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Abstract: The development of highly selective and highly sensitive nanometer colorimetric chemical
sensors is an urgent requirement in the immediate detection of heavy metal ions. In this work,
silver-nanoparticle (Ag NPs)-based chemosensors were prepared by a simple and green method, in
which the silver nitrate, carboxymethyl cellulose sodium (CMS) and Polyvinylpyrrolidone (PVP),
and glucose are used as the silver source, double stabilizer and green reductant, respectively. The
obtained colloidal CMS/PVP-Ag NPs showed a high dispersibility and stability, and creating a
high selectivity and sensitivity to detect Hg2+ and Fe3+ with remarkable and rapid color variation.
Low limits of detection (LOD) of 7.1 nM (0–20 µM) and 15.2 nM (20–100 µM) for Hg2+ and 3.6 nM
for Fe3+ were achieved. More importantly, the CMS/PVP-Ag NPs has a high sensitivity even in
a complex system with multiple heavy ions, the result of the practical ability to detect Hg2+ and
Fe3+ in tap water and seawater reached a rational range of 98.33~104.2% (Hg2+) and 98.85~104.80%
(Fe3+), indicating the great potential of the as-prepared nanocomposites colorimetric chemosensor for
practical applications.

Keywords: colorimetric chemosensor; silver nanoparticles; Hg2+; Fe3+; green preparation

1. Introduction

Facing the hazardous problem of heavy metal pollution in the air, water and even
food, it is imperative to improve detection methods [1–3]. Among the various heavy
metal ions, excess intake of foods containing divalent mercury (Hg2+) and ferric iron (Fe3+)
in daily life can harm the human body, resulting in brain damage, Alzheimer’s disease,
Parkinson’s disease and endocrine system disease [4–9]. Thus, developing analytical
detection techniques for Hg2+ and Fe3+ has emerged as a significant research field [10–14].
Several conventional analytical technologies, such as atomic absorption spectrometry
(AAS), inductively coupled plasma mass spectroscopy (ICP-MS) and high-phase liquid
chromatography (HPLC), have been widely applied due to the excellent sensitivity and
selectivity for the detection of heavy metal ions [15–18]. Unfortunately, the fact that those
technologies involve high cost, are time consuming and have complicated operations has
greatly affected their extensive application in the detection of metal ions [19–21].

Currently, colorimetric chemosensors have the prominent advantage of high sensitivity
and being visible to the naked eye [22–24]. Intriguingly, benefiting from the optical, me-
chanical and electrochemical properties, the NPs manifest diverse applications in different
fields (energy storage, catalysis, coating and absorption) [25,26]. To date, a series of metal
NPs-based colorimetric sensors have been developed owing to the outstanding extinction
coefficients in the visible area of colorimetric assays. Silver nanoparticles (Ag NPs) can
provide higher extinction coefficients than gold nanoparticles (AuNPs) [27,28] and have a
plasma resonance absorption (SPR) [29–31], and the sensitive central absorption peak of Ag
NPs is located at 400 nm [32], suggesting the desirable applicability of colorimetric sensing
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of metal ions [33], which are attributed to the good interaction between Ag NPs and its
analytes, thus changing the position of the absorption peak in the spectrum [34,35]. The
construction of functional Ag NPs is essential in determining the properties of colorimetric
sensing as a green-reducing agent [36], and the introduction of glucose offers the aldehyde
groups to effectively reduce the silver nitrate to Ag NPs [37,38]. The above sensors have
the defects of complex synthetic conditions, the release of harmful synthetic raw materials
into the environment and a high LOD. Therefore, the development of a green, rapid, envi-
ronmentally friendly and low-LOD detection method based on nano silver sol colorimetric
chemical sensors has great potential application prospects.

