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During ribosome synthesis, ribosomal RNA is modified through the formation of many
pseudouridines and methylations which contribute to ribosome function across all
domains of life. In archaea and eukaryotes, pseudouridylation of rRNA is catalyzed
by H/ACA small ribonucleoproteins (sRNPs) utilizing different H/ACA guide RNAs to
identify target uridines for modification. H/ACA sRNPs are conserved in archaea and
eukaryotes, as they share a common general architecture and function, but there are
also several notable differences between archaeal and eukaryotic H/ACA sRNPs. Due
to the higher protein stability in archaea, we have more information on the structure
of archaeal H/ACA sRNPs compared to eukaryotic counterparts. However, based
on the long history of yeast genetic and other cellular studies, the biological role of
H/ACA sRNPs during ribosome biogenesis is better understood in eukaryotes than
archaea. Therefore, this review provides an overview of the current knowledge on
H/ACA sRNPs from archaea, in particular their structure and function, and relates it to
our understanding of the roles of eukaryotic H/ACA sRNP during eukaryotic ribosome
synthesis and beyond. Based on this comparison of our current insights into archaeal
and eukaryotic H/ACA sRNPs, we discuss what role archaeal H/ACA sRNPs may play
in the formation of ribosomes.

Keywords: H/ACA RNA, pseudouridine, RNA modification, ribosome biogenesis, pre-rRNA processing,
telomerase, Dyskeratosis congenita, dyskerin

INTRODUCTION

Ribosomes are macromolecular components present in all living cells responsible for protein
biosynthesis, one of the energetically most expensive processes in cells. Ribosome biogenesis begins
with the transcription of ribosomal RNA (rRNA), which in both archaea and eukaryotes is mostly
transcribed as a long precursor containing individual segments of rRNA although some archaea
also have separate rRNA genes (Yip et al., 2013). During the early stages of ribosome biogenesis, the
nascent pre-rRNA is subject to many site-specific RNA modifications, the most abundant of which
are 2′-O-methylations and pseudouridines (Maden, 1990; Kos and Tollervey, 2010; Yip et al., 2013).

Pseudouridine is a structural isomer of uridine initially discovered using two-dimensional
paper chromatography of yeast RNA extracts (Davis and Allen, 1957). This RNA modification
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is characterized by its unique C–C glycosidic bond (Figure 1).
The isomerization of uridine to pseudouridine results in an
additional imino group acting as a hydrogen bond donor
on the Hoogsteen edge of the base. Pseudouridine has been
demonstrated to be more thermodynamically favorable than
uridine when present in short duplexes of RNA (Davis, 1995;
Kierzek et al., 2014). This can be partially explained by the
fact that in crystal structures pseudouridine is observed to
coordinate a water molecule between its nucleobase and nearby
sugar-phosphate backbone, providing a rigidifying effect to
the local RNA fold and increasing base stacking interactions
(Arnez and Steitz, 1994).

The formation of pseudouridine is catalyzed by a conserved
class of enzymes known as pseudouridine synthases. In bacteria,
these enzymes exist solely as stand-alone proteins, which both
recognize the modification site in rRNA or tRNA and catalyze
their modification (reviewed in Hamma and Ferre-D’Amare,
2006). While archaea and eukaryotes also contain stand-alone
enzymes for this purpose (reviewed in Rintala-Dempsey and
Kothe, 2017), a more sophisticated system employing H/ACA
sRNPs is responsible for nearly all rRNA modifications (Ganot
et al., 1997a; Ni et al., 1997; Yu and Meier, 2014). H/ACA
sRNPs are named after the H/ACA guide RNA component
that determines their sequence specificity. In 1997, two groups
discovered the hitherto unknown function of H/ACA RNAs
and their associated proteins in directing the site-specific
pseudouridylation in rRNA triggering a plethora of studies in
yeast and other eukaryotes that provides the basis for our current
understanding of H/ACA sRNP function (Ganot et al., 1997a; Ni
et al., 1997). Eukaryotic H/ACA sRNPs are further distinguished
as H/ACA small nucleolar RNPs (snoRNPs) or H/ACA small
Cajal-body-specific RNPs (scaRNPs), which localize and function
in nucleoli and Cajal bodies, respectively (Darzacq et al., 2002).
Shortly after the description of H/ACA sRNAs in eukaryotes,
their presence was also verified in archaea (Watanabe and Gray,
2000; Tang et al., 2002). Considering the lack of subnuclear
compartments in archaea, the archaeal counterparts are simply
designated as H/ACA snoRNP-like, or more commonly as
H/ACA small ribonucleoproteins (sRNPs) (Omer et al., 2003).
In this review, we will explore and compare the structures of

FIGURE 1 | Schematic representation of the isomerization of a uridine to
pseudouridine by H/ACA sRNPs. Pseudouridine is characterized by a unique
C–C glycosidic bond linking C1′ of the ribose with C5 of the base as well as
an extra imino group (N1) with hydrogen bonding potential within the base.
The Watson-Crick face in pseudouridine is unchanged and allows
base-pairing with adenine.

archaeal and eukaryotic H/ACA sRNPs, the variety of functions
of H/ACA sRNPs, and discuss what is known about their
assembly and implications on ribosome biogenesis and beyond.

