
INTRODUCTION

Visual information processing in the retina has been actively in-
vestigated by exploring the relationship between light stimulation 
(input) and retinal ganglion cell (RGC) spiking (output). RGCs fire 
action potentials in response to a change in a specific visual stimu-
lus (i.e., light contrast [1-3], direction [4-7], color [8, 9], etc.) in a 
spatially localized area called the receptive field (RF). Character-
izing RGC RFs is a crucial step for understanding their functional 
roles in visual information processing [1, 3, 10, 11]. 

One of the widely used methods for estimating the RF of a spik-

ing neuron is the spike-triggered average (STA), also called the 
reverse correlation [10, 12]. The STA is a linear estimate of a given 
neuron’s RF, is easily calculated, and has a simple and intuitive in-
terpretation. 

However, since the STA is based on a simple average, it fails to 
capture more complex RF structures. For instance, some RGCs 
respond to both ON and OFF stimulus patterns (ON-OFF cells) 
[12-14]. The physiological mechanism of such a bimodal response 
and its significance for visual information processing have been 
reported [5, 15-20]. Because ON and OFF stimulus patterns have 
similar spatiotemporal structures but opposite signs, they would 
cancel out in the STA analysis of an ON-OFF RGC. Thus, the STA 
provides little information about the actual RF of an ON-OFF 
RGC.

An alternative approach is based on the higher-order statistics of 
spike-triggered stimuli. For example, the spike-triggered covari-
ance (STC) is the covariance matrix of spike-triggered stimuli [12]. 
However, the STC generally provides too much information, and 
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therefore only a few significant STC eigenvectors are generally 
used to indirectly capture the structure of an RGC’s RF [12, 14, 
21-26]. Such significant STC eigenvectors could be interpreted as 
additional RGC functional filters not found in the STA. Including 
such filters improved the accuracy of reconstruction of the pre-
sented stimuli from the RGC spikes [12, 13]. 

However, STC-based analyses are computationally cumbersome 
[12]. Another issue with STC is that these eigenvectors provide 
only stimulus directions, to which a given RGC’s response var-
ies considerably. The potential problem lies in the interpretation 
of the eigenvector as a direction change for different RGC types. 
For example, for RGCs with unimodal RFs (such as ON and OFF 
cells), the eigenvectors provide the directions of the variability of 
the spike-triggered stimuli, providing a measure of RF specificity. 
In contrast, for RGCs with multi-modal RFs (such as ON-OFF 
cells), the first eigenvector indicates the direction along which 
the centers of ON and OFF responses are aligned. Such different 
interpretations of STC eigenvectors for different RGC types may 
hinder the adoption of STC-based analysis. 

Despite the wealth of studies using STC eigenvectors, a consen-
sus interpretation seems to be lacking [12, 14, 21-26]. For instance, 
Fairhall et al. [13] investigated the temporal structure of RGC RFs 
by STC analysis for rapidly changing but spatially uniform visual 
stimuli. They projected the spike-triggered stimuli onto a few sig-
nificant eigenvectors and proposed five RGC sub-types based on 
the projection distribution. However, the subtype classification was 
based on manual inspection of spike-triggered stimuli projected 
onto the two eigenvectors, which is subjective and prone to clas-
sification errors. Cantrell et al. [22] investigated the development 
of ON and OFF retinal pathways by quantifying the bimodality of 
the non-centered STC, and calculated the STC without subtract-
ing the average.  They interpreted the eigenvector corresponding 
to the largest eigenvalue of the non-centered STC as the direction 
of ON or OFF responses for ON or OFF RGCs, respectively, and 
as the separation of ON and OFF responses for ON-OFF cells. 
Based on the projections of the spike-triggered stimuli onto the 
largest eigenvector, they calculated STC-NC bias to measure the 
relative response strength to ON or OFF stimulus patterns, and 
the STC-NC bias values were used to classify RGC subtypes (ON 
when STC-NC bias>0.6, OFF when STC-NC bias<-0.6, ON-OFF 
otherwise). However, they also admitted that this STC-NC bias 
was unreliable when the ON and OFF responses of an RGC are 
unbalanced (Fig. 4C in [22]).

Therefore, to overcome these limitations, we developed an alter-
native approach to analyze RGC RFs based on an unsupervised 
learning technique. Instead of providing a simple average such as 
the STA or a second-order moment such as the STC, we aimed to 

group spike-triggered stimuli into multiple clusters and provide 
information about cluster centers, especially with regard to the 
separation of ON- and OFF-centers in the RFs of ON-OFF cells. 

The proposed method was motivated by the limitations of in 
vitro retinal experiments. To investigate retinal network functions, 
researchers typically aim to collect as many RGCs as possible 
from each retinal patch. However, ~70% of RGCs are identified by 
spike sorting as ON or OFF RGCs based on evident ON or OFF 
stimulus patterns, respectively, from STAs. The remaining ~30% of 
RGCs produce action potentials, each clearly identified by spike 
sorting, but the problem of determining the relationship between 
such spikes and the input stimuli is intractable by STA. Usually, 
researchers label such RGCs as unknown cells and exclude them 
from the analysis. Thus, in this study, we explored novel means to 
identify RGCs other than classification as ON and OFF types to 
reduce the number of unknown cells discarded in further analysis. 
Therefore, we developed a practical tool to analyze RGC RFs by 
overcoming limitations of the STA (too simple to capture complex 
RF structures) and STC (computationally cumbersome and hard 
to interpret).

MATERIALS AND METHODS

Multi-electrode recordings of mouse RGCs 

Retinae from male mice at postnatal day 56 and later (>P56) 
(C57BL/6J strain; The Jackson Laboratory, ME, USA) were used 
in this study (n=4). The experimental protocols were approved by 
the Institutional Animal Care Committee of Chungbuk National 
University (approval no. CBNUA-1172-18-02). 