Here, we fabricated an efficient colorimetric chemosensor (CMS/PVP-Ag NPs colloid)
via a facile and green strategy. Using CMS and PVP as double green stabilizers, CMS/PVP-
Ag NPs were prepared by a silver mirror reaction of glucose and AgNO3 and the Ag NPs
were anchored on the stable CMS/PVP network via non-covalent bonds. As a result, the
obtained CMS/PVP-Ag NPs colloid showed high dispersibility and stability and exhibited
excellent sensitivity for Hg2+ and Fe3+ with a reasonable LOD value, selectivity and, in
particular, the colorimetric chemosensors had superior selectivity in multiple ion systems.
Of note, the colorimetric chemosensors could effectively probe the content of Hg2+ and
Fe3+ in tap water and seawater, suggesting great potential applications of detection within
complex water samples.

2. Experimental Procedures
2.1. Reagents and Apparatus

AgNO3, Glucose (Glu), Carboxymethyl cellulose sodium (CMS), Polyvinylpyrrolidone
(K30, PVP), Al(NO3)3·9H2O, Cu(NO3)2·3H2O, Bi(NO3)3·5H2O, Ba(NO3)2, Ca(NO3)2·4H2O,
Cd(NO3)2·4H2O, Co(NO3)2·6H2O, Fe(NO3)2·6H2O, Fe(NO3)3·9H2O, KNO3, Mg(NO3)2·6H2O,
Ni(NO3)2·6H2O, Pb(NO3)2, Zn(NO3)2·6H2O, HgCl2 and NaNO3 reached analytical-reagent
grade and were purchased from Sinopharm Chemical Reagent Co., LN (Shanghai, China).

2.2. Synthesis of CMS/PVP-Ag NPs Colloidal Solution

The detailed synthesized process of the CMS/PVP-Ag NPs colloid is illustrated in
Scheme 1. At first, 50 µL of 0.1 M AgNO3 was added into CMS (0.1% [w/v], 50 mL) and
PVP (1% [w/v], 5 mL) aqueous solution with vigorous magnetic stirring for 10 min. After
that, glucose (0.1 M, 150 µL) and NaOH (1% [w/v], 800 µL) were transferred into the above
mixture solution with continuous stirring for 1 h. The reaction was finished until no color
changes and stored in dark conditions. All of the experimental processes were performed
at a constant temperature of 70 ◦C.
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2.3. Characterization of CMS/PVP-Ag NPs Colloidal Solution

The UV–VIS absorption spectra were recorded via UV–VIS spectrophotometer (UV-
2450, Shimadzu, Kyoto, Japan) with a variable wavelength between 300 and 600 nm at
room temperature. X-ray diffractometer (XRD) data were measured by a powder X-ray
diffractometer (D/MAX-RB, Tokyo, Japan) using CuKα radiation (λ = 0.15418 nm) over the
2θ range of 30◦ to 80◦ with a step-size of 0.05◦. Transmission electron microscopy (TEM)
images were obtained using a JEOL JEM-2100 Plus microscope (JEOL, Tokyo, Japan) at an
accelerating voltage of 200.0 kV.

2.4. Adsorption and Detection of Hg2+ and Fe3+

The CMS/PVP-Ag NPs colloidal solution was diluted twice with ultra-pure water, and
then utilized for the adsorption and detection of Hg2+ and Fe3+. In order to investigate the
adsorption and detection properties of the CMS/PVP-Ag NPs colloidal solution, various
metal ions (60 µL, 0.001 M) including Mg2+, Co2+, Cu2+, Ni2+, Zn2+, Ca2+, Cd2+, Fe3+, Fe2+,
K+, Ba2+, Na+, Hg2+, Al3+ and Pb2+ ions were added to the CMS/PVP-Ag NPs colloidal
solution (3 mL), respectively. Then, the above solutions were shaken well to observe
color changes with the naked eye and were measured by the UV-vis spectrophotometer.
Compared with the blank solution, it was found that the Ag NPs solution with Hg2+

and Fe3+ had apparent changes in color and ultraviolet absorption. To further obtain the
detection limit, different concentrations of Hg2+ ions (3–300 µL,1 mM) were added to the
CMS/PVP-Ag NPs colloidal solution (3 mL) and the quantitative detection of Fe3+ (3–30 µL,
1 mM) was also completed according to the above procedure. Additionally, samples were
collected from seawater and animal plasma to confirm the practical application of the
CMS/PVP-Ag NPs colloidal solution.

