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The past decade has seen an increasing number of applications of deep learning

(DL) techniques to biomedical fields, especially in neuroimaging-based analysis. Such

DL-based methods are generally data-intensive and require a large number of training

instances, which might be infeasible to acquire from a single acquisition site, especially

for data, such as fMRI scans, due to the time and costs that they demand. We can

attempt to address this issue by combining fMRI data from various sites, thereby creating

a bigger heterogeneous dataset. Unfortunately, the inherent differences in the combined

data, known as batch effects, often hamper learning a model. To mitigate this issue,

techniques such as multi-source domain adaptation [Multi-source Domain Adversarial

Networks (MSDA)] aim at learning an effective classification function that uses (learned)

domain-invariant latent features. This article analyzes and compares the performance

of various popular MSDA methods [MDAN, Domain AggRegation Networks (DARN),

Multi-Domain Matching Networks (MDMN), and Moment Matching for MSDA (M3SDA)]

at predicting different labels (illness, age, and sex) of images from two public rs-fMRI

datasets: ABIDE 1and ADHD-200. It also evaluates the impact of various conditions

such as class imbalance, the number of sites along with a comparison of the degree

of adaptation of each of the methods, thereby presenting the effectiveness of MSDA

models in neuroimaging-based applications.

Keywords: resting-state fMRI, multi-source domain adaptation, batch effects, deep learning, ADHD, ASD

1. INTRODUCTION

1.1. Motivation and Background
With recent developments in brain imaging technology, data in the form of functional Magnetic
Resonance Imaging (fMRI), electroencephalography (EEG), and Magnetoencephalography (MEG)
have become widely available, which can be helpful in conducting various diagnostic and predictive
analyses. Owing to the spatio-temporal nature of fMRI data, which allows for extensive information
extraction, there has been a steady rise in the applications of various deep learning (DL) strategies
applied to fMRI data to classify or predict mental illnesses (e.g., Alzheimer’s, ADHD, Schizophrenia,
etc.), brain states (e.g., sleep stages, task-based activity, etc.), or patient demographics (e.g., age,
gender, IQ, etc.).
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Deep learning models are data-intensive in nature and tend
to work better as we increase the size of the data available
for training. However, owing to the difficulties related to the
acquisition of fMRI data, building a large dataset is often
infeasible, expensive, and time-consuming.

A general workaround involves building a large dataset by
combining data from various acquisition sites for a particular
research task. This, however, leads to another problem that
arises as the data was collected from multiple sites, which
means this can involve different acquisitionmethods, equipment,
demographic of patients, methodology, etc. The models can be
trained on a dataset that simply contains all of these instances,
without any modifications. However, this method ignores these
differences that might hamper the model’s generalizability
(Jiménez-Guarneros and Gómez-Gil, 2020). The basic reason for
such variations is the differences in the probability distributions
of data and labels across sites, which are generally termed as
domain shift, and also, batch effects (Dundar et al., 2007).

Recent studies in various domains have focused on developing
methods to mitigate such issues, including domain adaptation
(DA) techniques, which aim at building a generalized model
that can learn from the multiple given source sites to produce
a model that can perform reasonably well on a new, yet related,
target site. The existing DA techniques have varied approaches
based on factors the number of source sites (single-source
DA, multi-source DA), label availability in the target domain
(unsupervised, semi-supervised, supervised DA), and method of
DA (discrepancy, adversarial, and reconstruction based). Which
technique performs best can depend on the objective at hand and
the type of datasets that have been used. The purpose of this study
is to examine existing DA methods and their performance when
dealing with multi-site biomedical (in this case, resting-state
fMRI) data.

1.2. Related Studies
In the past decade, there have been various new techniques that
apply DL tools to fMRI data, to develop predictive models based
on numerous objectives.

Many systems view raw fMRI data as a sequence of 3-
dimensional data, motivating various techniques which use 3D
convolutions to build models such as using 3D-CNN to predict
[R3]attention deficit hyperactivity disorder (ADHD) using fMRI
and structural MRI (Zou et al., 2017), extracting features
using 3D-Convolutional Autoencoders for mild Traumatic Brain
Injury recognition (Zhao et al., 2017), predicting Schizophrenia
using 3D-CNN, development of 2-channel 3D DNN for autism
spectrum disorder (ASD) classification (Li et al., 2018b).
Though such methods allow for maximal information extraction,
the deep models are computationally very expensive and
generally infeasible.