After a 20-min period of dark adaptation, visual stimuli were 
presented for 15 min as follows. A single visual stimulus frame 
consisted of 64 pixels (W =8 pixels for width and H =8 pixels for 
height) with a pixel width of 215 μm. Each pixel was indepen-
dently turned on or off with equal probability, encoded as 0.5 and 
-0.5, respectively. The mean light intensity was 3.8 μW/cm2. This 
random checkerboard stimulation was updated every 100 ms to 
match the highest temporal sensitivity (10 Hz) of mouse RGCs 
[27]. For a characterization of ON, OFF, or ON-OFF RGCs, we 
applied full-field illumination of 50 repeated trials of 4 s of a white 
screen followed by 4 s of a black screen. The mean light intensity 
was 40 μW/cm2.

RGC spikes were recorded using a 60-channel multi-electrode 
array (MEA). The data acquisition system (MEA60 system; Multi-
channel Systems GmbH, Reutlingen, Germany) included a planar 
60-channel, perforated MEA (60pMEA200/30iR), an amplifier 
(MEA1060), and temperature control units (TC01). The MEA 
contained 64 circular electrodes in an 8×8 grid with electrode di-
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ameters of 30 μm and inter-electrode distances of 200 μm. Multi-
electrode recordings of retinal activity were obtained from 59 
electrodes, excluding one reference electrode and four inactive 
electrodes, with a band pass from 1 to 3,000 Hz, a gain of 1,200, 
and a sampling rate of 25 kHz. This raw waveform was high-pass 
filtered with a 100-Hz cutoff, thresholded with a threshold four 
times the standard deviation of the background noise, and then 
spike-sorted using Offline SorterTM (Plexon Inc., TX, USA). Subse-
quent analysis was performed using custom-made Python codes 
and the Scikit-learn package [28].

Spike-triggered average and covariance

First, a spike-triggered stimulus was defined as the stimulus 
preceding a spike in a time window of T=700 ms. The time win-
dow included the boundary values (T=700 and 0 ms), resulting 

in eight visual stimulus frames. The time window size was chosen 
for the following two reasons. First, the length of STA waveforms 
in previous studies on mouse retinae was <1 s. Second, we calcu-
lated STAs with longer time windows and found that STA values 
beyond 700 ms were close to zero. Thus, the spike-triggered 
stimulus corresponding to a spike is a three-dimensional volume 
(W ×H ×T =8×8×8) of binary data. For notational convenience, 
each spike-triggered stimulus is concatenated into a 512-dimen-
sional vector and annotated by S (n), where n=1, 2, …, N indexes the 
corresponding spike and N is the total number of spikes. 

The spike-triggered average (STA) is then the spike-triggered 
stimuli averaged over all spikes:

700 ms were close to zero. Thus, the spike-triggered stimulus corresponding to a spike is a 160 

three-dimensional volume ( � × � × � = 8 × 8 × 8 ) of binary data. For notational 161 

convenience, each spike-triggered stimulus is concatenated into a 512-dimensional vector and 162 

annotated by �(�), where � = 1, 2,⋯ ,� indexes the corresponding spike and � is the total 163 

number of spikes.  164 

The spike-triggered average (STA) is then the spike-triggered stimuli averaged over all 165 

spikes: 166 

��� =

�

�

∑ �(�)�

���
. 167 

Intuitively, STA indicates the average stimulus pattern to which a given RGC is sensitive 168 

(blue square in Fig. 1B, inset). An STA has the same dimensionality (512) as a spike-169 

triggered stimulus, which allows easier interpretation. A given STA was quantified using the 170 

peak-to-peak difference, defined as the difference between the maximum and minimum STA 171 

values out of the 512 (Fig. 2A, top left).  172 

Similarly, the spike-triggered covariance (STC) is the covariance of spike-triggered stimuli: 173 

��� =

�

���

∑ (�(�) − ���)(�(�) − ���)��

���
, 174 

where [∙]
�
 represents the transpose of a given vector. Thus, each cell's STC is a 512 × 175 

512 matrix and conveys information about the ellipsoidal fit of spike-triggered stimuli (blue 176 

ellipse in Fig. 1B inset). STC eigendecomposition further reveals the major axes of this 177 

ellipse. The two largest eigenvalues ( �
�

 and �
�

) of the STC and the 178 

corresponding eigenvectors (�
�
 and �

�
) were identified. 179 

Using the STA, RGCs were manually classified into three types: ON, OFF, and unknown. 180 

Classification criteria were as follows: An RGC was classified as either ON or OFF if both 181 

temporal and spatial profiles showed a strong peak localized in time (typically about 200 ms 182 

before a spike) and space (close to the recorded electrode) with a preceding peak (typically 183 

about 300 ms before a spike) of the opposite sign. The sign of the former (closer in time to 184 

the spike) determines the cell type as ON or OFF. Otherwise, the RGC was labeled as of 185 

unknown type. 186 

  187 

Spike-triggered clustering analysis 188 

The proposed method, called spike-triggered clustering (STCL) analysis, comprises two 189 

stages of computations – dimension reduction and clustering (Fig. 1B), details of which are as 190 

follows. 191 

Fig. 1. Experimental setup (A) and the flowchart of STA, STC, and STCL analysis (B). Spike-triggered stimuli for an RGC with both ON and OFF 
stimulus patterns were numerically generated and visualized as a scatterplot for the first two stimulus dimensions (black dots in B), resulting in two sepa-
rable groups of spike-triggered stimuli. STA and STC failed to capture this bimodal RF structure because the STA (blue square in B) was far from the two 
stimulus groups’ actual centers, and the STC (blue ellipse in B) was stretched to include the two stimulus groups. In contrast, spike-triggered clustering 
analysis correctly identified the centers of the two stimulus groups (red triangle in B).
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Intuitively, STA indicates the average stimulus pattern to which 
a given RGC is sensitive (blue square in Fig. 1B, inset). An STA has 
the same dimensionality (512) as a spike-triggered stimulus, which 
allows easier interpretation. A given STA was quantified using the 
peak-to-peak difference, defined as the difference between the 

maximum and minimum STA values out of the 512 (Fig. 2A, top 
left). 

