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Abstract: The COVID-19 pandemic highlighted health systems vulnerabilities, as well as thought-
lessness by governments and society. Due to the nature of this contingency, the use of geographic
information systems (GIS) is essential to understand the SARS-CoV-2 distribution dynamics within a
defined geographic area. This work was performed in Tepic, a medium-sized city in Mexico. The
residence of 834 COVID-19 infected individuals was georeferenced and categorized by viral load
(Ct). The analysis took place during the maximum contagion of the first four waves of COVID-19 in
Mexico, analyzing 158, 254, 143, and 279 cases in each wave respectively. Then heatmaps were built
and categorized into five areas ranging from very low to very high risk of contagion, finding that
the second wave exhibited a greater number of cases with a high viral load. Additionally, a spatial
analysis was performed to measure urban areas with a higher risk of contagion, during this wave
this area had 19,203.08 km2 (36.11% of the city). Therefore, a kernel density spatial model integrated
by meaningful variables such as the number of infected subjects, viral load, and place of residence
in cities, to establish geographic zones with different degrees of infection risk, could be useful for
decision-making in future epidemic events.

Keywords: Mexico; COVID-19; GIS; heatmap; risk; viral load; vaccination; qRT-PCR; kernel density;
SARS-CoV-2

1. Introduction

Coronavirus Disease-19 (COVID-19), produced by the severe acute respiratory syn-
drome coronavirus 2 (SARS-CoV-2), has become a global pandemic and threat to public
health [1]. Since the COVID-19 outbreak in Hubei China, this epidemic has displayed a
three-wave pattern in several countries [2]. The symptomatology of SARS-CoV-2 is highly
variable; however, common symptoms are observed in other infectious diseases. Patients
exhibit fever, dry cough, loss of smell and/or taste, gastrointestinal complaints, headache,
muscle pain, and chest pain, in the most severe cases, respiratory distress and inability to
speak or move, even death [3,4].

Globally, countries implemented restrictive and sanitary measures to control the rate
of infection, however, these measures due to haste and ignorance have caused significant
economic losses. For this reason, throughout the months of the pandemic, due to the
demands of the population, governments have relaxed health measures, which has led to
an increase in cases and the appearance of episodes of greater contagion known generally
as outbreaks or waves of COVID-19 [5].
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In the case of Mexico, on 26 January 2021, official data showed that the number of
confirmed COVID-19 cases worldwide reached 360.819.888, of which 4.730.669 were from
Mexico. This country has faced a four-wave pattern of laboratory-confirmed COVID-
19 cases; the first wave occurred in summer 2020, the second in January 2021, the third
appeared in August 2021, and the fourth started in January 2022 [6].

A very important factor but rarely considered for the transmission of the SARS-CoV-
2 virus is the value of the viral load that each individual presents during infection [7], as
well as for transmission by air in closed spaces [8]. Thus, high viral load has been associated
with greater severity in other coronavirus outbreaks, as previously reported during the
SARS epidemic in 2003 [9]. This same relationship has been seen in other respiratory viral
diseases (rhinovirus), presenting respiratory symptoms as well as aggravated inflammatory
processes in patients with high viral loads [10]. Thus, in the case of the pandemic caused
by the SARS-CoV-2 virus, low Ct values indicate a high viral load (Ct value is inversely
proportional to the number of viral particles) in infected people, so these individuals
facilitate the spread of the virus in a community.

In this way, the viral load present in each person depends on various factors, among
which the immunocompetence of everyone stands out. Subjects with a robust and adequate
immune response can effectively control the infection and will present low viral loads, and
are even usually asymptomatic subjects. In contrast, people with greater susceptibility
or less immunocompetence will present high viral loads during infection and a greater
probability of developing severe COVID-19. In this sense, vaccination is one of the most
effective strategies to control the pandemic.

An effective way to estimate the viral load presented by each infected subject is
through a quantitative or semi-quantitative qRT-PCR analysis. The time necessary to
amplify the viral genetic material in each biological sample is inversely proportional to the
cycle threshold (Ct) for virus amplification. A Ct value < 29 is indicative of a high viral
load, while a Ct > 34 means a low viral load. Thus, the Ct value is a parameter that can be
used to assess the risk of community transmission [11].