Tomitigate this issue, functional connectivity matrices (Lynall
et al., 2010) are popularly used and are found to be a good
replacement, making the training computationally feasible and
also providing a way to interpret the results. Some noteworthy
results using FCMs include classification of patients with
Schizophrenia using various DL methods (Shen et al., 2010;
Arbabshirani et al., 2013; Yan et al., 2017), prediction of other

illnesses such as ADHD (Riaz et al., 2020), Alzheimer’s (Ju
et al., 2017), ASD (Li et al., 2018a; Saeed et al., 2019), and
Mild Cognitive Impairment (Chen et al., 2016). There have
also been classifications of other brain states, such as suicidal
behavior (Gosnell et al., 2019), chronic pain (Santana et al.,
2019), migraine (Chong et al., 2017), and demographics such as
age (Pruett Jr et al., 2015) or gender (Fan et al., 2020).

While the studies mentioned above have shown impressive
results, none addressed the issue of batch effects. However, there
have been few recent methods that have tried to deal with batch
effects in different ways. Olivetti et al. (2012) were one of the
first to investigate batch effects in [R3]resting state-fMRI (rs-
fMRI) datasets (ADHD-200) using extremely randomized trees
along with dissimilarity representation. Vega and Greiner (2018)
studied the impact of classical techniques such as covariate, z-
score normalization, and whitening on batch effects. Wang et al.
(2019) explored ways to use low-Rank DA to reduce existing
biases on multi-site fMRI datasets. Recent approaches include
transport-based joint distribution alignment (Zhang et al., 2020),
federated learning (Li et al., 2020), and conditional autoencoder
(Fader Networks) (Pominova et al., 2020).

It is, therefore, useful to have a comparative survey of the
performances of various existing MSDA techniques applied to
solve the batch effects in multi-site fMRI datasets, to understand
the benefits and limitations of DA approaches.

2. DA METHODS

We define the common objective of multi-source domain
adaptation (MSDA) techniques as follows: Given a collection

of labeled source-domain data Ds = {(xis, y
i
s)}

Ns
i=1 ∀s ∈

{1, . . . , S}, [R2] where S, Ns denote the total number of sites and
number of samples from site “s” and a collection of unlabelled

target-domain data Dt = {xit}
Nt
i=1 (where xis, xit ∈ X and

yis ∈ Y), [R2,R3] where Nt , X, and Y denote the number
of samples from the target site, input data feature space, and
label space, respectively, the goal is to build a classifier that
can use information from the source domains to help develop
models that can perform accurate classifications in the target
domain (Zhao et al., 2020). For our experiments, We take one
of the S domains as the target domain (by convention, this is
the domain indexed by S) and use the others as source domains
(s ∈ {1, ..., S−1}). Generally, MSDA techniques employ different
strategies of transforming the target domain distribution into
the source domain distributions to tackle the issue of batch
effects. We allow the marginal probability distributions PX to be
different across domains, but [R1] requireaim for the conditional
probability distributions PY|X [R1] remain the sameto become
similar after adaptation. Below is a short introduction to the
various methods used in our experiments.
Domain Adversarial Neural Networks (DANN): Considered as
one of the fundamental models in DA, DANN (Ajakan et al.,
2014) is a single-source DA technique—the only single-source
DA method included in the comparison. DANN’s architecture
is similar to Figure 1B, except that all the sources’ data are
combined and used as a single big source.
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FIGURE 1 | The training and evaluation pipelines used in this study. (A) represents the SRC (Source) model, used as the baseline. All other multi-source domain

adaptation (MSDA) models can be generalized to be using (B). Finally, to compare the accuracy achieved with target-only data—the TAR model—is shown in (C).

Multi-source Domain Adversarial Networks (MDAN): MDAN
can be seen as a natural extension of DANN for MSDA problems.
Its feature extractor and label classifier are essentially the same as
DANN’s, butMDANuses one domain adapterMdi for each of the
S− 1 source domains.