Similarly, the spike-triggered covariance (STC) is the covariance 
of spike-triggered stimuli:
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the opposite sign. The sign of the former (closer in time to the 
spike) determines the cell type as ON or OFF. Otherwise, the RGC 
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Spike-triggered clustering analysis

The proposed method, called spike-triggered clustering (STCL) 
analysis, comprises two stages of computations – dimension re-
duction and clustering (Fig. 1B), details of which are as follows.
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where [.] represents the inner product of the two vectors. The in-
ner product would have a negative sign if the two cluster centers 
showed responses with opposite signs. The absolute value of the 
inner product is greater when the cluster centers are more dissimi-
lar. Thus, a negative inner product with a large absolute value is a 
strong indicator of an ON-OFF RGC.

Criteria for choosing spike number for analysis

STC and spike-triggered clustering were performed only for 
RGCs with sufficient spikes (>4×stimulus dimension=2048), be-
cause the eigendecomposition becomes unstable and incorrect 
when sample size is less than 4 times of the data dimension. Thus, 
STC also requires far more spikes than does STA [12, 25]. There-
fore, we used 171 RGCs with >2048 spikes to compare STA, STC, 
and STCL.
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Availability of analysis software

Python code for STA and STC spike-triggered analysis and for 
the proposed clustering analysis is publicly available at https://
github.com/ys7yoo/pysta2.

RESULTS

STA classification of RGC types 

In four mouse retinal patches, a total of 389 RGCs responded to 
the light stimulus. Based on the STA, these RGCs were classified 

324  

Fig. 3. STA, STC, and STCL comparison: ON RGC. (A) Scatterplot of dimension-reduced spike-triggered stimuli (dots), whose center is marked by the 
STA (blue square), with STC as the ellipse in blue. Using STCL, spike-triggered stimuli are clustered into two groups. One of the group centers (shown as 
red triangles) is closer to the STA with a smaller covariance (red ellipse in A) than the STC. (B) Shown are histogram of projections to the first eigenvec-
tor (v 1), which is unimodally distributed. (C) Temporal (left) and spatial (right) STA profiles clearly show the RGC’s ON response. The STC’s 10 largest 
eigenvalues are shown in (D), left column, inset, with no significantly large eigenvalues. As a result, the temporal (D, left) and spatial (D, right) profiles of 
the first STC eigenvector do not show any noticeable peak. Each row (E) shows the temporal (left) and spatial (right) profiles of a cluster center identified 
by STCL. The first cluster center (top) is similar to the STA, while the other (bottom) contains noise. (F) Shown are post-stimulus time histogram (PSTH) 
graphs of RGC response to full-field illumination of 4 s ON and 4 s OFF duration (time bin: 100 ms). The red horizontal line inside the PSTH graph in-
dicates one-sided 95% confidence interval.

https://github.com/ys7yoo/pysta2
https://github.com/ys7yoo/pysta2
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as ON (n=91, 23.4%), OFF (n=169, 43.4%), or unknown (n=129, 
33.2%) (Fig. 2B). Consistent with a previous study [30], more OFF 
RGCs were collected than ON.

Fig. 2A shows the STAs of representative ON (top), OFF (middle), 
and unknown (bottom) RGCs, where the left and middle columns 
show the temporal and spatial STA profiles, respectively. The 
temporal STA profiles of ON RGCs (Fig. 2A, top left) showed two 
prominent peaks (a negative peak at 300 ms before a spike, fol-
lowed by a prominent positive peak at 200 ms before a spike) con-
sistent with the typical ON stimulus pattern. The STA of this RGC 
showed a large peak-to-peak difference of 0.89. These positive 

and negative peaks were spatially localized in the upper left corner 
(Fig. 2A, top middle), consistent with the location of the recorded 
electrode. The example OFF RGC had an STA (Fig. 2A, middle) 
similar to that of the example ON RGC, except for a reversed po-
larity (peak-to-peak difference=0.45). In contrast, the unknown 
RGC type did not show any noticeable peaks in its STA (Fig. 2A, 
bottom; peak-to-peak difference=0.09). In addition, with full-field 
illumination, functional types of RGCs were classified (Fig. 2A, 
right). Post-stimulus time histogram (PSTH) graphs indicated that 
the RGC types for each row were ON, OFF, and ON-OFF, respec-
tively.

324  Fig. 3. Continued.



440 www.enjournal.org https://doi.org/10.5607/en20029

Jungryul Ahn, et al.

For classifying RGC types based on the STA, the peak-to-peak 
difference was a key feature. Fig. 2C shows the average peak-to-
peak difference for each RGC type with the standard error indi-
cated by the error bar. The peak-to-peak differences of ON and 

OFF RGCs were not significantly different (t-test, p>0.05), whereas 
those of the unknown RGCs were significantly less than those of 
ON and OFF RGCs (t-test, p<0.001).