H/ACA sRNPs SHARE A COMMON
STRUCTURAL CORE ORGANIZATION

A mature H/ACA sRNP particle is composed of four different
core proteins that assemble onto a H/ACA guide RNA scaffold
(Figure 2). The archaeal proteins and their eukaryotic homologs
that constitute H/ACA sRNPs are: L7ae (Nhp2 in eukaryotes),
Nop10, Gar1, and the catalytic component, Cbf5 (dyskerin in
humans) (Watanabe and Gray, 2000; Rozhdestvensky et al.,
2003). Li and Ye (2006) reported the first structure revealing
the organization of an archaeal H/ACA sRNP which was
followed by a number of further structures of archaeal H/ACA
sRNPs including structures showing the recognition of target
RNA (Liang et al., 2007a; Duan et al., 2009; Liang B. et al.,
2009; Zhou et al., 2010). The overall structural similarity of
archaea and eukaryotic H/ACA sRNPs as well as some critical
differences have subsequently been revealed by a structure of
the S. cerevisiae Cbf5-Nop10-Gar1 complex, and more recently,
by a cryo-electron microscopy structure of human telomerase,
containing a H/ACA sRNP assembled on the 3′ end of human
telomerase RNA (Li et al., 2011b; Nguyen et al., 2018). In the
following, we will introduce the structural features of the H/ACA
sRNP components and discuss their conservation and differences
between archaea and eukaryotes.

H/ACA guide RNAs in archaea and eukaryotes have a
few notable differences. In most studied eukaryotes (albeit
with few exceptions like trypanosomes; Liang et al., 2004), all
H/ACA snoRNAs conform to a hairpin-hinge-hairpin secondary
structure where each hairpin is followed by one of two conserved
consensus sequences, the H box (consensus ANANNA) and the
ACA box, respectively. Within the ACA box, the adenines are
most conserved, and alternative sequences (AUA, AAA, or AGA)
can be found (Ganot et al., 1997b). In all cases, the ACA box
is located strictly three nucleotides upstream of the 3′ end of
the RNA (Balakin et al., 1996; Ganot et al., 1997b). However,
some archaea display also highly atypical H/ACA RNA features
(Bernick et al., 2012). Instead of the two-hairpin structure
observed in almost all eukaryotes like yeast and humans, the
vast majority of archaeal H/ACA sRNAs contain just one hairpin
followed by an ACA box, but in rare instances archaeal H/ACA
sRNAs have two or three hairpins (Rozhdestvensky et al., 2003).
In both eukaryotes and archaea, the H and ACA box elements
are necessary for H/ACA sRNP accumulation, localization, and
pseudouridylation activities in vivo (Balakin et al., 1996; Ganot
et al., 1997b; Bortolin et al., 1999; Narayanan et al., 1999; Caton
et al., 2018). As obvious from the crystal structure, the single-
hairpin H/ACA sRNA in archaea is bound by one set of core
proteins (Li and Ye, 2006), and in analogy, it is assumed that each
hairpin of H/ACA sRNAs in eukaryotes also binds a complete
set of H/ACA proteins which is further supported by the set of
two H/ACA proteins observed bound to human telomerase RNA
(Figure 2; Nguyen et al., 2018).
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FIGURE 2 | Archaeal and eukaryotic H/ACA sRNP structure. (A) Crystal structure of an H/ACA sRNP bound to substrate RNA (red) from P. furiosus (PDB ID: 3HAY)
(Duan et al., 2009). The single-hairpin H/ACA sRNA (black) binds to the four H/ACA proteins: Cbf5 (orange), Nop10 (purple), L7Ae (light blue), and Gar1 (green). In
the active site of Cbf5, the catalytic aspartate residue is depicted in orange sphere adjacent to the target uridine (red sticks). (B) Schematic representation of the
typical two-hairpin structure of a eukaryotic H/ACA sRNP bound to a target RNA (red). Each hairpin of the H/ACA snoRNA (black) is assumed to bind a complete set
of H/ACA proteins. The proteins and RNAs are colored as in (A). Note that Nhp2 is the eukaryotic homolog of archaeal L7Ae. (C) Crystal structure of the yeast
Cbf5-Nop10-Gar1 complex (PDB ID: 3U28) shown in a similar conformation as the archaeal H/ACA sRNP complex in (A) (Li et al., 2011b). In eukaryotes, the PUA of
Cbf5 (bottom) is larger than in archaea due to N- and C-terminal extensions shown in brown. (D) Structural model of the H/ACA sRNP complex assembled on the 3′

end of human telomerase RNA based on a cryo-electron microscopy structure of human telomerase (Nguyen et al., 2018). Two sets of all H/ACA proteins (including
the human homolog of Cbf5 called dyskerin) are observed as well as the Telomerase Cajal body protein 1 (TCBA1, gray). All structure representations were prepared
using Pymol software.

Within each hairpin, H/ACA RNAs contain single-stranded
pockets, generally known as pseudouridylation pockets. The
unpaired nucleotides in the pocket provide pseudouridylation
specificity by selecting a uridine in the target RNA whose
flanking nucleotides complement those in the H/ACA sRNA
(Ganot et al., 1997a). Target RNA binding forms a three-way
junction at which the targeted uridine as well as a nucleotide
3′ of the target uridine remain unpaired in the center of the
guide RNA pocket, and the target uridine is inserted into the

active site of Cbf5 for modification (Liang et al., 2007a; Wu
and Feigon, 2007; Liang B. et al., 2009). In eukaryotes, at least
8 base-pairs are required between the H/ACA sRNA and its
target RNA with no less than three base-pairs on either side
of the pseudouridylation pocket in order to allow for efficient
pseudouridine formation (De Zoysa et al., 2018; Kelly et al.,
2019). Across all functional H/ACA sRNAs, there is a defined
distance between the site of pseudouridylation and the nearest
downstream consensus sequence element (H box or ACA box),
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but this distance varies slightly between eukaryotes and archaea
(Tang et al., 2002; Toffano-Nioche et al., 2015). In archaea this
distance is typically 14–16 nt, whereas in eukaryotes it is generally
15–16 nt. Functionally, this distance acts as a molecular ruler that
ensures proper positioning of the guide RNA relative to the active
site in Cbf5 such that a bound substrate RNA target uridine can
be positioned for catalysis (Caton et al., 2018).

