presence of capillary branchpoints
(arrowheads). Inset: zoom of the region delineated by the white rectangle in B. The white arrow points to the smooth muscle cells around the
arteriole. (C) Z-stack projection of NG2 (green) and PECAM (red) immunofluorescence in a coronal section. NG2 cells on capillaries are pericytes
(arrows). (D) Image of the capillary before (control) and during U-46119 (100 nM) application. The capillary was loaded with TR-Dextran through
cardiac perfusion prior to slicing. The green arrows indicate the sites of constriction. (E) Mean % change in blood vessel diameters during and after U-
46119 applications. Scale bars: 30 (A), 50 (B), 40 (C), and 15 mm (D).
doi:10.1371/journal.pone.0031960.g001

Blood Flow and Proliferation in the SVZ
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green-filled Hamilton syringe was inserted into the lateral ventricle

to inject drug and label the site of drug application. The

microprobe was located either in the SVZ (,50 mm from the

lateral ventricle, as shown in Figure 2A after removal) or in the

striatum to test whether a hemodynamic response could be reliably

monitored following U-46119 application in ,4 month old mice.

U-46119 is known to decrease blood flow in vivo [32,33].

Injections of U-46119 (100 nM, 20–30 s) led to a significant

20.864.7% decrease in blood flow in the striatum in 9/9 animals

(Figure 2B). In 4/9 animals, a transient increase in blood flow

preceded the progressive decrease, which may be due to a

transient dilation of some arterioles as recently shown in slices

[32]. U-46119 injections into the lateral ventricle led to a

significant 19.665.5% decrease in blood flow in the SVZ (n = 3,

Figure 2C). In each case, the probe location was verified post-

recording in serially cut coronal sections (Figure 2A). Collectively,

these data suggest that blood flow can be monitored and regulated

in the SVZ in vivo.

Growth factor infusion induced increases in SVZ cell
proliferation and blood flow

To examine whether a change in blood flow was correlated with

increased cell proliferation, we applied a combination of two

growth factors, EGF and bFGF (each at 0.5 mg/ml) for 30 min in

4–5 weeks old rats. These growth factors are well known to

stimulate cell proliferation [24,25,27,34]. In addition, EGF

activates the mTOR pathway known to be necessary for

progression through G1 and into S, which takes ,2 hours

according to previous work [23,26,35] (for review see [12]).

To examine the effect of growth factor injection on the number

of S phase-entering cells, animals were injected with ethynyl

deoxyuridine (EdU) at the end of growth factor injection one hour

before the end of the experiments. Like BrdU, EdU is a nucleoside

analog of thymidine and is incorporated into DNA during active

DNA synthesis (i.e. S phase) [36]. There was a significant (60%)

increase in the number of cycling cells following growth factor

injections in the ipsilateral compared to contralateral SVZ (n = 4

animals, Figure 3A–C). The saline-injected ipsilateral and

growth-factor injected contralateral exhibited the same density of

EdU positive cells (Figure 3B). We co-stained for Sox-2, which is

preferentially expressed by neural progenitor cells in the SVZ [37],

some of which express EGF receptors [38]. We also stained for the

neuroblast marker doublecortin (DCX). There was a significant

almost 2-fold increase in the percentage of Sox2+ cells that were

EdU+ in the GF-injected side (ipsilateral 29% compared to saline

injected or contralateral (both ,17%) (Figure 3D–E). There was

no significant change in the percentage of DCX+ cells that co-

stained for EdU (8.661.1% ipsilateral versus 10.261.7%

contralateral, p = 0.3, n = 4 animals, data not shown).

The 30 min-injection of growth factors into the lateral ventricle

led to a progressive increase in blood flow in the SVZ to a

maximum 151633% of control (n = 4, p,0.0001, red, mean

obtained from 60 to 90 min post-infusion, Figure 4A and B).

The increase reached a plateau at ,50 min and remained

elevated until the end of the recordings (90 min post-infusion).

Growth factor injections in the lateral ventricle did not change

blood flow in adjacent structures (striatum/corpus callosum, n = 6,

grey). Control injections of growth factors into the cortex, which

has almost no proliferative cells under normal conditions or

following growth factor injection, did not lead to change in blood

flow in these regions (n = 9, black, Figure 4A and B). These latter

experiments rule out a direct effect of growth factors on blood

vessels.

Discussion

Our findings report for the first time that the SVZ contains

capillaries with the necessary machinery to increase or decrease

vessel diameters, resulting in local blood flow changes that can be

monitored in vivo using LDF. Most significantly, we found that a

growth factor-induced increase in the number of G1-S cycling cells

was accompanied by a progressive increase in blood flow

suggestive of local neurometabolic-vascular coupling in the SVZ.