372  

Fig. 4. STA, STC, and STCL comparison: unbalanced ON-OFF RGC. (A) Scatter plot of dimension-reduced spike-triggered stimuli, which appears to 
be a mixture of two blobs. The STA and STC are marked by a blue square and blue ellipse, respectively. The STCL analysis clusters the same data into 
two groups, whose centers and covariances are shown as red triangles and red ellipses, respectively. (B) Shown is a histogram of projections to the first 
eigenvector (v 1), plus a mixture of two overlapping modes with different strengths. (C) Temporal (left) and spatial (right) STA profiles showing the RGC’s 
ON responses. The STC’s 10 largest eigenvalues are shown in (D), left, inset, where the largest eigenvalue stands out from the others. However, the corre-
sponding eigenvector does not show any noticeable peak in the temporal (D, left) or spatial (D, right) profiles. (E) Each row shows the temporal (left) and 
spatial (right) profiles of a cluster center identified by STCL. The first cluster center (top), similarly to the STA, shows a strong ON response but a greater 
peak-to-peak difference than the STA. The other cluster center (bottom) shows a weaker OFF response not detected by either the STA or STC analysis. (F) 
Shown are post-stimulus time histogram (PSTH) graphs of RGC response to full-field illumination of 4 s ON and 4 s OFF duration (time bin: 100 ms). 
The red horizontal line inside the PSTH graph indicates one-sided 95% confidence interval.
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STA, STC, and STCL comparisons

In the following section, cell type classification results by STA, 
STC, and STCL are compared for representative RGCs. The first 
case (Fig. 3) demonstrates an example where STA and STCL clas-
sification results are in agreement. The other two cases (Figs. 4, 5) 
illustrate cases where cell type classification results by STA and 
STCL differ, and the latter shows more detailed spatiotemporal 
RFs.

Fig. 3 shows an exemplar RGC classified as ON by both STA and 
STCL. Fig. 3A shows the scatterplot of the dimension-reduced 
spike-triggered stimuli (r (n)), whose mean (STA) and covariance 

(STC) are represented as blue squares and ellipses, respectively. 
Clustering analysis divided r (n) into two groups, whose means and 
covariances are marked by red triangles and ellipses, respectively. 
One of the group centers is close to the STA with a covariance 
smaller than that of the STC. The other group is shifted toward the 
right. In Fig. 3B, the histogram of r 1

(n), which is the first dimension 
of r (n), appears to be unimodally distributed, with a dominating 
projection from the first group identified by the STCL.

For such an ON RGC, the STA and STCL produced similar RFs. 
Based on the STA, this cell was classified as an ON RGC because 
temporal (Fig. 3C, left) and spatial (Fig. 3C, right) STA profiles 

372  Fig. 4. Continued.
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show a strong ON response (peak-to-peak difference=0.62). 
However, STC analysis provided no further information. STC 
eigenvalues vary rather smoothly (Fig. 3D, left, inset), and the ei-

genvector corresponding to the largest eigenvalue does not show 
any noticeable peaks (peak-to-peak difference=0.24). In contrast, 
the first group center of the STCL shows a strong ON response (Fig. 

426  

Fig. 5. STA, STC, and STCL comparison: balanced ON-OFF RGC. Scatter plot of dimension-reduced spike-triggered stimuli (dots in A) showing two 
blobs, whose centers (red triangles in A) and covariances (red ellipses in A) are correctly identified by clustering analysis. In contrast, a classical STA (blue 
square in A) and STC (blue ellipse in A) treat the multi-modal spike-triggered stimuli as one chunk and fail to capture individual blobs. (B) Shown is a 
histogram of projections to the first eigenvector (v 1) showing two distinctive peaks, which correspond to multiple RF groups. In temporal (C, left) and 
spatial (C, right) STA profiles, this cell’s RF is hardly identifiable. (D) The STC’s 10 largest eigenvalues (left column, inset) show the largest eigenvalue 
standing out from the others. The corresponding eigenvector shows two peaks with opposite signs at 300 ms and 200 ms before a spike in the temporal (D, 
left) and spatial (D, right) profiles. However, because of the scale ambiguity of eigenvectors, the polarity of RGC types cannot be determined from STC 
analysis. In contrast, the temporal (left) and spatial (right) profiles of stimulus cluster centers identified by STCL analysis clearly separate ON (E, top) and 
OFF (E, bottom) responses. (F) Shown are post-stimulus time histogram (PSTH) graphs of RGC response to full-field illumination of 4 s ON and 4 s 
OFF duration (time bin: 100 ms). The red horizontal line inside the PSTH graph indicates one-sided 95% confidence interval.
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3E, top), with an even greater peak-to-peak difference (0.79) than 
the STA (0.62). The other group center does not show any notice-
able peaks (Fig. 3E, bottom; peak-to-peak difference=0.24). Thus, 
in this case, the STA and STCL classified the same RGC as an 
ON type, while the STCL further separated the stimulus-induced 
spikes (the first group) from the others (the second group). In ad-
dition, with full-field illumination, a functional type of the RGC 
was confirmed (Fig. 3F). The PSTH graph indicated that the RGC 
type was indeed ON.

Next, Fig. 4 shows an example RGC classified as ON by STA 
but as ON-OFF by STCL. Fig. 4A shows the scatterplot of the 
dimension-reduced spike-triggered stimuli (r (n)), which appears 
to include two overlapping groups. The STA (blue square) and 
STC (blue ellipse) considered r (n) as a whole and failed to capture 
the finer structure of r (n). In contrast, STCL correctly identified the 
centers of the two groups (red triangles) with smaller covariances 
(red ellipses) than STC. In Fig. 4B, the histogram of r 1

(n) appears to 
be bimodal with two overlapping modes with different strengths, 

426  
Fig. 5. Continued.
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consistent with the covariances’ relative sizes provided by STCL. 
For an RGC with an ambiguous STA, STCL recovered a more re-
fined RF structure, while STC provided no additional information. 
The temporal STA profile (Fig. 4C, left) showed three peaks at 500 
ms, 300 ms, and 200 ms before a spike. While the second and the 
third peaks agree with a typical ON response, the weaker peak at 
500 ms before a spike is somewhat unusual in RGC STAs. Never-
theless, because of the high peak-to-peak difference (0.62) and lo-
calized spatial profile (Fig. 4C, right), this RGC was classified as an 
ON type by STA criteria alone. STC analysis failed to capture any 
meaningful structure in the variance. One STC eigenvalue stands 
out (Fig. 4D, inset), but the corresponding eigenvector does not 
contain any noticeable peaks (Fig. 4D). In contrast, STCL identi-
fied strong ON and weak OFF responses in both groups (Fig. 4E). 