A notable difference between eukaryotic and archaeal H/ACA
sRNAs is the presence of a conserved K-turn or K-loop motif
in the upper portion of the hairpin above the pseudouridylation
pocket in archaeal H/ACA sRNA which is absent in eukaryotic
H/ACA sRNAs (Rozhdestvensky et al., 2003). The K-turn or
kink-turn motif is a common RNA motif that results in a
characteristic kink in an RNA helix as first observed in ribosomal
RNA (Klein et al., 2001). The kink is caused by a three-nucleotide
internal bulge that is closed on one site by two canonical G-C
base pairs and that is flanked on its other site by two sheared
G-A base pairs. Whereas some archaeal H/ACA sRNAs have
a longer upper hairpin stem harboring a K-turn motif, other
archaeal H/ACA sRNAs with a shorter upper stem contain a
variation of this motif called K-loop. Here, the G-A base-pairs
are present, but instead of a 3-nucleotide bulge a 7-nucleotide
loop is found. Notably, both the K-turn and the K-loop motif
are always located 5–6 nucleotides above the pseudouridylation
pocket (Rozhdestvensky et al., 2003).

The catalytic core component of H/ACA sRNPs is the protein
Cbf5, a pseudouridine synthase of the TruB family. This family is
defined by the essential PseudoUridine synthase and Archaeosine
transglycosylase (PUA) domain, a common RNA binding domain
that contributes to H/ACA sRNA binding in Cbf5 by interacting
with the lower stem and the H or ACA box (Hamma et al.,
2005; Hamma and Ferre-D’Amare, 2006). One notable difference
between eukaryotic and archaeal Cbf5 is the presence of N-
and C-terminal extensions in the eukaryotic protein that both
contribute to a larger PUA domain but may also be partially
unstructured based on the presence of many charged residues
(Figure 2). The catalytic domain of Cbf5 harbors the core fold
and conserved active site cleft residues that are shared across all
pseudouridine synthase families (Hamma et al., 2005; Hamma
and Ferre-D’Amare, 2006). The active site is characterized by the
presence of a strictly conserved catalytic aspartate residue that is
required for nucleophilic attack during isomerization (Figure 2;
Huang et al., 1998; Veerareddygari et al., 2016). Additional active
site residues include a conserved basic residue and a tyrosine
residue that stacks with the target uracil base (Ferre-D’Amare,
2003). In TruB, the bacterial homolog of Cbf5, the conserved
basic residues are shown to participate in an electrostatic network
important for modification; meanwhile, the conserved tyrosine
is suggested to maintain active site structure and may act as a
general base during catalysis (Phannachet et al., 2005; Friedt et al.,
2014). Interestingly, Cbf5 is an essential gene in eukaryotes, but
it can be deleted in Haloferax volcanii suggesting a differential
importance of H/ACA sRNPs in eukaryotes and archaea (Jiang
et al., 1993; Blaby et al., 2011).

The pseudouridine synthase Cbf5 tightly interacts along its
catalytic domain with the protein Nop10, a small (<10 kDa)
protein that binds Cbf5 independent of other proteins or RNA

(Hamma et al., 2005). Nop10 is organized into two domains that
are separated by a linker. Although the linker and C-terminal
domain of Nop10 are mostly unstructured in solution, Nop10
adopts structure upon binding to Cbf5 (Hamma et al., 2005;
Khanna et al., 2006; Reichow and Varani, 2008). When bound,
the central region of Nop10 supports the boundaries of the Cbf5
active site, and is speculated to potentially influence active site
dynamics (Hamma et al., 2005). Unique to archaeal Nop10 is the
presence of a highly stable N-terminal zinc-binding ribbon that is
replaced by a smaller, only partially stable, β-hairpin in eukaryotic
counterparts (Khanna et al., 2006). When in complex with Cbf5,
a pair of solvent-exposed Nop10 aromatic residues moderately
contribute to binding of the H/ACA RNA (Hamma et al., 2005).
Moreover, Nop10 seems to stabilize the active site of Cbf5 thereby
enhancing its catalytic activity (Kamalampeta and Kothe, 2012).