Zhao et al. (2018) introduce two versions of MDAN: hard-
max and soft-max variants. [R2] The main difference between
the two versions is that the hard-max version tries to improve the
classification errors which correspond to the worst performing
source site while the soft-max version tries to improve errors for
all the source sites simultaneously using the log-sum-exp trick
(further details in Appendix A). We use the soft-max variant as
it is shown to provide better generalization in Zhao et al. (2018).
Domain AggRegation Networks (DARN):

One of MSDA’s main challenges is that it needs to include
source sites based on the target site, in a way that minimizes
the negative transfer while preserving as many training instances
as possible. To tackle this issue, DARN (Wen et al., 2020)
dynamically selects source sites and gives the sites varied
importance based on their label classification losses. This is
possible by solving the Lagrangian dual of the objective that needs
to be optimized by utilizing binary search strategies.
Multi-Domain Matching Networks (MDMN): MDMN tackles
MSDA by first projecting features into a shared feature space.
By computing, then using a degree of similarity between the

target and source sites, MDMN merges similar sites together to
construct the shared feature space, while reducing the negative

transfer by keeping dissimilar sites distant. This model tackles
this objective by using a loss function based on Wasserstein

distance and a special training paradigm as described in Li et al.
(2018c).
Moment Matching for MSDA(M3SDA): Unlike the previously
discussed models, M3SDA aligns target domain with source

domains while simultaneously aligning source sites among

themselves. Furthermore, it tackles this issue by utilizing the

feature distribution moments instead of the raw input features
for adaptation, which provides certain robustness and a statistical

advantage in MSDA. Peng et al. (2019) introduces an extension

of M3SDA, called M3SDA-β , which they demonstrate performs
better against overfitting and provides better generalization. We,
therefore, use M3SDA-β to understand the model’s performance
on neuroimaging data.

Appendix A provides more information about each of
these architectures.

3. METHODOLOGY

3.1. Datasets and Tasks
This study uses two different publicly available datasets for
training and evaluation, selected on the basis of the number of
total scans available, the number of sites of data acquisition, and
their frequent usage in the research community.

The first dataset consists of rs-fMRI scans from the
ABIDE 1 dataset (Craddock et al., 2013a), including 530 control
instances (tagged as typical controls, TC) and 505 instances
collected from subjects suffering from ASD, which have been
acquired from 17 different sites. the phenotypic information and
pre-processing steps used in the dataset.

The ADHD-200 dataset is our second multi-site fMRI dataset,
which has been compiled from 8 different sites and contains 1,516
rs-fMRI scans in total: 842 scans from control subjects, and 674
from subjects who suffer from ADHD.

[R2]These two datasets have been standard datasets used for
the analysis of batch effects in public fMRI databases. For each
dataset, we run three different classification tasks, using three
different labels: (1) the respective mental illnesses, between illness
and control samples; and binary classification of two phenotypic
labels, (2) sex, and (3) age (old vs. young, with respect to the
global median calculated separately for each of the two datasets).

3.2. Functional Connectivity Matrix and
Feature Extraction
Functional connectivity is defined as the temporal dependency
of spatially-remote neuro-physiological events (Van Den Heuvel
and Pol, 2010). It computes the level of co-activation between
two spatially separate regions of interest (ROIs) in the brain,
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based on the mean time-series extracted from these ROIs. Each
ROI is pre-defined using some atlas or template. Here, we
use the Automatic Anatomical Labeling (AAL) atlas (Tzourio-
Mazoyer et al., 2002), which partitions the brain into 116 different
non-overlapping ROIs.

We then calculate the functional connectivity matrix (FCM)
using Pearson’s correlation coefficient between each pair of time-
series which results in a 116 × 116 matrix. Since the diagonal
of this matrix is redundant and the matrix is symmetric, the
diagonal is dropped and the upper triangle of the matrix is
flattened to finally produce a vector of size

(116
2

)

= 6,670 features
for each rs-fMRI scan, which is used as the input data to various
models in this study.