The unusual STA of this RGC is well interpreted by STCL as fol-
lows: First, the average of the two group responses identified by 
STCL would be a weak ON response, which agrees with the STA’s 
polarity. In addition, the waveform of this RGC’s OFF response 
(Fig. 4E, bottom), with peaks at 400 and 200 ms before a spike, 
changes more slowly than does that of the ON response (Fig. 4E, 
top), which has peaks at 300 and 200 ms before a spike, implying 
that this RGC responds to a typical ON-type stimulus as well as to 
a more slowly changing OFF-type stimulus. Because of this tem-
poral mismatch between the ON and OFF components, the posi-
tive peak of the OFF response at around 400 ms (Fig 4E, bottom) 
is not fully canceled by the negative peak of the ON response at 
around 300 ms (Fig 4E, top), which results in a weak positive peak 
at around 500 ms of the STA. Thus, this case demonstrates that 
some RGCs classified as ON or OFF may be ON-OFF RGCs, and 
that clustering analysis can reveal unbalanced bipolar properties 
of ON-OFF cells. PSTH analysis showed that the RGC type was 
ON-OFF (Fig. 4F). However, the strength of the ON response was 
much greater than that of the OFF response, indicating an unbal-
anced response.

Finally, Fig. 5 shows an example RGC classified as an unknown 
type by STA but as an ON-OFF type by STCL. Fig. 5A shows the 
scatterplot of the dimension-reduced spike-triggered stimuli (r (n)), 
which clearly contains two ellipsoidal blobs of approximately 
equal size. The blobs are separated into two groups by spike-
triggered clustering analysis. Cluster centers (red triangles in Fig. 
5A) and individual covariances (red ellipses in Fig. 5A) are reliably 
estimated despite some overlap between the two groups.

Clustering analysis identified two groups in r (n) as indicated by 
their means (red triangles in Fig. 5A) and covariances (red ellipses 
in Fig. 5A). In contrast, the STA (blue square in Fig. 5A) is located 
close to the middle of the cluster centers, and to the origin. How-
ever, few samples are close to the STA, and thus the STA itself fails 

to capture the bimodal RF structure. The STC (blue ellipse in Fig. 
5A) includes the two blobs, but its interpretation requires further 
analysis. In Fig. 5B, the histogram of r 1

(n) has two distinctive peaks 
with opposite signs, an indicator of ON-OFF–type RGCs.

Both the STA and STC failed to capture the RF of the ON-OFF 
RGCs. Based on STA analysis only, this cell was classified as an un-
known type because of the weakness of the temporal and spatial 
STA profiles (peak-to-peak difference=0.14; Fig. 5C), in agree-
ment with the previous observation in Fig. 5A that the STA, being 
a simple average of spike-triggered stimuli, is close to the origin. 
On the other hand, one STC eigenvalue (Fig. 5D, left, inset) stands 
out from the rest, and the corresponding eigenvector appears to 
be temporally (Fig. 5D, left) and spatially (Fig. 5D, right) an ON 
response. However, the RGC polarity (ON or OFF) cannot be de-
termined from the STC eigenvector because of its scale ambiguity: 
any scalar (including a negative value) multiple of an eigenvec-
tor is, in principle, another valid eigenvector corresponding to 
the same eigenvalue. The only valid observation for eigenvector 
profiles is that spike-triggered stimuli vary so that stimuli at 300 
ms and 200 ms before a spike are anti-correlated. Therefore, ON-
OFF RGCs cannot be identified by STA or STC. These limitations 
motivated us to develop STCL to recover the actual centers and 
covariances of individual blobs in the RFs of ON-OFF RGCs.

In contrast to STA and STC analysis, spike-triggered clustering 
analysis identified the bipolar RFs of ON-OFF RGCs. The cluster 
centers identified by STCL correspond to strong ON and OFF 
stimulus patterns (Fig. 5E; peak-to-peak differences=0.77 and 0.65, 
respectively). Because these two responses with opposite signs vary 
in tandem, their average is close to nil, consistent with the flat STA 
shown in Fig. 5C. In addition, PSTH analysis confirmed that this 
RGC is an ON-OFF-type RGC (Fig. 5F). Therefore, STCL analysis 
reveals bipolar properties in the RFs of ON-OFF cells that cannot 
be obtained from the STA.

Comparison of STCL and STC-NC

The proposed method (STCL) is compared to the STC-NC 
method by Cantrell et al. [22] using the experimental data and 
analysis code released by Cantrell et al. [22], available at code.
google.com/archive/p/non-centered-spike-triggered-covariance. 
The provided dataset contains 12 RGCs, which were classified as 4 
ON, 3 OFF, and 5 ON-OFF RGCs by STC-NC based on the STC-
NC bias values calculated by the accompanied Matlab code (Fig. 
6A, inner pie chart). In contrast, the STCL analysis classified the 
12 RGCs as 4 ON, 1 OFF, and 7 ON-OFF RGCs (Fig. 6A, outer pie 
chart). The STCL analysis identified two more ON-OFF RGCs, 
which were labeled as OFF RGCs by STC-NC. 

The panel B of Fig. 6 shows a comparison of STC-NC bias values 
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with STCL inner product values. The STC-NC bias and STCL in-
ner product were in agreement for ON and ON-OFF RGCs. More 
specifically, ON RGCs had higher STC-NC bias and STCL inner 
product values (red dots in Fig. 6B) while ON-OFF RGCs had 
lower STC-NC bias and STCL inner product values (green dots 
in Fig. 6B), indicating bimodality of the RFs. However, two RGCs 
(black squares in Fig. 6B) labeled as OFF by STC-NC had low 
STC-NC bias values (<-0.6), indicating strong unimodality with 
negative sign, but low STCL inner product, indicating bimodality 
of the RFs.