The third H/ACA sRNP protein is Gar1, an essential protein
containing one large central domain flanked by two Glycine-
Arginine Rich (GAR) regions, which are common amongst
other yeast nucleolar proteins (Girard et al., 1992; Bagni and
Lapeyre, 1998). Archaeal homologs of Gar1 are substantially
smaller in size, as they lack both GAR regions found in their
eukaryotic counterparts (Bridger et al., 2012). Consequently, only
the central portion of the eukaryotic protein is conserved in
archaea. Strikingly, a Gar1 central-domain only variant in yeast
was demonstrated to be sufficient in performing all essential
functions of full-length Gar1 in vivo, rescuing growth and
pre-rRNA processing defects observed in Gar1-deficient strains
(Girard et al., 1992, 1994). The central domain of Gar1 interacts
with the catalytic domain of Cbf5, but is not in direct contact
with the H/ACA sRNA (Figure 2; Li and Ye, 2006). Instead,
Gar1 also enhances Cbf5’s catalytic activity similar to Nop10
(Kamalampeta and Kothe, 2012), and it is critical for product
release (Duan et al., 2009). The later function is achieved through
an interaction of Gar1 with the so-called thumb loop of Cbf5:
in the substrate-free, open state, Gar1 binds the thumb loop
allowing Cbf5 to recruit substrate RNA. Subsequently, Cbf5’s
thumb loop is released from Gar1 and binds over the substrate
RNA thereby stabilizing it in the active site of Cbf5. In order to
allow for product release after pseudouridine formation, Gar1 has
to once again bind the thumb loop of Cbf5 to allow for target RNA
dissociation (Duan et al., 2009). Interestingly, yeast Gar1 has been
reported to directly bind the essential H/ACA snoRNAs snR30
and snR10 (Bagni and Lapeyre, 1998). While this interaction is
not observed in the H/ACA sRNP structures reported to-date,
it could be that eukaryotic Gar1 fulfills additional functions by
directly interacting with RNA.

The upper stem of the H/ACA sRNA is bound by the
archaeal protein L7Ae or its respective eukaryotic homolog Nhp2
(Rozhdestvensky et al., 2003). L7Ae is a member a large family
of RNA-binding proteins that specifically recognize K-turn and
K-loop motifs (Rozhdestvensky et al., 2003; Hamma and Ferre-
D’Amare, 2004; Gagnon et al., 2010). Notably, L7Ae is also a core
component of archaeal C/D sRNPs where L7Ae also recognizes a
K-loop motif. While Nhp2 is the eukaryotic homolog of L7Ae,
it has lost the ability to specifically bind K turns or K loops
in agreement with the absence of these motifs in eukaryotic
H/ACA sRNPs (Henras et al., 2001). Moreover, Nhp2 is restricted
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to H/ACA sRNPs only whereas eukaryotic C/D sRNPs contain
the homolog Snu13p/14k which continues to recognize K turns
and loops. Nevertheless, Nhp2 has retained the general ability
to bind RNA (Henras et al., 2001). Unlike L7Ae, which shows
little affinity for other H/ACA sRNP proteins, Nhp2 tightly
binds to Nop10 in eukaryotic RNPs (Hamma et al., 2005). As a
result, the recruitment of L7Ae and Nhp2 to the H/ACA sRNP
differs: whereas Nhp2 is anchored to the H/ACA RNP through a
protein-protein interaction with Nop10, L7Ae relies on binding
to the K-turn of the H/ACA guide RNA and only forms a
weak binding interface with Nop10 (Wang and Meier, 2004).
Presumably, the conserved distance of 5–6 nucleotides between
the pseudouridylation pocket and the K-turn or K-loop motif in
archaeal H/ACA sRNA is required to allow for these week L7Ae-
Nop10 interactions (Rozhdestvensky et al., 2003). Notably, both
Nhp2 and L7Ae play an important role in anchoring the top of an
H/ACA guide RNA hairpin and to position the pseudouridylation
pocket in close proximity of the active site of Cbf5 which is
important for pseudouridylation activity (Liang et al., 2007a,
2008; Caton et al., 2018). Thus, Nhp2 and L7Ae differ in their
molecular interactions, but seem to fulfill the same function.

FUNCTIONAL ROLES OF H/ACA sRNPs
IN RIBOSOME FORMATION AND
BEYOND

H/ACA sRNPs play roles in several cellular pathways including
ribosome biogenesis, but also in many other RNA-related
processes (Figure 3). The most well defined and characteristic
role of H/ACA RNPs is the site-specific introduction of
pseudouridines in rRNA during ribosome synthesis (Bousquet-
Antonelli et al., 1997; Ganot et al., 1997a; Ni et al., 1997). While
the specific role of individual pseudouridines in rRNA remains
unclear, collectively pseudouridines are critical for ribosome
function, and the removal of select pseudouridines via the
deletion of the respective H/ACA guide RNAs causes changes
in ribosome structure and function (Penzo and Montanaro,
2018). Importantly, pseudouridines occur with the greatest
frequency in functionally important regions of the ribosome
such as the peptidyl transferase center, the decoding center, and
intersubunit bridges (Bakin et al., 1994; Liang et al., 2007c).
In yeast, the removal of H/ACA guide RNAs introducing
pseudouridines in these regions influences ribosome structure,
translation rate, translational fidelity, and biogenesis (King
et al., 2003; Baxter-Roshek et al., 2007; Decatur et al., 2007;
Baudin-Baillieu et al., 2009; Liang X.H. et al., 2009; Polikanov
et al., 2015; Sloan et al., 2017). However, since archaea are
less amenable to genetic manipulation, our understanding of
the exact roles of rRNA pseudouridylation for the archaeal
ribosome is lagging. Interestingly, for the organisms studied
so far, it seems that archaeal ribosomes contain a much lower
number of pseudouridines (e.g., 5 in Sulfolobus acidocaldarius)
compared to their eukaryotic counterparts and even compared to
some bacteria like Escherichia coli with 11 rRNA pseudouridines
(Massenet et al., 1999; Hamma and Ferre-D’Amare, 2006).
However, the pseudouridines detected in archaeal rRNA also

reside in critical regions, namely the peptidyltransferase center
and helix 69 of the 23S rRNA, and similar positions are also
modified in bacteria (Ofengand and Bakin, 1997; Massenet et al.,
1999; Blaby et al., 2011). Based on the conservation of rRNA
pseudouridylation in all kingdoms of life, it seems therefore
reasonable to assume that rRNA modification by archaeal H/ACA
sRNPs plays in general similar roles in ribosome synthesis and
translation as in eukaryotes.