The limit of detection (LOD) is the lowest concentration of the measured sample, and
the calculation formula is:

LOD = 3S/N (1)

where S represents the standard deviation of the blank sample, and N is the slope of the
standard linear.

3. Results and Discussion
3.1. Characterization Studies of CMS/PVP-Ag NPs Colloidal Solution

The synthesis method of a silver-nanoparticle (Ag NPs)-based chemosensor used
CMS as the stabilizing agent and glucose as the reducing agent [39]. The Ag NPs sol
was synthesized by adding AgNO3 solutions of different concentrations and the obvious
characterization adsorption was presented in the region of 410–430 nm. As shown in
Figure 1a, the absorbance intensity of the Ag NPs sol prepared increased with the increase
in AgNO3 concentration, and there was a small blue shift, indicating that sol aggregation
occurred easily at high concentrations. Figure 1b shows the UV-vis spectra of silver sol
prepared by AgNO3 and glucose with different molar ratios. From the absorption curve,
there was no significant difference between the molar ratios 1:2 and 1:3. However, after a
week, the absorption curve of AgNO3/glucose = 1/3 almost changed (Figure 1c), indicating
that the CMS/PVP-Ag NPs colloid solution possessed the best stability.

Figure 2a shows the XRD pattern of Ag NPs to analyze the crystalline phase. It can
be seen that there was an obvious crystal diffraction peak at 2θ = 38.5◦, which can be
assigned to the (111) of silver crystal according to the JCPDS card. In addition, there are
three weak peaks at 2θ of 44.5◦, 64.5◦ and 77.6◦, corresponding to the (200), (220) and (311)
crystal planes of the crystalline silver, respectively, indicating the formation of simple silver
in the system [40,41]. The morphology of Ag NPs was characterized by the TEM image
(Figure 2b). Clearly, Ag NPs exhibit well-defined spherical crystals, and the SAED pattern
of CMS/Ag NPs shows bright circular rings, proving the polycrystalline characteristic
of the synthesized Ag NPs [42]. These particle diameters are distributed in the range of
15 to 40 nm and the calculated average nanocrystal size of Ag NPs was approximately
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25 nm (Figure 2c). Meanwhile, the EDS results suggest the distribution of the Ag element
(Figure 2d) [43].
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3.2. Detection Selectivity and Sensitivity of Hg2+ and Fe3+

The various metal ions were selected (such as Hg2+, Cd2+, Co2+, Cu2+, Fe3+, Fe2+, K+,
Al3+, Ba2+, Ca2+, Mg2+, Na+, Ni2+, Pb2+ and Zn2+) to verify the selectivity of the CMS/PVP-
Ag NPs colloidal solution. As shown in Figure 3a, all ions were treated as detected under
the same conditions with a maximum concentration of 50 µM, and only Hg2+ and Fe3+

produced noticeable response curves and the absorption peak decreased with an obvious
blue shift after the addition of Hg2+ and Fe3+. Moreover, the values of ∆A were found to be
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0.62 and 0.3 in the presence of Hg2+ and Fe3+, respectively, and the obvious changes could
not be found in other metal ions (Figure 3b). When Hg2+ and Fe3+ are added to 50 µM,
the color of the CMS/PVP-Ag NPs colloidal solution tended to be colorless and lighter,
respectively, further demonstrating that the CMS/PVP-Ag NPs colloidal solution has a
unique selectivity for Hg2+ and Fe3+ rather than other metal ions [44].
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of various metal ions. The concentrations of all metal ions were 50 µM.