Geographic Information Systems (GIS) are the set of tools that systematically organize
and relate large amounts of properly georeferenced information, which once interconnected
provides a model or response to some phenomenon of interest. During the COVID-19 pan-
demic, the use of GIS has been crucial for understanding the dynamics of the spread of the
SARS-CoV-2 virus. In this sense, our research group proposes a transmission risk assess-
ment model that considers the viral load of people diagnosed with the COVID-19 disease
in combination with the proximity of their homes in the same period. Thus, the objective
of this article was to implement a kernel density model, which combined the values of
viral load (expressed in Ct), the number of people infected with SARS-CoV-2, as well as
their place of residence in the city of Tepic, Mexico; to establish geographic zones with
different degrees of infection risk within an urban zone during the maximum peaks of the
four waves presented in Mexico.

2. Materials and Methods
2.1. Study Area

Tepic is the capital of the state of Nayarit, Mexico, it is in the central part of the state
and is located at the extreme geographic coordinates 21◦51′ and 21◦24′, north latitude and
104◦34′ and 105◦05′ west longitude. Tepic concentrates 34.5% of the total population of
Nayarit, which is about 371,387 people within the urban area, with a population density
of 265.8 inhabitants per km2. The population is distributed almost evenly with 51.4%
women and 48.6% men. Currently, the state capital has 133,816 homes, of which 126,186 are
habited, with an average of 3.3 occupants per home, considering these numbers the average
occupants per room is 0.8 [12].
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2.2. Study Design and Participants

Outpatients who attended qRT-PCR testing for SARS-CoV-2 at the LANIIA-UAN
laboratory (laboratory approved by the Mexican health authorities) were prospectively
evaluated. All outpatients with laboratory-confirmed COVID-19 disease were selected
during the dates that the four waves of COVID-19 took place in the state of Nayarit,
Mexico. Based on official Mexican data, the peak dates of the SARS-CoV-2 pandemic in the
state of Nayarit, Mexico, were detected. The maximum peak of the pandemic in the first,
second, third, and fourth waves was 1 August 2020; 21 January 2021, 19 August 2021, and
17 January 2022, respectively. Then, all data recorded (age, sex, and viral load (expressed in
Ct)) ±15 days the date of the maximum peaks of the four waves of COVID-19 (15 July to
14 August 2020; 6 January to 5 February 2021; 4 August to 3 September 2021; and 3 January
to 2 February 2022, corresponding to the first, second, third and fourth waves of COVID-19),
from ambulatory patients who attended the molecular diagnosis of SARS-CoV-2 at the
LANIIA laboratory facilities, whose result was positive, were selected.

All patients signed informed consent before sampling, clinical data, and demographic
information were also collected. This study was approved by the local bioethics commission
registry number (CEBN/03/20). Subjects were queried to avoid eating food, drinking water,
and brushing teeth at least 4 h before sampling for sample collection.

2.3. Swabbing

For swab sampling, a flexible swab was passed through each subject’s nostril reaching
the nasopharynx. Another flexible swab was introduced through the mouth to reach the
oropharynx. Both swabs were placed in the mucosa while gently circling for some seconds,
then removed while rotating and placed in 2.5 mL of the sterile VTM. Sterile VTM (pH 7.10)
was prepared with Hank’s balanced salt solution (HBSS) (ThermoFisher, Scientific, Cat
n◦ 14190, Cleveland, OH, USA) supplemented with gentamicin sulfate (4 mg/mL) (Ther-
moFisher Scientific, Cat n◦ 15750078) penicillin/streptomycin (50,000 U/50,000 mg/mL)
(ThermoFisher Scientific; Cat n◦ 15140148), amphotericin B (0.4 mg/mL) (ThermoFisher
Scientific; Cat n◦ 15290018) and bovine serum albumin (5%) (ThermoFisher Scientific; Cat
n◦ 15561020).