The ribosomal A-site acts as the binding site for incoming
aminoacyl-tRNAs during protein synthesis and contains several
pseudouridines in eukaryotes. Removal of pseudouridines within
the yeast ribosomal A-site alters the structure of the A-site,
changing the positioning of critical bases involved in tRNA
accommodation (Baxter-Roshek et al., 2007). The yeast A-site
finger contains four pseudouridines that cause slight increases in
frameshifting when removed individually; however, the removal
of all four pseudouridines causes elevated UGA stop codon
readthrough with increased + 1 frameshifting (Baudin-Baillieu
et al., 2009). Deleting pseudouridines together with 2′-O-
methylations in the ribosomal A-site further affects translation
fidelity (Baudin-Baillieu et al., 2009). Given the sparsity of
pseudouridines in archaeal rRNA, it is currently not clear whether
some pseudouridines are fulfilling similar roles in the archaeal
A site. Helix 69 of 25S rRNA is an important region of the
ribosome and is part of the intersubunit bridge connecting
the small and large ribosomal subunit. Depletion of rRNA
modifications in this intersubunit bridge (Helix 69), which
includes four pseudouridine residues, results in decreased growth
rate, increased antibiotic sensitivity, and increased frameshifting
during translation in yeast (Liang et al., 2007c). Most likely,
the conserved pseudouridines in archaeal helix 69 have a
similar function.

Aside from ribosomal RNA, pseudouridines have also been
discovered in tRNA, small nuclear RNA (snRNA), long non-
coding RNA (lncRNA) and mRNA in eukaryotes (Carlile et al.,
2014; Lovejoy et al., 2014; Schwartz et al., 2014; Li et al., 2015).
Many (but not all) pseudouridines in snRNA are introduced by
H/ACA RNAs called small Cajal body RNAs (scaRNAs), a subset
of H/ACA sRNAs that do not exist in archaea. In addition to the
H and ACA boxes common to all H/ACA RNAs, box H/ACA
scaRNAs contain one additional sequence element named the
CAB box (consensus UGAG) that is located at the terminal
loops of each hairpin (Richard et al., 2003). Moreover, several
pseudouridines in yeast and human mRNAs are dependent
on Cbf5/dyskerin and are therefore most likely introduced by
H/ACA sRNPs (Carlile et al., 2014; Schwartz et al., 2014; Li
et al., 2015). In archaea, it is currently unknown whether H/ACA
sRNPs can also target RNAs other than rRNA, but at least
computational predictions suggest that this possibility should not
be ruled out (Toffano-Nioche et al., 2015).

Transfer RNA (tRNA) is one of the most highly modified
RNAs within all cells. Notably, the pseudouridylation of position
55 at the T9C arm, is universally conserved across all domains
of life in all elongator tRNAs. In eukaryotes, this pseudouridine
is introduced by the standalone pseudouridine synthase Pus4,
but interestingly in archaea, 955 can be introduced by both the
standalone enzyme Pus10 (which is not related to Pus4) as well as
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FIGURE 3 | Overview of the different cellular processes that involve H/ACA sRNPs in archaea and eukaryotes. Whereas most known H/ACA sRNPs are responsible
for rRNA pseudouridylation, many additional modification targets in snRNAs, mRNAs and other non-coding RNAs have been identified in eukaryotes. In contrast, the
archaeal H/ACA proteins are also capable of pseudouridylating tRNA both in a guide RNA-dependent and -independent manner. In addition to the RNA modification
activities, eukaryotic H/ACA sRNPs are also implicated in rRNA processing, miRNA production, and telomerase stabilization.

by Cbf5 (Roovers et al., 2006; Gurha and Gupta, 2008). Strikingly,
in the latter scenario, Cbf5 is capable of introducing the
pseudouridine at position 55 in an RNA-independent manner,
i.e., without H/ACA sRNA, and this activity is enhanced by the
presence of the Nop10 and Gar1 proteins (Roovers et al., 2006;
Kamalampeta and Kothe, 2012; Fujikane et al., 2018). To bind
the tRNA in the absence of H/ACA sRNA, the archaeal Cbf5 PUA
domain binds the CCA 3′ end of the tRNA tightly highlighting the
versatility of the PUA domain in either binding the ACA motif
of H/ACA sRNAs or the CCA motif of tRNAs (Roovers et al.,
2006). However, Cbf5 is non-essential in H. volcanii in contrast
to Pus10 indicating that in vivo Pus10 is the predominant tRNA
955 modification enzyme (Blaby et al., 2011). In addition to this
RNA-independent modification of tRNAs by archaeal Cbf5, it has
also been reported that at least in some archaeal species such as
Sulfolobus solfataricus the pseudouridine in position 35 of pre-
tRNATyr can be generated in an RNA-dependent mechanism by
a complete H/ACA sRNP (Muller et al., 2009).