Previous studies reported the presence of blood vessels including

capillaries in the SVZ [7,8]. Our study further confirms the

presence of capillaries with specialized smooth muscle cells called

pericytes in the SVZ. In addition, our data reveal that SVZ

capillaries constrict upon application of the thromboxane receptor

agonist U-46119 in acute slices, as recently reported in mature

neuronal network (cerebellum and striatum) [31]. These findings

Figure 2. U-46119 decreases blood flow in the SVZ in vivo. (A) Image of a coronal section containing the SVZ (delineated by the dashed red
line) and the track (black shadow) where the LDF microprobe was located. The blue circle highlights the recorded area. (B and C) Mean % change in
blood flow (6 SEM) against time that were obtained in the striatum (B) and SVZ (C) during and following U-46119 injections (1 ml, 100 nM, 20 s) into
the lateral ventricle.
doi:10.1371/journal.pone.0031960.g002
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Figure 3. EGF and bFGF increases the number of G1-S cycling SVZ cells that express Sox2. (A) Grayscale image of EdU staining in the SVZ
in coronal sections from animals that received growth factors (GF) or saline injections. (B) Bar graphs of the number of EdU+ cells per mm3 in the SVZ
under different conditions (saline injection or GF injected in the ipsilateral (ipsi) ventricle). (C) % of control for the number of EdU+ cells in the
ipsilateral versus contralateral (contra) SVZ. (D) Confocal photographs of EdU (green) and Sox2 (red) immunostaining. Arrows point to double-
positive cells in the SVZ. (E) Bar graphs of the % of Sox2+ cells that were EdU+ under different conditions.
doi:10.1371/journal.pone.0031960.g003

Figure 4. Growth factors increase blood flow selectively in the proliferative neurogenic zone. (A) % change in blood flow (BF, 6SEM)
from baseline plotted against the recording time during and following growth factor (GF, including EGF+bFGF) injections in the lateral ventricle (LV)
or locally where the LDF was recorded (e.g. cortex). (B) Bar graphs of the maximum % BF change in different regions following GF injections into the
LV locally.
doi:10.1371/journal.pone.0031960.g004

Blood Flow and Proliferation in the SVZ
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are consistent with recent studies showing that capillaries have the

ability to constrict and dilate through pericytes [28,29,31](for review

see [39]). Consistent with these data, application of U-46119 in vivo

reliably decreased blood flow in the SVZ that was monitored using a

LDF microprobe. Collectively, time-lapse imaging in acute slices

and LDF recordings in vivo suggest that the neurogenic SVZ has the

proper vascular machinery to locally regulate blood flow.

Injections (30 min) of the growth factors EGF and bFGF

induced a relatively rapid increase (in 1–2 hrs) in the number of

cells progressing through G1 and entering S phase as shown using

labeling for EdU. Such an increase in G1-S cycling cells had been

reported following an insult (seizure) and serotoninergic receptor

activation [18,19]. The G1 phase of the cell cycle contains

checkpoints where cells stop progressing through the cell cycle (i.e.

cell cycle arrest) (for review see [12]). Upon growth factor

stimulation and/or nutrient exposure, cells will progress through

G1 and enter S, which can take a couple of hours [40](for review

see [12]). This checkpoint has been shown to be dependent on

activation of mTOR, which is activated by EGF in SVZ cells

[23,26]. Thus, our data suggest that the SVZ contains cells that

are arrested in G1 and can quickly progress through a G1

checkpoint and enter S phase upon EGF and bFGF exposure.

Progressing through G1 and entering S phase are ATP-

dependent processes that occur on a minute-to-hour time scale

[13–15]. We thus examined whether the acute growth factor-

increased elevation in G1-S cycling cells would be accompanied by

a change in blood flow necessary for increased metabolite and

nutrient availability. Our data show that growth factor injections

were followed by a local increase in blood flow in the SVZ but not

in non-neurogenic zones (e.g. cortex or striatum). Nevertheless, it

remains to be explored whether SVZ and cortical capillaries could

display differential responses to growth factor injections that would

contribute to some of the blood flow changes.

Collectively, these data suggest that increased number of G1-S

cycling cells in the SVZ is accompanied by a local neurometabolic-

vascular coupling. It remains unknown how such coupling occurs

in the SVZ. In mature networks, both neurons and astrocytes can

participate in such coupling [39]. This will need to be examined in

the SVZ, which contains specialized astrocytes with stem cell

features that contact capillaries [7,8,41,42].

Materials and Methods

Animals
Experiments were performed in 1 month old mice, 25–30 g

CD1 mice (,4 months old), and 55–75 g Sprague-Dawley rats (4–

5 weeks old, Charles River Laboratories, MA). Mice were used for

experiments with U-46119 applications in slices and in vivo. The

growth factor experiments were all performed in rats.

Ethics Statement
Protocols were approved by the Yale University Institutional

Animal Care and Use Committee.

