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Abstract: This paper presents a new set-membership based hybrid Kalman filter (SM-HKF) by
combining the Kalman filtering (KF) framework with the set-membership concept for nonlinear state
estimation under systematic uncertainty consisted of both stochastic error and unknown but bounded
(UBB) error. Upon the linearization of the nonlinear system model via a Taylor series expansion, this
method introduces a new UBB error term by combining the linearization error with systematic UBB
error through the Minkowski sum. Subsequently, an optimal Kalman gain is derived to minimize the
mean squared error of the state estimate in the KF framework by taking both stochastic and UBB
errors into account. The proposed SM-HKF handles the systematic UBB error, stochastic error as well
as the linearization error simultaneously, thus overcoming the limitations of the extended Kalman
filter (EKF). The effectiveness and superiority of the proposed SM-HKF have been verified through
simulations and comparison analysis with EKF. It is shown that the SM-HKF outperforms EKF for
nonlinear state estimation with systematic UBB error and stochastic error.

Keywords: nonlinear state estimation; Kalman filtering; set-membership; systematic uncertainty;
unknown but bounded error

1. Introduction

The nonlinear state estimation problem has received significant attention in the fields of process
control [1], tracking guidance [2], system identification [3], sensor networks [4], navigation [5,6] and so
on. It is well known that the more accurate the system model is, the more accurate the state estimation
can be obtained. However, due to the complexity of systematic dynamics and the dynamically
changing conditions of the environment, uncertainty is inevitably involved in the system model [7].
This uncertainty is commonly characterized by stochastic errors such as the Gaussian or non-Gaussian
system noise. With the assumption that the statistical characteristics of system noise are known,
the issue of nonlinear system state estimation has been extensively studied [6,8–10]. However, in
practical applications, the system uncertainty is mixed by stochastic errors as well as unknown but
bounded (UBB) errors [11]. The UBB error, as implied by its name, refers to the systematic modelling
uncertainty whose probability distribution is difficult to identify or even without the probabilistic
nature. If the effect of UBB error on system dynamics is not considered in the filtering process, the state
estimation will be biased or even diverged.

The Kalman filter (KF) is undoubtedly the most famous state estimation method within the
Bayesian framework. As the system model is linear and the uncertainty is Gaussian distributed, KF is
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optimal in the sense of mean squared error [12]. Unfortunately, KF is only suitable for nominally linear
systems due to its theoretical limitation. For nonlinear systems, a variant of KF, which is named as the
extended Kalman filter (EKF), linearizes the nonlinear system model via a Taylor series expansion
such that KF can be applied [13]. EKF has been used for many years as the benchmark in nonlinear
state estimation. Some other candidates are the unscented Kalman filter (UKF) [5,6,14], cubature
Kalman filter (CKF) [15] and particle filter (PF) [16]. However, since these nonlinear state estimation
methods are based on the framework of KF, they also require the exact statistical knowledge of system
uncertainty, which is difficult to achieve in engineering practice.

Research efforts have been devoted in improving the robustness of nonlinear filtering against
unknown system uncertainty. These include the Huber’s M-Estimation based robust EKF [17],
strong tracking UKF [7], covariance matching based adaptive UKF [18], Mahalanobis distance based
robust CKF [19] and H-infinity based robust CKF [20], to name a few only. However, the existing
techniques are mainly focused on the disturbances of the stochastic errors such as observation outliers,
non-Gaussian noise and inaccurate noise statistics, rather than the disturbance of UBB error on
nonlinear state estimation.

The set-membership filtering is a method to handle UBB error for nonlinear state estimation.
The origination of the set-membership filtering can be dated back to the 1960s and such a problem has
received recurring research interest in the past decade [11,21–23]. Different from the above nonlinear
Kalman filters, the state estimation obtained by the set-membership filtering is a feasible set of possible
states rather than a single value. This feasible set describes the range of the state estimate and guarantees
that the estimation error is confined to a bounded region. Currently, the polytopes and ellipsoids are
commonly used to describe the feasible set. Compared to the polytope method, which requires a great
large number of inequalities to determine the feasible set, the ellipsoid method is more popular for online
applications since it can represent the set with fewer pieces of information [21]. Therefore, for the sake of
computational performance, the ellipsoid method is employed in this paper for feasible set description.