2.4. qRT-PCR Procedure

Methods were validated by Mexican health authorities (Mexican Health Ministry—
Secretaría de Salud de México—, and InDRE—). All reagents, kits, and procedures were
approved by these authorities. Inactivation and total RNA extraction were performed
with RNA extraction by QIAmp Viral RNA Mini Kit (Qiagen, Cat No./ID: 1020953 USA,
Germantown, TN, USA) with 140 µL of VTM from swabbing. The qRT-PCR procedure
was performed according to the Berlin protocol with modifications [13]. Briefly, one-step
qRT-PCR was performed with StarQ One-Step qRT-PCR (Qiagen, Cat No./ID: 210210, USA,
Germantown kit), with the extracted RNA from samples. The following oligonucleotides
were used for the molecular detection of the SARS-CoV-2 E gene; E_Sarbeco_Forward:
ACAGGTACGTTAATAGTTAATAGCGT, E_Sarbeco_Reverse: ATATTGCAGCAGTACG-
CACACA, TaqMan probe E_Sarbeco_P1: FAMCACTAGCCATCCTTACTGCGCTTCG-BBQ,
and as a control, RNase P gene; RNAseP Forward: AGATTTGGACCTGCGAGCG, RNAseP
Reverse, GAGCGGCTGTCTCCACAAGT, TaqMan probe RNAseP P1, FAMTTCTGACCT-
GAAGGCTCTG CGCG-BHQ1 [13,14]. qRT-PCR was performed with 5 µL (70 ng/µL) of
extracted RNA in a total 25 µL reaction. All samples were analyzed with a 7500 Real-Time
PCR System (Applied Biosystems) with the following protocol: 50 ◦C for 15 min, 95 ◦C for
2 min, and then 45 cycles of 95 ◦C for 15 s, 82 ◦C and 60 ◦C for 30 s. In all cases, human gene
(RNAseP) amplification was used as an internal control, and samples were considered as
positive if the number of cycles needed for the fluorescent signal to cross the cycle threshold,
known as Ct value, was equal to or lower than 38.
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2.5. GIS Methodology

A database was designed with the information collected from patients diagnosed with
the SARS-CoV-2 virus in our laboratory. The data included in the database were divided
into four waves, which were delimited, considering the day on which the maximum peak
of positive cases occurred ± 15 days; thus, the first wave comprised the period from 15 July
to 14 August 2020; the second wave from 6 January to 5 February, the third wave from
4 August to 3 September 2021, and the fourth wave from 3 January to 2 February 2022. The
information collected from each infected individual was the following data: address, zip
code, age, sex, date of diagnosis, and Ct value (viral load).

Collected data was analyzed through GIS with the QGIS 3.20.2 ‘Odense’ software,
where each positive case was georeferenced and vector shapefile points were generated,
one for each wave, the positive cases were categorized according to the Ct value of each
case (Ct < 29, high viral load; Ct = 30–33 mean viral load; Ct = 34–37 low viral load). This
information was completed with the most up-to-date and official data from the National
Institute of Statistics, Geography, and Informatics (INEGI-Mexico), as well as the shapefile
vector files of the urban Basic Geostatistical Area (AGEB) and city block of the city of Tepic.
With the above, a heatmap was generated for each wave of COVID-19, which considered
the distance matrix and definition of the radius between infected individuals and the value
of the viral load. All the layers used and produced in this work were adjusted to the
reference system: EPSG: 32613, Datum: WGS 84, with a projection: UTM zone 13N.

2.6. Heatmaps

The heatmaps were built from a vector file for each wave. The mean and standard
deviation data of the proximity radius were obtained according to the mathematical ex-
pression described in Rizzatti and co-workers, 2020. The value of the proximity criterion
used for each radius was 1022.82 ± 57.07 m. Once this value was obtained, it proceeded to
generate the maps with the QGIS software process toolbox (one map per wave). In which,
the pixel size was 1. In advanced parameters, the Ct attribute was chosen for the weight
from the field. To finalize the kernel shape, the quartic type of option was used, where the
algorithm weighted the proximity between the points with greater weight and gave less
weight the farther one point was from another [15]. The options radius from the field and
output value scaling were left unchecked. Once the raster type file of the raw heat map
was obtained, the raster layer with the shape of the urban area was extracted and, finally,
the raster was reclassified to obtain the distribution categories among the positive cases.

2.7. Statistical Analysis

The database of positive cases for SARS-CoV-2 in our laboratory was processed in MS
Excel® and SigmaPlot 11.0 statistical software® for analysis, with which the range, mean,
and percentages were obtained. To measure the extent of the risk areas generated in the
heatmap, the field calculator option in the QGIS was used.