Immunostaining and 5-ethynyl-29-deoxyuridine (EdU)
experiments

Immunostaining was performed in free-floating 100 mm-thick

slices as described [43]. The primary antibodies include: rabbit

anti-GFAP (1:1000, Dako), rat anti-PECAM (1:100, BD Biosci-

ences), rabbit anti-NG2 (1:200, Chemicon), and rabbit anti-Sox2

(1:200, Abcam). Z-section images were acquired on a confocal

microscope (FluoView 1000) with a 206dry objective (N.A. 0.75),

analyzed using Imaris 4.0 (Bitplane AG) and reconstructed in

Photoshop CS3. Staining for EdU positive cells was performed

using the Click-iT EdU Cell proliferation assay (Invitrogen)

followed by Sox2 immunostaining.

Acute brain slice preparation
Animals were deeply anesthetized with pentobarbital (50 mg/kg).

After dissection, sagittal brain slices (250–300 mm) were prepared in

chilled (4uC) dissection solution (in mM): 25.2 NaCl, 176 Sucrose,

2.5 KCl, 5 MgCl2, 1.2 CaCl2, 1.2 NaH2PO4, 10 Glucose, 26

NaHCO3, pH 7.4 bubbled with 95% O2/5% CO2. Slices were

incubated for .1 hr in oxygenated artificial cerebrospinal fluid

(aCSF) at room temperature (in mM): 125 NaCl, 2.5 KCl, 1 MgCl2,

2 CaCl2, 1.25 NaH2PO4, 10 Glucose, and 26 NaHCO3, pH 7.4.

Slices were transferred to a chamber and continuously superfused

(,1 ml/min) with oxygenated aCSF at 32–34uC on the stage of an

Olympus BX61 upright microscope equipped with a confocal

microscopy (Fluoview 300) and 606objective.

Imaging and analysis of changes in capillary diameters,
and U-46619 application

Vessels were loaded with 70 kDa Texas Red-dextran (TRD,

Molecular Probes) through transcardial perfusion (200–400 ml at

12.5 mg/ml). Blood vessels were imaged .20 mm below the slice

surface and identified as capillaries by their small diameter

(,10 mm) and lack of smooth muscle cells. Blood vessels were

visualized with confocal imaging using a 543 nm-laser. To

measure vessel diameter over time, we determined the width of

TRD fluorescence at every time-point of a time-lapse movie by

drawing a line perpendicular to the vessel wall (line scan) and

obtaining a reslice image using Image J. A custom-coded program

(written by BL) in MATLAB (MathWorks, Inc.) automatically

determined vessel diameter.

U-46619 was pressure applied (,3 psi) above the slice using a

Picospritzer II (General Valve, NJ). All drugs and chemicals except

those mentioned above were purchased from Sigma.

LDF measurements, in vivo growth factors and EdU
injection

Animals were anesthetized with intraperitoneal injection of

100 mg/kg ketamine-10 mg/kg xylazine and placed on a stereo-

taxic device (Kopf, Inc, RBM-1T). Scalp was retracted and two

small burr holes (0.6 mm) were drilled for inserting the LDF

microprobe (Oxford Optronics, UK) and a 33G needle with

Hamilton syringe containing a drug and Cell Tracker Green. The

probe diameter was 400 mm (two 200 mm-diameter glass fibers) and

the centered inter-optode distance was 200 mm giving an estimated

sampling volume of 0.02 ml. The probe was inserted near the SVZ

(0.4/1.0 mm anterior to Bregma, 2.1/1.29 mm lateral to the

midline, 3.0/2.1 mm ventral from the pia at a 7.1/8u angle for rats/

mice) and the syringe into the lateral ventricle (0.4/1.0 mm, 2.75/

1.53 mm, 5.4./3.59 mm at 52.9/42.4u angle for rats/mice). For

cortical experiments, the respective probe and syringe coordinates

were 1.0/1.0 mm posterior, 1.5/2.3 mm, and 0.8/0.9 mm at 30u
angle. The animal vital signs were monitored with small animal

plethysmograph on the footpad (MouseOx, Starr Life Sciences).

Immediately following the experiments, the brains were removed

and fixed in 4% paraformaldehyde to prepare serial sections and

visualize penetration tracts and dye diffusion.

Recordings were continuous for 2 hours with three cycles of

1 ml U-46619 injection (Tocris) into the ventricle or a 30 min-

injection of growth factors EGF and bFGF (PeproTech) at

0.5 mg/ml each and 10 ml/hour. EdU (50 mg/kg) intraperitoneal

injections were given at the end of growth factor infusion, one

hour prior to sacrifice.

Blood Flow and Proliferation in the SVZ
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LDF analysis
The LDF signal was recorded and analyzed with Spike2

program (CED, Cambridge, UK). Control recordings prior to

drug application were .30 min. The LDF signals were recorded

at 50 Hz. The final time series were calculated as root mean

square values of every 2 minute period. The percent changes were

obtained by normalizing values to the baseline mean (2 min before

drug injection) and the mean percent change was calculated from

the last 5 min period of the record.

Statistical analysis
Data were presented in Origin 8.0. Statistical significance was

determined using the unpaired Student’s t-test (p,0.05) in KyPlot

2.0. Data are presented as mean 6 standard error of the mean

(SEM).
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