3.3. Training and Testing Settings
The MSDA models require labeled data flowing in from multiple
source domains and a batch of unlabeled data from the target
domain. To accommodate this, we first take a single site as
the target domain and consider the remaining sites as different
source domains. The target domain is then split using a stratified
10-fold CV strategy, wherein a single fold is kept aside for
testing while the remaining 9 folds are used (without their labels)
to provide the unlabeled target domain data required for the
unsupervised-MSDA methods. The folds are kept consistent for
the experiments pertaining to each dataset. All data points from
the source sites are fed into the model along with their labels
during training. We repeat the training and testing for each fold
and each site, then report the average accuracies as the results.
Figure 1B shows this pipeline.

To set the hyperparameters µ and γ [R1] (refer to
Appendix A for their usage), the portion of data used for training
(Source domains, along with 9 folds of unlabelled target domain
data) is utilized. [R2] The training subset (i.e., data from the 9
folds) of the target domain is divided into 80-20% train-test split,
where 80% of the target domain samples along with the source
site data is used for searching hyperparameters and 20% of the
target site data (with their labels) is used for validation of the
selected hyperparameters during its fine-tuning. It is noted that
all of the samples used in hyperparameter tuning belong to the
training subset of the entire dataset.hyper-param tuning

A total of 30 random samples of hyperparameters are sampled
from a wide range of values and used for the tuning process. This
tuning occurs once per target domain. The learning rate for the
domain adapter and the label classifier is kept constant at 1∗10−4

when themodel is trained on ABIDE 1 and at 3∗10−4 for ADHD-
200, respectively. The learning rates are found using a grid search
which follows a similar strategy as used for µ and σ .

To compare the performance of MSDA models (Figure 1B),
the SRC [R1,R2] (source) model (refer to Figure 1A) is used as
the baseline model. [R1]In this setting, data from all the source
sites are combined and are treated as one big dataset; i.e., no
target site data is used during training.SRC model description
Also, the TAR [R1,R2](target) model [R1]uses only the (labeled)
target site data (and no source sites)TAR model description, in a
stratified [R2]10-fold cross-validation (CV) setting to maintain
the class distribution in all the folds. [R1]These models show
the baseline performances in two different cases which can be

TABLE 1 | Fully connected layers (FCN) architectures used in each of the

sub-models.

Sub-Model Architecture Output

Feature Extractor (Mf ) input → 2000 → 1000 latent features

Label Classifier (Mc) 1000 → 100 → 2 label predictions

Domain Adapter (Md ) 1000 → 100 → n site predictions

Each layer was followed by an Rectified Linear Unit (ReLU) layer (except the last layer

where softmax is used) and a dropout layer with p = 0.5. The output of Md has a different

number of nodes for different models and datasets and, therefore, is represented by “n”.

considered as naive approaches to using multi-source datasets.
The SRC model tries to use the labeled data from all source
sites without considering batch effects or any data from the
target site, while the TAR model depicts a model’s performance
if the training is conducted only on a small labeled subset
of the target data, without utilizing any other source site’s
data. The mean accuracies for SRC and TAR are calculated
similarly to the process used for MSDA models, wherein the
average of the accuracy scores of the test splits is used. Each
of the 10 folds is taken as the test fold iteratively and the final
reported accuracy is the average of the 10 accuracy scores. The
folds were kept consistent across experiments for each of the
datasets respectively.

3.4. Model Specifications
The architecture of the various components in each of the
pipelines was kept constant, i.e., the feature extractor, label
classifier, and domain adapter had the same design across
all methods. Since the features were flattened FCM, fully
connected layers (FCN) were used along with dropouts and L-2
regularization. The sub-models’ designs are described in Table 1.
In most cases, the complete model is trained end-to-end using
the Adam optimizer (Kingma and Ba, 2014) on the loss functions
defined in Appendix A. Few of the models (e.g., MDMN) utilize
a training strategy unlike other methods (refer to Appendix A).
In such methods, the training process described in the respective
original articles is utilized.

4. DATA DEMOGRAPHICS

The ABIDE 1 dataset (Craddock et al., 2013a) is a combination
of fMRI scans from 17 different sites. The dataset provides
users with rs-fMRI, T1 structural brain images, and phenotypic
information for each patient. It consists of 505 ASD scans
and 530 controls. As a part of pre-processing the rs-fMRI
data, the C-PAC processing pipeline offered by Preprocessed
Connectome Project (Craddock et al., 2013b) was used. The
pipeline consists of several steps such as slice-time correction,
motion correction, intensity normalization, and nuisance signal
removal. Furthermore, data from all the sites were spatially
registered to the MNI152 template space, along with being
passed through a band-pass filter (0.01–0.1 Hz) to remove any
high frequency noise in the data The site-wise distribution
of age and sex is described in Table 2 Similarly, the ADHD-
200 dataset (Bellec et al., 2017), which was first introduced
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TABLE 2 | ABIDE 1demographics.