3. Results

The total sum of positive subjects during the four-time periods evaluated (first, second,
and third wave) was 834 cases (389 males and 445 females). During the first wave, 158 cases
were tested (81 males and 77 females), during the second wave, 254 cases were tested
(114 males and 140 females), in the third wave were 143 cases (64 males and 79 females)
while for the fourth wave there were 279 cases (130 males and 149 females) Table 1.
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Table 1. Number of people infected and analyzed through the GIS model during the period estab-
lished in the four waves of COVID-19.

Positive Cases Men Age Range in
Men (yr.) Women Age Range in

Women (yr.)

First wave: 15 July–14 August 2020 158 81 (17–79) 77 (18–75)
Second wave: 6 January–5 February 2021 254 114 (10–80) 140 (15–85)
Third wave: 4 August–3 September 2021 143 64 (2–73) 79 (2–87)
Fourth wave: 3 January–2 February 2022 279 130 (5–93) 149 (6–82)

yr. = years.

For the categorization of positive cases, the criterion used was based on that described
by Oba et al., 2021, who established the risk stratification parameters based on Ct values
determined by qRT-PCR. Figure 1 shows the accumulated values of subjects and their
percentage according to the viral load in each wave of COVID-19.
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Figure 1. Percentages of people categorized (Ct < 29 high viral load, Ct 30–33 medium viral load, Ct
34–37 low viral load. When the Ct value is >38 it is considered a negative result for the detection of
SARS-CoV-2 according to the value of Ct (viral load) during the four waves of COVID-19 analyzed.

3.1. Heatmaps and Risk Area Analysis

A total of four heatmaps of kernel density of positive cases for COVID-19 were
generated (Figures 2–5), which were categorized into five classes from lower to a higher
risk of contagion according to the proximity between them and for its Ct value. The first
class was classified as a zone of very low probability of contagion delimited in blue, which
corresponded to a proximity density of fewer than 2 cases. The next class was classified as
a zone of low probability of contagion marked in green, which corresponded to a proximity
density of 2 cases. Third, an area of a medium probability of contagion was delimited,
which was identified in yellow with a proximity of 3–4 positive cases. The next class
corresponded to the area marked in orange that was identified with the area of high risk
of contagion. with 5–7 positive cases close to each other. The fifth class identified in red
corresponds to an area of a very high probability of contagion with more than eight positive
cases close to each other. Each point observed in Figures 2–5 shows a confirmed case of
COVID-19, which are categorized according to their Ct value obtained by qRT-PCR analysis;
the red color is indicative of a Ct value < 29, yellow indicates a Ct 30–33, and green is a
Ct 34–37.
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categorized by its Ct value.
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Figure 3. Density map of confirmed COVID-19 cases in the second wave from 6 January to 5 February
2021, in the city of Tepic, Nayarit, Mexico. The different areas classified by color indicate the level of
risk of probability of contagion of the COVID-19 disease and each point corresponds to a confirmed
case categorized by its Ct value.



Int. J. Environ. Res. Public Health 2022, 19, 3840 7 of 12Int. J. Environ. Res. Public Health 2022, 19, x FOR PEER REVIEW 7 of 12 
 

 

 

Figure 4. Density map of confirmed COVID-19 cases in the third wave from 4 August to 3 September 

2021, in the city of Tepic, Nayarit, Mexico. The different areas classified by color indicate the level 

of risk of probability of contagion of the COVID-19 disease and each point corresponds to a con-

firmed case categorized by its Ct value. 

 

Figure 5. Density map of confirmed COVID-19 cases in the fourth wave from 3 January to 2 Febru-

ary 2021, in the city of Tepic, Nayarit, Mexico. The different areas classified by color indicate the 

level of risk of probability of contagion of the COVID-19 disease and each point corresponds to a 

confirmed case categorized by its Ct value. 