Whereas pseudouridylation by H/ACA sRNPs is their most
studied activity, it is presumably not their most important cellular

function. Notably, as mentioned, the catalytic protein of H/ACA
sRNP, Cbf5, is not essential in archaea suggesting that ribosome
biogenesis can occur in the absence of pseudouridylation in
archaea (Blaby et al., 2011). Interestingly, the same is true in
yeast. Whereas Cbf5 is essential (Jiang et al., 1993), yeast strains
expressing only catalytically inactive Cbf5 show a significant
growth defect, but are viable (Zebarjadian et al., 1999). These
observations raise the intriguing question regarding additional
functions of H/ACA sRNPs beyond RNA modification which
have been identified in eukaryotes, but not (yet) in archaea
(Mitchell et al., 1999a; Vos and Kothe, 2020).

Interestingly, modification H/ACA sRNAs are usually non-
essential in eukaryotes, but this is not true for all H/ACA
sRNAs providing insight into the most critical cellular function
of H/ACA sRNPs. The one essential eukaryotic H/ACA sRNA
is S. cerevisiae snR30/human U17 (Bally et al., 1988). Notably,
there is no identified homologs of the snR30 RNA in archaea.
Unlike typical H/ACA sRNAs, snR30/U17 has no known sites
of pseudouridylation but instead has a crucial role for the
processing of 35S pre-rRNA to generate 18S rRNA (Vos and
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Kothe, 2020). Together with the core H/ACA proteins and several
other ribosome biogenesis factors, snR30 facilitates the early
endo-nucleolytic 35S pre-rRNA cleavage events (Zebarjadian
et al., 1999; Atzorn et al., 2004). Therein, snR30 also base-pairs
with rRNA in an unpaired pocket of its 3′ hairpin; however
this interaction resides at the bottom rather than the top of the
pocket and thus differs significantly from the rRNA interactions
of modification H/ACA sRNPs (Fayet-Lebaron et al., 2009). The
detailed molecular mechanism and the architecture of the snR30
H/ACA sRNP remain unknown, but evidently this complex
is responsible for the most important function of eukaryotic
H/ACA sRNPs during ribosome assembly. Although not
essential, the yeast snR10 H/ACA sRNP is similarly implicated
in 35S pre-rRNA processing, and consequently its deletion also
increases cell doubling time, results in accumulation of 35S
pre-rRNA, and causes a cold-sensitive phenotype (Tollervey,
1987; King et al., 2003). Given that processing of archaeal rRNA
occurs entirely differently using an archaeal-specific splicing
mechanism (summarized in Yip et al., 2013; Clouet-d’Orval et al.,
2018), it seems unlikely that an archaeal H/ACA sRNP fulfills a
similar role during rRNA processing as the eukaryotic snR30/U17
H/ACA sRNP, but it cannot be excluded that H/ACA sRNPs are
differently involved in archaeal ribosome formation.

One interesting function of H/ACA sRNAs observed
exclusively in vertebrates is the stabilization of telomerase
RNA. The 3′ end of vertebrate telomerase RNA folds into a
secondary structure that strongly resembles an H/ACA sRNA,
and accordingly the 3′ end of telomerase RNA assembles with two
complete sets of box H/ACA core proteins (Figure 2D; Mitchell
et al., 1999a; Chen et al., 2000; Dragon et al., 2000). Similar to
H/ACA sRNAs that direct pseudouridylation, telomerase RNA
contains consensus H and ACA sequences that are also essential
for its accumulation, 3′ end processing, and telomerase activity
(Mitchell et al., 1999a). This function of vertebrate H/ACA
sRNPs has been strongly implicated with a human premature
aging syndrome called Dyskeratosis congenita characterized by
leukoplakia, nail dystrophy, bone marrow failure, and increased
susceptibility to some forms of cancer (Dokal, 2000). The disease
has three forms: autosomal dominant, autosomal recessive, and
X-linked (X-DC), which is the most severe of all forms. Many
X-DC patients have mutations in dyskerin, the human homolog
of Cbf5 (Heiss et al., 1998) which cluster in the PUA domain
as well as N- and C-terminal extensions of dyskerin which
envelop the PUA domain (Hamma et al., 2005; Rashid et al.,
2006). Notably, the mutated residues are generally conserved in
eukaryotic Cbf5/dyskerin, but not in its archaeal homolog. In
accordance with the role of the PUA domain for the binding to
the ACA box in H/ACA sRNAs, many X-DC dyskerin variants
do not bind telomerase RNA leading to its destabilization
(Ashbridge et al., 2009). As a consequence, one key symptom
of X-DC is the shortening of telomeres in cells derived from
X-DC patients as well as reduced telomerase activity in primary
cells (Mitchell et al., 1999b; Vulliamy T.J. et al., 2001). In
addition, it was shown for certain X-DC mutations that they also
impair rRNA pseudouridylation and reduce rRNA processing
(Mochizuki et al., 2004), and in a mouse model with reduced
dyskerin expression, which recapitulates Dyskeratosis congenita

features, ribosomal defects appear before telomere shortening
(Ruggero et al., 2003). The less severe autosomal dominant form
of Dyskeratosis congenita is characterized by mutations that
remove a portion of the H/ACA RNA-like structure of telomerase
RNA (Vulliamy T. et al., 2001). Unlike dyskerin mutations in
X-DC, autosomal dominant mutations do not reduce binding of
dyskerin to telomerase RNA (Ashbridge et al., 2009). Another
autosomal recessive form of Dyskeratosis congenita is also linked
to H/ACA RNPs and is caused by mutations in the nop10 or nhp2
genes (Walne et al., 2007; Vulliamy et al., 2008). In summary, the
importance of human H/ACA sRNPs for telomere maintenance
and ribosome biogenesis is underlined by the molecular defects
observed in the different forms of Dyskeratosis congenita.