ASD TC

Sites Age Sex Age Sex

Pitt 19.0 (7.3) M 25, F 4 18.9 (6.6) M 23, F 4

Olin 16.5 (3.4) M 16, F 3 16.7 (3.6) M 13, F 2

OHSU 11.4 (2.2) M 12, F 0 10.1 (1.1) M 14, F 0

SDSU 14.7 (1.8) M 13, F 1 14.2 (1.9) M 16, F 6

Trinity 16.8 (3.2) M 22, F 0 17.1 (3.8) M 25, F 0

UM 13.2 (2.4) M 57, F 9 14.8 (3.6) M 56, F 18

USM 23.5 (8.3) M 46, F 0 21.3 (8.4) M 25, F 0

Yale 12.7 (3.0) M 20, F 8 12.7 (2.8) M 20, F 8

CMU 26.4 (5.8) M 11, F 3 26.8 (5.7) M 10, F 3

Leuven 17.8 (5.0) M 26, F 3 18.2 (5.1) M 29, F 5

KKI 10.0 (1.4) M 16, F 4 10.0 (1.2) M 20, F 8

NYU 14.7 (7.1) M 65, F 10 15.7 (6.2) M 74, F 26

Stanford 10.0 (1.6) M 15, F 4 10.0 (1.6) M 16, F 4

UCLA 13.0 (2.5) M 48, F 6 13.0 (1.9) M 38, F 6

Maxmun 26.1 (14.9) M 21, F 3 24.6 (8.8) M 27, F 1

Caltech 27.4 (10.3) M 15, F 4 28.0 (10.9) M 14, F 4

SBL 35.0 (10.4) M 15, F 0 33.7 (6.6) M 15, F 0

The age is represented by the mean (standard deviation) format and the sex distribution

is denoted by M: males and F: females.

TABLE 3 | ADHD-200demographics.

ADHD TC

Site Sex Sex

KKI M 15 F 10 M 41 F 28

NINeuroImage M 31 F 5 M 12 F 25

NYU M 117 F 34 M 56 F 55

OHSU M 30 F 13 M 30 F 40

Peking M 92 F 10 M 84 F 59

Pittsburg M 3 F 1 M 50 F 44

UWash M 0 F 0 M 33 F 28

Brown M 0 F 0 M 9 F 17

during the ADHD-200 Competition, contains scans from eight
different sites which includes a total of 973 individuals. This
dataset also provides one or more rs-fMRI, T1 structural MRI,
and the respective phenotype for each individual.The scans
undergo similar preprocessing using a pipeline made available
by Neuroimaging Analysis Kit (NIAK) which includes steps
such as Slice timing correction, motion correction, linear and
non-linear spatial normalization, correction of physiological
noise, Spatial smoothing, and MNI T1 space registration. The
distribution of the data according to the phenotype is provided in
Table 3. Since the phenotypic data had inconsistent and missing
age information, the particular column has been omitted from
the table.

5. RESULTS

Mental illness: Figures 2, 3 show that MSDA models produce
classifiers that are more accurate than SRC and TAR. In the case

of ABIDE 1, we find a statistically significant increase in the
accuracy scores in baseline (SRC) as compared to the MSDA
models, with the highest increase being in M3SDA ( 5%, p
< 0.01). In the case of ADHD-200 data, since most of the
sites had imbalanced classes, the data was balanced (refer to
Section 5.1) and used for experimentation. In comparison to
ABIDE, MSDA is only slightly more accurate than SRC (1–
4%) in the ADHD-200 dataset. MDAN (76.21%, p < 0.01)
has the highest increase in comparison to baseline (72.72%),
while MDMN (71.54%) and DARN(75.62%) do not outperform
baseline accuracy significantly (Figure 3D).