3.2. Risk Area Analysis 

Figure 4. Density map of confirmed COVID-19 cases in the third wave from 4 August to 3 September
2021, in the city of Tepic, Nayarit, Mexico. The different areas classified by color indicate the level of
risk of probability of contagion of the COVID-19 disease and each point corresponds to a confirmed
case categorized by its Ct value.
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Figure 5. Density map of confirmed COVID-19 cases in the fourth wave from 3 January to 2 February
2021, in the city of Tepic, Nayarit, Mexico. The different areas classified by color indicate the level of
risk of probability of contagion of the COVID-19 disease and each point corresponds to a confirmed
case categorized by its Ct value.
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3.2. Risk Area Analysis

To know the risk area, the algorithm weighed the viral load value (Ct) and the prox-
imity between the cases, thus, the different classes observed in Figures 2–5 were formed.
Similarly, the surface of the urban area of the city of Tepic was measured, which has an
approximate extension of 53,180.85 km2. For the first wave (Figure 2), the very high-risk
area (labeled in red) was 12,276.34 Km2 (23.08% of the total urban area). In the second
wave (Figure 3), the extension increased to an area of 19,203.08 km2 (36.11%), which com-
pared to the first wave, was an increase of 13.03%; while, in the third wave (Figure 4)
this same area decreased in size to 10,173.98 km2; finally, during the fourth wave the risk
area was 16,811.77 km2. The sector with a high risk of contagion (in orange) for the first
wave (Figure 2) covered an area of 11,141.09 km2 corresponding to 20.95%; for the second
wave (Figure 3) this was 7891.84 km2 covering 14.84% of the urban area, and in the third
wave (Figure 4) its extension was 13,227.52 km2, covering 24.87%, which compared to the
second wave, was an increase of 10.03% (Table 2). The emphasis in these areas is that the
development of activities must be carried out with extreme precautionary measures to
minimize the risk of transmission and contagion of the SARS-CoV-2.

Table 2. Area (Km2) according to the level of contagion risk in the urban area (total area:
53,180.85 Km2) analyzed during the four waves of COVID-19.

Risk Level First Wave
(Km2)

Urban
Area (%)

Second
Wave
(Km2)

Urban
Area (%)

Third
Wave
(Km2)

Urban
Area (%)

Fourth
Wave
(Km2)

Urban
Area (%)

Very low 8821.08 16.59 9928.73 18.67 10,702.12 20.12 7368.43 13.86
Low 9032.43 16.98 7595.91 14.28 7625.41 14.34 10,554.30 19.85

Medium 11,909.91 22.40 8561.28 16.10 11,451.82 21.53 7274.90 13.68
High 11,141.09 20.95 7891.84 14.84 13,227.52 24.87 11,171.45 21.01

Very high 12,276.34 23.08 19,203.08 36.11 10,173.98 19.13 16,811.77 31.61

Very low corresponds to the blue area on the maps; Low corresponds to the green area on the maps; Medium
corresponds to the yellow area on the maps; High corresponds to the orange area on the maps; Very high
corresponds to the red area on the maps.

4. Discussion

Since the first cases of SARS-CoV-2 were detected in Tepic, Nayarit (urban area studied
in this research) around April 2020 [16], up to 26 January 2022, Nayarit has had 46,664 con-
firmed cases and this Mexican state has faced a four-pattern epidemiological peak with
highest peaks registered in July 2020, the beginning of January 2021, August 2021, and
January 2022 [6]. Many measures had been undertaken to mitigate the adverse effects of
the COVID-19 pandemic; restrictions on mobility and social distancing, the generalized
increase in work at home, the closure of educational and recreational centers, as well as the
reduction of close contacts with other people, especially those outside the household [17,18].
The lack of planning, the high cost of PCR analysis, plus the specific characteristics of the
pandemic having such as long incubation period, asymptomatic infection, and high false-
negative rate diagnosis, have hindered the mitigation of the contagion [19].

According to an estimation proposed by Larremore in 2020, it is proposed that routine
monitoring for molecular detection of SARS-CoV-2 infected persons, as well as isolation
countermeasures only reduce virus transmission by 30%. In this way, better management
of the pandemic requires a multidisciplinary approach and policies strategies, of which
testing is only one part [20]. In line with this, spatio-temporal data analysis is noteworthy
in multiple time-critical applications [21,22]. Using GIS analysis tools, together with the
monitoring of infected persons, it is possible to identify areas at high risk of infection.