Moreover, the sensitivity of the CMS/PVP-Ag NPs colloidal solution for Hg2+ and
Fe3+ was further investigated to probe the optimum conditions. It was shown that the
color of the sensing system gradually faded away with increasing concentrations of Hg2+,
and when the concentration of Hg2+ increased to 50 µM, the color of the sensing system
disappeared, providing an efficient platform for the colorimetric detection of Hg2+ (inset
in Figure 4a). On the addition of Hg2+, the absorption peak of Ag NPs decreased and the
maximum absorption wavelength of Ag NPs displayed a distinct blue shift (Figure 4a),
which indicated the formation of a Ag–Hg amalgam on the surface of Ag NPs and the
decrease in the concentration and size of the nano-silver particles [45]. The correlation of the
ion concentration in the range of 0 to 100 µM and the absorption response were exhibited in
Figure 4b; there were two good linear relationships (R1 = 0.998, R2 = 0.995) between ∆A and
Hg2+ (0–100 µM), and the LOD for Hg2+ was estimated to be 7.1 nM (0–20 µM) and 15.2 nM
(20–100 µM). Meanwhile, Figure 4c reveals two favorable linear relationships (R1 = 0.980,
R2 = 0.991) between ∆λ and the Hg2+ concentration in the range of 0 to 100 µM, and the
LOD was approximately 0.2 nM (0–30 µM) and 0.7 nM (30–100 µM), respectively. The value
of LOD, due to the addition of the small amount of Hg2+, could significantly decline when
the absorbance was added, causing the higher sensitivity of detection, which is comparable
with or superior to other detection methods in previous literature (Table S1) [46–51]. The
excellent LOD value with small Hg2+ concentrations and the wide linear range implied a
high sensitivity and potential application for Hg2+ detection.

As shown in Figure 5a, a slight decrease in the absorbance of Ag NPs could be
observed with a gradual increase in the concentration of Fe3+. It is noted that the ∆A and
the concentration of Fe3+ in the range of 0–60 µM maintained a good linear relationship
(R = 0.993) and the value of LOD was approximately 3.6 nM, demonstrating that the
detection ability of the system was relatively significant (Figure 5b). Table S2 shows a
comparison of our sensors with those previously reported in literature [5,13,15,17,19,52–55].
The method is green, rapid, simple, low-cost and highly sensitive. More importantly, the
as-prepared sensors showed good stability, and were highly sensitive and selective with a
low LOD and the wide linear range for the detection of Fe3+.
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trations of Fe3+, and (b) the linear relative absorption intensity ∆A over the concentration of Fe3+ is
within the range of 0~60 µM.

The TEM image indicates the aggregation of Ag NPs after the addition of Hg2+,
demonstrating that the addition of Hg2+ can induce the formation of a Ag–Hg amalgam
(Figure 6b) [44]. Figure 6c reveals that the size of Ag NPs is estimated to be 50–150 nm,
which corresponds with the TEM image. Additionally, the result of EDS shows three peaks
of Hg (Figure 6d), which is consistent with the above results.

TEM was conducted to explore the morphology variation of the CMS/ PVP-Ag NPs
sol when the Hg2+ was introduced. Figure 7a presents the image of CMS/PVP-Ag NPs
with Hg2+, and Figure 7b and c reveals the existence of mercury and silver elements in
the CMS/PVP-Ag NPs, respectively. A superimposed image of mercury and silver are
shown in Figure 7d. It can be observed that the composites are hybridizing with each other,
and adding Hg2+ into the CMS/PVP-Ag NPs can increase the size of Ag NPs to form a
large cluster.
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3.3. Mechanism Study for the CMS/PVP-Ag NPs Colloidal Solution and the Detection of Hg2+

and Fe3+

Figure 8 exhibits the reaction scheme and mechanism of the CMS/PVP-Ag NPs colloid
for the detection of Hg2+ and Fe3+. The synthesis processes involve adsorption, in situ
reduction and a complexation/oxidation process. As previously mentioned, CMS and PVP
were self-assembled to form the stabilized skeleton and the silver ions were uniformly
anchored on the surface of the CMS molecules via a non-covalent bond. Subsequently, the
glucose molecules containing aldehyde groups act as the reducing agent to form the Ag NPs
through a silver mirror reaction. The larger steric hindrance effect caused the Ag NPs to be
uniformly dispersed and not easy to coalesce, as shown in Figure 8b. It was observed that
when Hg2+ was added into the CMS/PVP-Ag NPs colloidal solution, it became colorless
and the SPR band intensity diminished with a blue shift (see Figure 4a), which can also be
demonstrated by the morphology changes shown in Figure 8a. The size of Ag NPs was
changed from about 25 nm to 50–150 nm in Figure 8b and induced the aggregation of Ag
NPs. Furthermore, the detective absorption of Hg2+ was examined by a redox reaction with
Ag0 and Hg2+. The generated Hg0 adhered to the surface of Ag NPs, forming the Ag–Hg
amalgam to enlarge the aggregation of Ag NPs (Figure 8b) [45]. When Fe3+ was added to
the CMS/PVP-Ag NPs colloidal solution, it became colorless and the SPR band intensity
diminished without any red or blue shift in Figure 5a. It indicated that the concentration of
Ag NPs in the solution decreases, but the size of Ag NPs remained unchanged, which can
be attributed to the oxidation of the Ag0, leading to the decomposition of Ag NPs, reducing
the SPR band strength and making the solution colorless (Figure 8b) [56,57].
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3.4. Detection of Hg2+ and Fe3+ in Tap Water and Seawater