The panel C of Fig. 6 shows the histogram of the projections to 
the first eigenvector of the non-centered STC, used for calculat-

ing the STC-NC bias value (-0.91), of the misclassified RGC (ch 
37 unit 5). The projection histogram contained a prominent peak 
on the right and a much weaker peak on the left. Thus, the STC-
NC bias value (-0.91) was much smaller than the threshold value 
(-0.6), and this RGC was classified as OFF RGC by STC-NC. This 
demonstrates that the STC-NC bias, based on the projection to the 
first eigenvector, fails to identify ON-OFF RGCs with unbalanced 
bimodality. 

In contrast, this unbalanced bimodality is clearly shown in the 
two-dimensional projection in the panel D of Fig. 6. The centers of 
the two groups were accurately identified by the STCL centers (red 
triangles in Fig. 6D). 
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Fig. 6. Comparison of STCL and non-centered STC (STC-NC): unbalanced bimodal ON-OFF RGC. (A) Based on STC-NC, the 12 RGCs are classified 
into 4 ON, 3 OFF, and 5 ON-OFF RGCs (A, inner pie chart). Among these RGCs, 2 RGCs labeled as OFF by STC-NC are reclassified as ON-OFF RGCs 
based on STCL (A, outer pie chart). (B) Comparison of STC-NC bias values with STCL inner product values. The STC-NC bias and STCL inner product 
were in agreement for ON (red dots) and ON-OFF RGCs. (green dots). However, two RGCs (black squares) labeled as OFF by STC-NC show conflict 
between STC-NC bias guided RF modality (unimodal with negative sign) and STCL-inner product guided RF modality (bimodal). (C) The histogram 
of the projections to the first eigenvector of the non-centered STC, used for calculating the STC-NC bias value (-0.91), of the misclassified RGC (ch 37 
unit 5). (D) Two-dimensional projection of ch 37 unit 5 shows two separable STCL centers (red triangles). (E) The temporal (left) and spatial (right) pro-
files of STCL cluster centers identified by STCL analysis clearly separate ON (cluster center 1: top) and OFF (cluster center 2: bottom) responses.
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One might suspect that the less prominent group of spike-trig-
gered stimuli, additionally identified by the STCL analysis, might 
be due to some random noise. To test this, we have plotted the spa-
tio-temporal profiles of the STCL centers in Fig. 6E. Even though 
Cluster center 1 (Fig. 6E top) is somewhat noisier than Cluster 
center 2 (Fig. 6E bottom), the former has clear ON response and 
shows even higher peak-to-peak difference (0.22) than that of the 
latter (0.21). Thus, we conclude that this RGC responded to both 
ON and OFF stimulus patterns and should have been classified as 
an ON-OFF RGC. 

In summary, STCL identified more ON-OFF RGCs than STC-
NC did. The additionally found ON-OF RGCs had unbalanced 
bimodality in RFs, which STC-NC failed to capture.

Cell type classification using STA versus STCL

The cell type classifications of the 171 RGCs with sufficient 
spikes were compared for STA and STCL. The nested pie chart 
in Fig. 7A shows the cell counts of each type as classified using 
STA (inner pie) and STCL (outer pie). Using STA analysis, the 171 
RGCs were classified as ON (n=48, 28%), OFF (n=84, 49%), and 
unknown (n=39, 23%) (Fig. 7A, inner pie). Using STCL analysis, 
the same 171 RGCs were classified as ON (n=35, 20.4%), OFF 
(n=79, 46.2%), ON-OFF (n=23, 13.4%), and unknown (n=34, 
20%) (Fig. 7A, outer pie). Among RGCs labeled as ON (n=48) or 
OFF (n=84) by STA, 13 RGCs labeled as ON and five labeled as 
OFF were reclassified as ON-OFF cells (Fig. 7A, left, in green). On 
the other hand, among the 39 RGCs labeled as unknown by STA 
analysis, five were reclassified as ON-OFF cells (Fig. 7A, right, in 
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green). Therefore, using STCL, a total of 23 (13 %) ON-OFF RGCs 
were identified among the 171 RGCs. Interestingly, more ON-OFF 
RGCs were found among RGCs previously labeled as ON or OFF 
than among the unknown types.

Characteristics of ON-OFF RGCs identified by STCL

With STCL, only the ON-OFF RGCs had peak-to-peak differ-
ences in the cluster centers significantly greater than those of STAs 
(Fig. 7B). For RGCs consistently labeled as ON or OFF by STA 
and STCL, the peak-to-peak STCL differences did not differ from 
those of the STA (one-sample t-test, p>0.05). In contrast, ON-
OFF RGCs identified by STCL had significantly larger peak-to-
peak differences in the cluster centers than did those of STAs (one-
sample t-test, p<0.001). This finding indicates that the cancellation 
of ON and OFF responses in the STAs of ON-OFF RGCs was 
successfully recovered by STCL analysis.

A more negative inner product (I) between clustering centers is 
a strong indicator of ON-OFF RGCs. We observed no significant 

difference between the inner product values of ON and OFF 
RGCs (Fig. 7C, t-test, p>0.05). The inner products between the 
cluster centers were significantly less for ON-OFF RGCs than for 
ON or OFF RGCs (Fig. 7C, t-test, p<0.001), which indicates that 
the cluster centers of ON-OFF RGCs were separated further to-
ward opposite polarities.

Accurate RGC RF mosaics with STCL 

Fig. 7D shows STA-based mosaics of ON and OFF RGCs for a 
retinal patch. Cells for which STA and STCL agree as to type are 
shown as solid ellipses (ON RGCs in red, left; OFF RGCs in blue, 
right). The RFs of ON and OFF RGCs identified as ON-OFF 
by STCL are shown as dashed ellipses in green. RF ellipses were 
mainly harvested in the top left but not in the bottom right region 
might be due to the weak attachment between MEA and retinal 
patch in the bottom right region.