The construction of mathematical models applicable to epidemiological phenomena
makes it possible to provide estimates and plans based on dynamic, reliable information,
with quick access and easy visualization of the effects caused by pandemics. For its
part, the identification of areas that can be grouped according to risk provides a solid
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basis for proposing effective social policies aimed at control and prevention [23]. For this
purpose, this study aimed to provide risk maps of SARS-CoV-2 outbreaks in Tepic, Nayarit
during four pandemic peaks, risk maps were designed considering the factors of Ct value,
population density, and the number of positive cases. As indicated in the literature, these
factors are relevant to feed the GIS [24–32]. Then risk levels were categorized according
to relative density into five classes each, red (very high risk), orange (high risk), yellow
(medium risk), green and blue (low risk); and according to viral load into three classes: red
(high risk), yellow (medium risk), and blue (low risk).

The proposal for the design of this classification that considers the Ct value as a
fundamental factor is based on the work published by Oba and co-workers in 2021 where
a Ct value lower than 29 is considered a highly contagious patient who requires strict
isolation, and a value of 30 to 33 is considered moderately contagious and quarantine is
recommended as a precautionary measure. Finally, with a Ct value between 34 to 37, there
is a low risk of contagion and precautionary measures are to maintain the proposed social
distancing as well as a second re-examination by qRT-PCR test to observe the evolution of
the disease [11]. In this way, the Ct value is very important for the present model because
the viral load can also be associated with the infection rate of various respiratory viruses,
such as SARS, the influenza virus, and SARS-CoV-2 [9,19,33].

During the analysis of the risk of contagion of the four waves, it became evident
that regardless of the area, there is invariably a certain level of risk of viral transmission.
Nevertheless, the geographic patterns generated allow discerning in which regions of the
city there is a higher risk of transmission; particularly in those areas that appear with
high risk in both categories in each wave. These data are essential to help society and
decision-makers to enhance health measures. In this context, the characterization of hot
spots is only the initial step; once identified, different factors such as the influx of people,
urban mobility systems, particulate pollution, the social situation, even meteorological
conditions [34], as well as outbreaks of new SARS-CoV-2 variants with a higher rate of
infection and evasion of the immune response, such as the delta variant and all others
variants of concern (VOC) need to be monitored [35].

The evolution of the COVID-19 pandemic is given by many parameters and variables
that give rise to complex phenomena that probably cannot be described or predicted by
simple correlations [36]. Although there is no relationship between viral load (Ct value) and
age group with respect to SARS-CoV-2 [37], the SARS-CoV-2 infection may be associated
with several intrinsic or extrinsic factors (ACE2 expression, co-morbidities, or genetic
factors) [38–41]. Thus, the application of preventive measures, including vaccination, is
essential to mitigate the transmission of the disease [30].

In a vaccinated person, the viral clearance will be faster, so there will be lower viral
loads, less time of infection as well as a reduction in the probability of developing severe
COVID-19 or fatal outcomes [42–44]. This is observed in the third wave (August 2021)
where most adults were already immunized and therefore the density of infected persons
and the viral load (Ct) was lower compared to the first and second waves (Figures 2 and 3).
Eventually, as time progresses, the density of infection will decrease because community
immunity is being achieved, since adolescents and children are beginning to be vaccinated,
thus reducing the number of people that can be infected with SARS-CoV-2 [30].

According to the risk characterization analysis developed for the four waves of
COVID-19, it is unmistakable that the extension of the most affected area and its loca-
tion varied (Figures 2–5); however, it can be generally noticed that areas with the most
elevated risk of transmission overlapped in zones of high mobility and economic activity
since this area includes city downtown, gastronomic corridors, residential areas nearby
important shopping centers, and popular flea markets, which are economic centers and
present high mobility. These zones were red spots in the risk map during the four maxi-
mum peaks of the pandemic. Mobility and socio-economic indicators are closely related
as relevant factors in this pandemic as they link human flows and virus transmission
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rates [18,19]. A blind spot in this study is that economic factors were not used to feed the
GIS, this represents an opportunity for future research in the area.

5. Conclusions

The use of tools such as GIS to understand the dispersion dynamics of the pandemic in
a geographical area is highly relevant for its prediction, prevention, and control. In addition,
it is an essential tool to channel efforts in risk areas. Therefore, the proposed model has a
great social impact since it can be a useful decision-making tool for the circumscription of
high-risk areas. Two factors that our research group considers novel in this type of model
are the proximity between cases and especially, the viral load (expressed in Ct value), since
this parameter is usually omitted in GIS models, but is a determinant for the potential
transmissibility of SARS-CoV-2 between individuals.
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