Figure 2 provides a deeper look at the site-wise performance
of the models. For ABIDE 1, Figure 2A shows that all models
performed better than TAR, and most of the models performed
better than SRC for the various sites, with only a few exceptions.
For sites like Caltech and SBL, no model was able to perform
better than SRC, while in some sites such as KKI and Yale, a few
models performed worse than SRC. For ADHD-200, Figure 2B
shows that in the majority of the sites at least one of the models
performsworse than TAR.However, in all of these sites,MDAN is
able to perform better in comparison to TAR. DARN and DANN
scored just as much as TAR when Pittsburgh was used as the
target site, which implies that adding or using data from other
sites did not improve the model’s performance by any margin.

Age: Figure 3B shows that, except for M3SDA (p <

0.01), applying DA models does not increase the classification
performance over the baseline results. The baseline and MSDA
models both have an accuracy of around 86–88%. To explore
whether this was due to class imbalance, we applied a strategy
similar to the one in Section 5.1, however, that did not improve
the results.

Sex: Figure 3C presents the accuracy scores of the
experiments on the ABIDE 1 data. While only M3SDA
showed a statistically significant increase for ABIDE 1(p < 0.05),
in ADHD-200 all the DA models except MDMN and MDAN
scored significantly better than baseline scores (Figure 3E).
While DARN performs the best and has a higher mean, its
significance is weaker in ADHD-200, and it is not so accurate
when it comes to ABIDE 1; moreover, we see that M3SDA is
consistently accurate in both datasets.

5.1. Class Balancing
As mentioned earlier, to handle the data imbalance the minority
class was over-sampled to match in number with the majority
class in the training set of the data. [R1] This comprised of
randomly sampling data points from the minority class until
there is almost an equal amount of samples from both classes.
We perform this oversampling on data from all the source sites
which are being used for training in the current iteration. In case a
particular site consists of data of only one class, the site is dropped
in that experiment (e.g., ADHD illness classification displays 6
sites instead of 8). To understand the impact of class balancing
on improving the performance of each model, the comparison
of the accuracies before and after data balancing is provided
in Figure 4. The data in ABIDE 1 for illness already contained
balanced classes and, hence, was omitted. [R1] It is noted that
under-sampling of the majority class was also experimented with,
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FIGURE 2 | Site-wise performance of MSDA and baseline models in illness classification for ABIDE 1 (A) and ADHD-200 (B) The height of each bar is the average of

10-fold CV accuracies achieved when the particular site was chosen as the target site. To show how much better an MSDA model performs with respect to using only

the target site data, and also as compared to using all source data without any domain adaptation (DA), we then subtract the TAR model accuracy from every model’s

original accuracy, and show the SRC model’s scores as a black target-line.

FIGURE 3 | Average accuracies of all models across all sites. (A–C) depict the accuracies for illness, age, and sex for ABIDE 1 respectively, while (D,E) are for illness

and sex for the ADHD-200 dataset. *(p < 0.05) and **(p < 0.01) depict the statistical significance between the MSDA methods and SRC models, each calculated

using a paired t-test.

but since the datasets are already small in size, under-sampling
reduces the number of samples the model gets to train on, which
deteriorates its performance.

It is seen in Figure 4 that balancing data in the case of age
classification for ABIDE 1 made no difference when it came to
MSDA performances, while we see a big improvement while
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FIGURE 4 | A comparison between the accuracies before and after balancing the classes using oversampling. The age and sex classifications for ABIDE 1 are shown

in (A,B), while (C,D) represent the illness and sex classifications for the ADHD-200 dataset.

using this strategy for sex classification with an increase of as
high as 8% for the MDMN model. The accuracy changes in
ADHD-200 are quite different from what is observed for the
ABIDE dataset. We see that in the case of illness classification,
all models (except DANN) benefited from the balancing. An
interesting observation can be made in sex classification for
ADHD-200, wherein the accuracy scores of MDAN on the same
test folds increased by almost 7%. Hence, in most cases, data
balancing had a positive and significant impact on improving
model performance.