Lastly, the functions of eukaryotic H/ACA sRNPs extend
even further beyond RNA modifications, telomerase stabilization,
and rRNA processing (McMahon et al., 2015). In at least one
instance, a human H/ACA RNA has been shown to function
as a micro RNA (miRNA) after processing by the Dicer
enzyme in vivo (Ender et al., 2008). Many small RNAs (20–
26 nt in length) created from ACA45, normally responsible for
directing pseudouridylation of U37 in U2 spliceosomal RNA
(snRNA), can stably associate with Argonaute (Ago) proteins
and direct the degradation of transcriptional regulator CDC2L6
mRNA (Ender et al., 2008). Notably, other human miRNAs
might also be derived from H/ACA sRNA-like precursors (Scott
et al., 2009). Furthermore, some H/ACA sRNAs are associated
with chromatin and may thus contribute to the regulation of
transcription (Schubert et al., 2012). Lastly, H/ACA-like RNAs
are critical for trans-splicing in trypanosomes through mediating
pseudouridylation of the spliced leader RNA, the substrate
for trans-splicing (Barth et al., 2005). Thus, H/ACA sRNAs
and their complexes with proteins may have more functions
than currently anticipated, and this may also hold true for
archaeal H/ACA sRNAs.

THE ASSEMBLY PATHWAY OF H/ACA
sRNPs

In eukaryotes, the formation of a functional H/ACA sRNP is a
complex process that involves several factors working together
to assemble and transport the premature H/ACA sRNP particles
throughout different compartments of the cell and ultimately
to their final location, i.e., the nucleolus or Cajal body (Kiss
et al., 2006). In contrast, our current information suggests
that archaeal H/ACA sRNPs can self-assemble as none of the
additional assembly factors is conserved in archaea. Self-assembly
of archaeal H/ACA sRNPs has been successful in vitro laying
the ground for several biochemical and structural studies (Baker
et al., 2005; Charpentier et al., 2005). In contrast, it was much
more difficult to reconstitute a yeast H/ACA sRNP in the absence
of assembly factors in vitro due to the instability of the isolated
proteins (Li et al., 2011b; Caton et al., 2018). In the following
sections, we will describe the process of H/ACA sRNP biogenesis
beginning with the production of nascent Cbf5/dyskerin in the
cytoplasm (Figure 4).
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FIGURE 4 | The assembly pathway of eukaryotic H/ACA sRNPs. Several assembly factors like Shq1, Naf1, and the R2TP complex assist in the assembly of
eukaryotic H/ACA sRNPs. In contrast, archaeal H/ACA sRNPs are thought to self-assemble without the help of additional factors.

Following its translation, Cbf5/dyskerin is quickly bound by
Shq1, an essential protein related to Hsp90 cochaperones, that
plays a crucial role in early H/ACA sRNP biogenesis by tightly
binding the H/ACA sRNA binding interface of Cbf5 through
RNA mimicry (Yang et al., 2002; Godin et al., 2009; Walbott
et al., 2011). Shq1 binding to Cbf5 ensures that the RNA binding
surface of Cbf5 is occupied thereby preventing non-specific RNA
binding and aggregation prior to assembly on an H/ACA RNA
(Grozdanov et al., 2009; Li et al., 2011a; Caton et al., 2018).
Interestingly, mutations in Shq1 can also cause Dyskeratosis
congenita (Bizarro and Meier, 2017).

The Cbf5/dyskerin complex with Shq1 is then imported into
the nucleus to join the nascent H/ACA sRNA. In S. cerevisiae,
H/ACA RNAs are typically encoded as single genes (Schattner
et al., 2004), whereas H/ACA RNA genes are found within introns
of protein coding genes in mammals (Schattner et al., 2006).
Through computational and experimental screens, H/ACA
snoRNA genes have been identified in several organisms showing
a variety of different gene structures such as independent genes,
intron-encoded genes, and polycistronic gene clusters (Liang
et al., 2004, 2007b; Chen et al., 2008; Wang and Ruvinsky, 2010;

Patra Bhattacharya et al., 2016). H/ACA sRNAs are transcribed
by RNA Polymerase II followed by processing involving several
factors. In yeast, processing of polycistronic H/ACA sRNA is
mediated by the endonuclease RNase III (Rnt1) (Chanfreau et al.,
1998). Intron-encoded H/ACA sRNAs are typically liberated
through splicing and debranching. To mediate further processing
in yeast, H/ACA sRNAs are polyadenylated by the poly(A)
polymerase Pap1 or the alternative Tfr4, bound by polyA binding
protein (Pab2 in fission yeast) and subsequently processed by the
nuclear exosome (van Hoof et al., 2000; Grzechnik and Kufel,
2008; Lemay et al., 2010; Berndt et al., 2012). As there are only
few pseudouridines in archaeal rRNA and thus only few H/ACA
RNAs, the transcription and maturation of archaeal H/ACA
RNAs has not been studied in detail, but many archaeal H/ACA
RNAs have been identified (Rozhdestvensky et al., 2003; Muller
et al., 2007, 2008; Randau, 2015; Toffano-Nioche et al., 2015;
Clouet-d’Orval et al., 2018).