To test the feasibility and practicability of composites, the prepared product was
applied to monitor tap water and seawater. The tap water and seawater were, respectively,
taken from our laboratory and China’s Yellow Sea. Firstly, the tested water samples were
filtered with a 0.22 µm membrane to remove insoluble matter. Secondly, three known
concentrations of Hg2+ and Fe3+ were added to CMS/PVP-Ag NPs colloidal solution with
constant stirring, maintained for 1 min and we observed the color change with the naked
eye. Lastly, the water samples with different concentrations of ions were measured with
UV-vis spectrophotometer and the recoveries of Hg2+ and Fe3+ were calculated in real
samples. We measured the recoveries of Hg2+ in real samples with a range of 98.33~104.2%
(Table 1) and the recoveries of Fe3+ in water samples ranged from 98.85% to 104.80%
(Table 2). The results show that this method can provide accurate and reliable results for
the determination of Hg2+ and Fe3+ in tap water and seawater. Our colloidal solution could
be used to detect Hg2+ and Fe3+ in water samples for practical applications.
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Table 1. Determination of Hg2+ in tap water and sea water samples.

Samples
Concerntration of Hg2+ (µM)

Recovery (%) RSD (n = 3, %)
Spiked Measured

Tap water 1 5 5. 21 104.20 4.35
2 10 10.34 103.40 4.67
3 15 14.85 98.33 3.14

Sea water 1 5 4.98 99.60 3.89
2 10 10.22 102.20 4.20
3 15 15.35 102.36 4.35

Table 2. Determination of Fe3+ in tap water and sea water samples.

Samples
Concerntration of Fe3+ (µM)

Recovery (%) RSD (n = 3, %)
Spiked Measured

Tap water 1 5 5.24 104.80 5.15
2 10 10.26 102.60 4.56
3 20 19.77 98.85 3.97

Sea water 1 5 4.96 99.20 3.85
2 10 10.21 102.10 5.25
3 20 20.32 101.60 4.28

4. Conclusions

In summary, we have developed an efficient and effective colorimetric chemosensor
CMS/PVP-Ag NPs colloid through a facile strategy, which had superior detection selectivity
for Hg2+ and Fe3+. At the addition of Hg2+, Ag NPs nanoparticles were induced to enlarge
the size of the nanoparticles. Benefiting from the existence of an obvious color change
for metal ions and localized SPR absorption of Ag NPs, the colloidal solution exhibited
prominent colorimetric responses from yellow to white in the presence of Hg2+ and from
yellow to buff in the presence of Fe3+; the achromatic mechanism may be that Ag–Hg
alloy was formed by an oxidation-reduction reaction between Hg2+ and nano silver ions,
and Fe2+ was formed by Fe3+. CMS/PVP-Ag NPs exhibited excellent selectivity for Hg2+

and Fe3+ with low limits of detection of 1.4 µg L−1 (7.1 nM) and 0.2 µg L−1 (3.6 nM),
respectively. Additionally, a simple method for detecting the concentration of Hg2+ and
Fe3+ in tap water and seawater was used, proving their bright prospects to be practically
applied in real analysis.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/polym14183745/s1, Table S1: Comparison of the proposed Hg2+

detection method with other reported methods; Table S2: Comparison of the proposed Fe3+ detection
with other reported methods.
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