6. DISCUSSION

The aim of this article is to study the performances of various
state-of-the-art MSDA models on classifying fMRI scans
for different neurological disorders and demographic labels.
Apart from the evidence that MSDA models outperform
the baseline scores, we also note certain factors which help
the MSDA models improve their performances. We noted
a positive impact of balancing the data (Section 5.1) using
oversampling for the datasets. The increase in accuracies
was more in ADHD-200 as compared to the increase
in ABIDE 1’s performance. This observation suggests that

current MSDA models might be impacted by the class balance
present in the data used, since the ADHD-200 dataset is
comprised of more imbalanced data than ABIDE 1, we see the
aforementioned differences.

Overall, M3SDA is the only method among the MSDA
methods applied in this study, that showed statistically significant
improvement over baseline consistently in all of our prediction
tasks. Hence, based on our multiple prediction results in two
large multisite datasets, we recommend M3SDA as the first
choice for MSDA applications in fMRI datasets. M3SDA has
higher accuracy in most (15 out of 17) of the sites in ABIDE 1,
while in ADHD-200, MDAN seems to perform better with some
consistency(5 out of 6). Furthermore, the increase in accuracy
using MSDA models differs from ABIDE 1 (16–20%) to ADHD-
200 (8–10%).

Based on the results for classification of demographic
information, we observe that MSDA models do not perform
very well when age label is used, furthermore, compared to
illness classification, both age and sex classifications have lower
differences between MSDA and baseline performances. This
can be an indicator that fMRI scans might not be a suitable
input feature for demographic classification. Nevertheless, we can
note that models like M3SDA were able to consistently perform
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FIGURE 5 | Average accuracy values 10 fold CV of site classification using latent features learned in various models for ABIDE 1(A) and ADHD-200(B).

significantly better for both datasets, as seen in Figure 3, which
shows its robustness and versatility.

The previous results show that the MSDA models perform
better than simply combining all the source data and utilizing
it without any adaptation. To explore how well the models
harmonize the source sites, we ran experiments on MSDA
models’ ability to make features site-invariant. Figure 5 reports
the results of a two-layered fully-connected network that was
trained and tested to classify the sites based on input latent
features in a 10-fold CV setting. We found that, in ABIDE 1,
the generalization of sites seems to be better than in the case
of ADHD-200. We observe that, though MSDA methods have
lower accuracy in site classification, it is still greater than chance
( 1
17 for ABIDE 1and 1

8 for ADHD-200). This is owing to the
trade-off between harmonizing sites and retaining discriminatory
information for the classification that each model must tackle.
Since each model tries to achieve this balance in different ways,
we find that there is still some remnant site information present
in the processed features by each of the MSDA techniques.
Nevertheless, all MSDA methods produced latent features using
which, it was difficult for the neural net to distinguish which
site an instance was from. This ability to make features site-
invariant is the driving force behind improving the performance
with respect to baseline performance.

7. CONCLUSION

This article analyses the performance of various existing MSDA
models at classifying different objectives using rs-fMRI data,
using data from popular public datasets ABIDE 1 and ADHD-
200. We used FCMs of data as the representative feature vector
upon which the models were trained and evaluated. MSDA
methods are successful in producing site-invariant latent features
for the data, which in turn helps in improving classification
accuracies. However, note that such methods are sensitive to
the class distribution present in the data. To mitigate this,
simple oversampling techniques worked well and improved the
classification performances of almost all models. This can be
especially useful for small and imbalanced datasets which are
common in neuroscience. Furthermore, we found that some
learning objectives were unaffected by MSDA architectures (e.g.,

age), however, this was not exhaustively tested due to data
limitations. Based on the experiments conducted, we observe that
M3SDA consistently performed well across datasets and labels
and was less prone to class imbalance. Models such as DARN,
MDMN, and MDAN performed better in the larger dataset—
(ABIDE 1), and were sensitive to class imbalance, nevertheless,
they performed significantly better when classes were balanced
using simple sampling techniques. In general, we see that
MDAN: only for illness classification, andM3SDA have improved
the performance with respect to the baseline accuracies by a
bigger margin than others for the majority of the classifications.
Furthermore, we provide evidence that MSDA techniques are
able to improve site harmonization and produce site-invariant
features while extracting information that can be used for
classifications. Based on these results, it is suggestive that MSDA
techniques can be beneficial in improving the performance of DL
techniques in neuroimaging-based applications.
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