After the Cbf5-Shq1 complex enters the nucleus, Cbf5 is
bound by the protein Naf1 which contains a Gar1 domain
mediating its interaction with Cbf5 (Hoareau-Aveilla et al., 2006;
Leulliot et al., 2007). Subsequently, Cbf5 is recruited to the site
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of H/ACA RNA transcription. In eukaryotes, the recruitment
of Cbf5 to the nascent H/ACA RNA is achieved through Naf1-
mediated interactions with the C-terminal domain (CTD) of
RNA polymerase II (Fatica et al., 2002; Richard et al., 2006).
For snoRNAs transcribed from their own promoter in humans,
an additional mode of recruitment is suggested that is mediated
through TSG1 which is responsible for 5′ hypermethylation
of snoRNAs and also interacts with dyskerin (Mouaikel et al.,
2002). To enable Cbf5 binding to nascent H/ACA RNA, Shq1
is removed from Cbf5 by the R2TP complex, a multiprotein
complex composed of two AAA + ATPases (Rvb1 and Rvb2
in yeast) and two Hsp90 interactors (Pih1 and Tah1 in yeast)
that is involved in multiple cellular processes (King et al., 2001;
Kakihara and Houry, 2012; Machado-Pinilla et al., 2012). The co-
transcriptional assembly of Cbf5 on the H/ACA sRNA is likely
protecting the nascent RNA from degradation by exonucleolytic
proteins since Cbf5 is necessary for accumulation of all box
H/ACA RNAs (Lafontaine et al., 1998; Berndt et al., 2012). Nop10
and Nhp2 are also recruited to the maturing H/ACA sRNP
although the timing of their association is not entirely clear.
However, the presence of Naf1 prevents Gar1 recruitment and
renders the pre-sRNP complex inactive.

Currently, it is not entirely clear whether the Naf1-bound
H/ACA pre-sRNPs localize to the Cajal bodies and are then
shuttled to the nucleoli, or whether they migrate to the nucleoli
directly. In any case, Naf1 is replaced by Gar1 forming the
active RNP complexes. Although the process for exchanging these
proteins is not fully known, the SMN complex, which like Gar1
is also highly concentrated in Cajal bodies, is implicated in this
process supporting the hypothesis that H/ACA sRNPs migrate
through the Cajal body (Pellizzoni et al., 2001; Whitehead et al.,
2002). Finally, most H/ACA sRNPs are shuttled to the nucleolus
to modify ribosomal RNAs while those required for snRNA
modification (scaRNAs) remain in the Cajal bodies (Kiss, 2006).

DISCUSSION

H/ACA sRNPs are versatile ribonucleoprotein machines
conserved across both archaea and eukaryotes that play
critical roles during ribosome biogenesis through the site-
directed formation of pseudouridine modifications in rRNA.
In agreement with their conservation, the core structure and
functionality of H/ACA sRNPs is the same in archaea and
eukaryotes, but multiple adaptations have arisen to further
expand the scope of cellular roles of these RNPs such as tRNA
modification in archaea as well as modification of several RNAs,
rRNA processing, telomerase stabilization, microRNA biogenesis
and chromatin regulation in eukaryotes. Notably, some of these
additional functions have only emerged recently, and we are
still lacking a full understanding of the molecular mechanisms
of H/ACA sRNPs in ribosome assembly and beyond. Moreover,
H/ACA sRNPs can be utilized as bioengineering devices to
site-specifically introduce novel pseudouridines, for example
to enable stop codon read-through in yeast (Karijolich and Yu,
2011). As pseudouridines prevent the recognition of mRNA
by the immune system and novel mRNA vaccines contain

pseudouridines (Kariko et al., 2008; Pardi and Weissman,
2017), the engineering capability of H/ACA sRNPs holds
future promising applications beyond the role of H/ACA
sRNAs in ribosome formation. Given the current progress in
understanding ribosome formation and H/ACA sRNP function,
a number of interesting hypotheses are emerging regarding
further roles of these ribonucleoproteins. These may hold true in
archaea and/or eukaryotes and will likely shape the direction of
future research.

Besides stabilizing rRNA through the introduction of
pseudouridines, it has been a long-standing speculation that
H/ACA sRNPs may also act as rRNA chaperones in both archaea
and eukaryotes (Watkins and Bohnsack, 2012; Yip et al., 2013).
By base-pairing with rRNA, H/ACA sRNPs may keep certain
regions of the rRNA unfolded during the early stages of ribosome
assembly thereby preventing premature folding or they may
even be able to unfold wrong rRNA folding intermediates. As
rRNA folding is a complex and poorly understood process due
to the immense size of rRNA, this is an intriguing proposition
that will require a concerted approach to be experimentally
addressed. In this context, it is interesting to note that eukaryotic
H/ACA sRNPs likely rely at least in part on RNA helicases
such as Has1 and Rok1 to be removed from rRNA which may
contribute to regulating the timing of rRNA folding (Liang and
Fournier, 2006; Bohnsack et al., 2008). In contrast, we have
no indication to date that helicases fulfill a similar role for
H/ACA sRNPs during archaeal ribosome assembly. In addition
to rRNA modification and possibly folding, it is noteworthy
that one of the most critical functions of a eukaryotic H/ACA
sRNA, namely snR30/U17, is to facilitate the processing of pre-
rRNA which may also constitute a significant difference between
the eukaryotic and archaeal kingdom of life. In all organisms,
it will be interesting to understand the coordinated action of
H/ACA sRNPs and the other ribosome assembly factors who
will interact simultaneously with rRNA early during ribosome
formation when the rRNA is still accessible and not yet folded
into a compact form. Clearly, many molecular mechanisms
and interactions remain to be unraveled regarding ribosome
biogenesis in both archaea and eukaryotes.
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