These mosaics are consistent with previous studies where ON 
and OFF RGCs tile the retina [31, 32]. However, some ON and 
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OFF RFs (dashed ellipses in green) were incorrectly classified here 
by conventional analysis, and information about ON-OFF RGCs 
in previous studies is lacking.

In contrast, STCL provided more accurate mosaics that included 
ON-OFF RGCs. Fig. 7E shows mosaics of ON, OFF, and ON-OFF 
RGCs identified by STCL for the same retinal patch shown in Fig. 
7D. The RFs of RGCs identified as ON (1st, red) and OFF (2nd, 
blue) are shown as ellipses. In the third panel, the RFs of ON-OFF 
RGCs are shown, with ON responses in red and OFF responses 
in blue. The RFs of ON-OFF RGCs (Fig. 7E, 3rd) overlap with 
those of ON and OFF RGCs (Fig. 7E, 1st and 2nd). The ON and 
OFF RFs of each ON-OFF RGC significantly overlapped. How-
ever, for cell 61a ON-OFF RGCs, the ellipsoidal fits of ON and 
OFF responses of the RGC appear to be oriented toward different 
angles. Therefore, we double checked the spatial profile using STA 
and STCL. The spatial profiles of the STA (left) and STCL centers 

(middle and right) of the RGC in inset figure E. Solely based on 
the STA, this RGC appeared to be an ON RGC with a weak light 
modulation and RF size was about one pixel. However, the STCL 
analysis showed that this RGC was actually ON-OFF RGC with 
stronger ON and slightly weaker OFF responses. Although the el-
lipsoidal fits of ON and OFF responses of the RGC appear to be 
oriented toward different angles, the RFs of STCL centers overlap, 
which also coincide with the RF derived from STA. To confirm 
the overlapping, we also have measured the offset of centers in the 
ellipses between ON and OFF responses for each ON-OFF RGC 
(Fig. 7E, 4th). Both x- and y-offsets are not significantly different 
from 0 (one-sample t-test, p>0.05).
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DISCUSSION

Analysis of RGC RFs: beyond the STA and STC 

We first classified RGCs as to cell type based on the STA. For this, 
the peak-to-peak difference was a powerful feature. Specifically, 
RGCs with large peak-to-peak differences were unambiguously 
identified as either ON or OFF types. However, those with smaller 
peak-to-peak differences were not clearly determined. Conse-
quently, RGCs classified as unknown type accounted for about 
30% of the total RGCs recorded (129 of 389). 

Spike-triggered clustering analysis overcomes this limitation 
of the STA and reveals multi-modal RFs. By definition, the STA 
provides information about the centers of spike-triggered stimulus 
distributions, which works well for an RGC with a simple uni-
modal structure. However, the STA fails to capture more complex 
RFs with multiple modes or groups. As a result, ON-OFF RGCs 
are undetected by STAs and are classified as unknown types or 
misclassified as ON or OFF types. Spike-triggered clustering 
analysis correctly identifies ON-OFF RGCs, which otherwise may 
be incorrectly classified as ON or OFF by simple STA analysis or 
left unknown. Therefore, with clustering analysis, it is possible to 
include ON-OFF RGCs and thereby obtain a more holistic under-
standing of the retinal network's information processing.

Compared to STC analysis, spike-triggered clustering analysis is 
more intuitive and bias-free. STC captures the second-order RF 
moment. In contrast to STC, the proposed method provides the 
actual centers of RF clusters. For ON-OFF RFs, spike-triggered 
clustering analysis separated spike-triggered stimuli into two 
groups, which correspond to typical ON and OFF stimulus pat-
terns. Each group center has the same interpretation as in STA and 
is thus easier to interpret than the STC. If needed, the covariance 
of each group center may also be used for STC-based analysis. We 
also provide a practical guideline for using spike-triggered cluster-
ing analysis for analyzing RGC RFs. First, the number of spikes 
should be at least 4 times the stimulus dimension. For RGCs with 
few spikes, the RF should be analyzed only with the STA. Second, 
clustering analysis is recommended for apparent STA ON or OFF 
cells, even with large peak-to-peak differences, because such RGCs 
may have responded to both ON and OFF stimulus patterns with 
different sensitivities, and in the STA, the weaker response may 
have been masked by the stronger response. Third, an increase in 
the peak-to-peak differences going from STA to STCL and a nega-
tive inner product of cluster centers are strong indicators of ON-
OFF RGCs.

Spike-triggered clustering analysis may be tailored to the de-
mands of specific experiments by substituting other computation-
al algorithms into each step of the clustering analysis. The first step 

of clustering analysis is dimension reduction. In this study, we used 
the STC eigenvectors for easier comparison with STC, but any oth-
er dimension-reduction algorithm would be suitable. For instance, 
we are currently exploring dimension-reduction algorithms that 
are robust to noise and outliers, which would improve the cluster-
ing accuracy and stability. Second, numerous clustering algorithms 
have been developed for different requirements [33-36]. We here 
chose the GMM, which is ideal for efficiently finding clusters with 
spherical shapes. We believe that this simple algorithm should 
work well for analyzing the RFs of most RGCs. For investigating 
RGCs with more complex non-spherical components, other clus-
tering algorithms may be needed. However, it should be noted that 
more flexible and advanced clustering algorithms would require 
more spikes from each RGC and may suffer from overfitting prob-
lems [37].

In this study, we intentionally fixed the number of clusters at two 
for identifying ON-OFF cells; the focus was on recovering ON 
and OFF responses from RGCs that could not be detected by STA. 
Clustering analysis could be used to investigate RFs at finer scales. 
Recently, RGC RF subunits were shown to co-localize with the RFs 
of simultaneously recorded bipolar cells [14]. Therefore, RGC RF 
subunits may provide information about presynaptic bipolar-cell 
inputs and thus the functional connectivity of the retinal network. 
The number of clusters could be increased to identify further RGC 
RF subunits.

Physiological implications of ON-OFF RGCs

ON-OFF RGCs that respond to both light-on and light-off are 
known as bistratified cells [5, 38, 39]. Their dendrites ramify in 
both sublamina a and b of the inner plexiform layer, where one 
arborizes with the axon terminations of ON bipolar cells and the 
other with the axon terminations of OFF bipolar cells. Further, 
ON-OFF RGCs comprise 30% of the RGC population in the 
mouse retina [40]. In the mouse, their axons project mostly to the 
dorsal lateral geniculate nucleus (dLGN), a specialized relay that 
carries information about stimulus motion and eye movement 
[41]. In contrast, in the primate retina, only 10% of RGCs are ON-
OFF type [42, 43]. Their destination is the LGN’s koniocellular 
layer, involved in a variety of visual functions, including color vi-
sion, eye movement, and motion detection [44, 45]. 

In visual processing, ON-OFF RGCs are known to serve four 
main functions. The first is movement detection: frog ON-OFF 
cells are considered fly detectors or moving-edge detectors, 
primarily based on their high sensitivity to motion [46]. Some 
pigeon ON-OFF cells are classified as motion-sensing units [47]. 
Moreover, in most functional studies, ON-OFF cells are known as 
direction-selective RGCs, sensitive to the direction of moving ob-



450 www.enjournal.org https://doi.org/10.5607/en20029

Jungryul Ahn, et al.

jects [48-50]. Second, some ON-OFF RGCs have been described 
as local edge detectors [6, 17, 51]. They are non-direction selective 
and are involved in encoding edge positions. The third is encoding 
conditional stimulus sequences. ON-OFF cells have been reported 
to respond to specific sequential changes. For instance, Sakai et 
al. [52] reported that spike firing is enhanced by specific green/
red sequential changes in the gourami retina, while Uchiyama et 
al. [20] showed that sequential OFF/ON changes in light intensity 
were encoded by spike pairs with a 20-ms interspike interval. In an 
in vitro  study using salamander RGCs, Geffen et al. [16] showed 
that some ON-OFF RGCs, usually dominant for OFF responses, 
change RF polarity from OFF to ON when an image shift occurs 
in the surrounding region of the RGC RF. These results suggest 
that ON-OFF cells go beyond motion detection to encode more 
specific sequential changes. The fourth is color coding. Particularly 
in the primate retina, small bistratified cells (SBCs), a subgroup 
of ON-OFF RGCs, are involved in color vision, always respond-
ing ON to blue and OFF to yellow [19, 53, 54]. SBCs exhibit two 
sub-receptive fields, with an S-ON component (S-cone ON input 
dominant) and an (L+M)-OFF component (L and M-cone OFF 
input dominant). As such, ON-OFF RGCs play a variety of func-
tional roles in the retina, an early processing stage of the visual 
system.

For this reason, it is necessary to reliably classify ON-OFF RGCs 
for advanced studies of visual processing in the retina. In this re-
gard, STCL provides a useful tool as an RGC classifier.

In our current study, we showed diversity in ON-OFF cells de-
pending on symmetry (balance) of bimodality. RGCs classified as 
ON (Fig. 4) or unknown (Fig. 5) turned out to be ON-OFF RGCs 
by clustering analysis. 

The ON-OFF cell responds to both light-on and light-off, origi-
nating from both inputs of on-bipolar cell and off-bipolar cell. 
Therefore, the response bias of ON-OFF is determined by the 
response preference for the bipolar cell input. This bias in the ON-
OFF cell has been reported in several studies. Tikidji-Hamburyan 
et al. [55] showed the on-off response of mouse ON-OFF RGCs 
varied with light intensity. As mentioned already, Geffen et al. [16] 
showed that some ON-OFF RGCs, usually dominant for OFF 
responses, change RF polarity from OFF to ON in response to pe-
ripheral image shift. These studies suggest that the response pref-
erence of ON-OFF cells can be altered depending on the visual 
environment. 

Thus, STCL analysis can be applied to reveal the response pref-
erence of ON-OFF RGCs, where it is possible to investigate the 
dominant input of on- and off-bipolar cells for specific visual 
stimuli. If the two opposite bipolar inputs are the same, the RGC 
can be classified as a balanced ON-OFF cell, whereas, if it is asym-

metric, the RGC can be an unbalanced ON-OFF cell.
Further investigation of functional roles of ON-OFF RGCs 

would be another direction for future work. Information analysis 
in retinal networks have been studied usually including ON and 
OFF RGC only [24, 56]. Including ON-OFF RGCs in the retinal 
population pool could provide more accurate analysis.

Limitations and future direction

This study has a few limitations. First, since we did not use a 
moving-bar stimulus in our experiments to properly isolate di-
rection-selective RGCs (DS RGCs), there is a possibility that ON-
OFF RGCs may include DS RGCs. In future studies, we plan to 
include moving-bar stimuli to discriminate DS RGCs.

Second, different RGC types have different RF sizes (50~400 μm) 
in the mouse retina [40, 57]. For instance, it is known that the RF 
size of transient cells is much larger than the total average RGC (RF 
diameter ~200 μm), while sustained cells have RF size similar to 
or slightly smaller than average. Since we used a 215-μm pixel size 
for the stimulus, there is a possibility of misclassification for RGCs 
with smaller RF size, including sustained RGCs. With higher 
spatiotemporal resolution of the visual stimuli, spike-triggered 
clustering analysis could be implemented to identify and quantify 
the RGC RFs in fine scale. Our proposed clustering method could 
be also implemented to more complex receptive fields in higher 
visual pathways and to cell-type classification in general.
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