Among the existing studies on the set-membership filtering, the techniques reported in
References [11] and [21] are quite constructive. In Reference [21], the concept of set-membership
estimation was extended from a linear system to nonlinear system for the first time. An extended
set-membership filter (ESMF) was also established via the linearization of the system model, in which
the linearization error and system noise were combined into a new UBB noise term and was further
addressed by use of the interval mathematics. However, this method does not take the substantive
UBB errors of a system into account and the combination of the linearization error and system noise
may degrade the state estimation accuracy since the statistical knowledge of system noise is omitted.
In Reference [11], considering both UBB error and stochastic error in the Kalman filtering scheme,
a new Kalman gain was obtained by minimizing the mean squared error of the system state based on
set-membership. However, the technique presented in Reference [11] is only suitable for linear systems.

Motivated by the techniques reported in References [11] and [21], this paper proposes a
set-membership based hybrid Kalman filter (SM-HKF) for nonlinear system state estimation in
the presence of both UBB error and stochastic error. This method linearizes the nonlinear system
model by a Taylor series expansion and then combines the linearization error with the systematic UBB
error to generate a new UBB error term through the Minkowski sum. Further, it derives an optimal
Kalman gain under the criterion of minimum mean squared error based on the framework of KF.
The proposed SM-HKF extends the set-membership based Kalman filter in Reference [11] from linear
systems to nonlinear systems. It also overcomes the limitation of EKF by treating the systematic UBB
error, stochastic error and linearization error simultaneously. Simulations and comparison analysis
have been conducted to evaluate the effectiveness of the proposed method.

2. Definitions on Ellipsoidal Sets

To facilitate the problem formulation and the derivation of SM-HKF, several definitions for
describing ellipsoidal sets are introduced for notational convenience.
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Definition 1. An ellipsoid ξ(a, P) is given by the set

ξ(a, P) =
{
x ∈ Rn : (x− a)T(P)−1(x− a) ≤ 1

}
, (1)

where a is the center of the ellipsoid, P is symmetric positive definite shape matrix and x is any point within
the ellipsoid.

Definition 2. The affine transition of the ellipsoid set can be computed as

Aξ(a, P) = ξ
(
Aa, APAT

)
, (2)

where A is a parameterized matrix.

Definition 3. Supposing ξ(a1, P1) and ξ(a2, P2) are two ellipsoidal sets, the Minkowski sum of the ellipsoids
is defined as

SS =
{
x : x = x1 + x2, x1 ∈ ξ(a1, P1), x2 ∈ ξ(a2, P2)

}
(3)

and denoted by
SS = ξ(a1, P1) ⊕ ξ(a2, P2). (4)

Generally, the set SS is not an ellipsoid. We can find an outer bounding ellipsoid ξS(a′, P′(ρ))
such that

SS ⊆ ξS(a
′, P′(ρ)). (5)

That is,
ξ(a1, P1) ⊕ ξ(a2, P2) ⊆ ξS(a

′, P′(ρ)), (6)

with
a′ = a1 + a2 (7)

P′(ρ) =
(
1 + ρ−1

)
P1 + (1 + ρ)P2, (8)

where ρ ∈ (0, 1) defines the weights on P1 and P2, which can be determined by minimizing the
semi-axes of the ellipsoid, that is [11]

ρ = trace(P1)
1
2 · trace(P2)

−
1
2 . (9)

Some other alternatives for computing the value of ρ can be found in Reference [24].

3. Set-Membership Based Hybrid Kalman Filter

3.1. Problem Formulation

Consider the following nonlinear discrete-time dynamical system

xk = f (xk−1) + δ
xU
k + δxG

k (10)

zk = h(xk) + δ
yU
k + δyG

k , (11)

where xk ∈ Rn and zk ∈ Rm, both f (·) and h(·) are assumed to be twice continuously differentiable
functions; δxG

k ∈ R
n and δyG

k ∈ Rm are the zero-mean Gaussian white noises with covariance matrices

QxG
k and RyG

k ; δxU
k ∈ ξ

(
0n×1, QxU

k

)
and δyU

k ∈ ξ
(
0m×1, RyU

k

)
are the UBB errors involved in the process

model and measurement model; and δxG
k , δyG

k , δxU
k and δyU

k are considered to be mutual independent.
Expanding (10) by a Taylor series about the system state estimate x̂k−1, we have
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xk = f (x̂k−1) +
∂ f (xk−1)

∂xk−1

∣∣∣xk−1=x̂k−1 (xk−1 − x̂k−1) + o f (xk−1 − x̂k−1) + δ
xG
k−1 + δ

xU
k−1, (12)

where o f (xk−1 − x̂k−1) denotes the higher-order remainder term in the Taylor series.
The interval mathematics is used to bound the linearization error o f (xk−1 − x̂k−1). Suppose the

ellipsoidal sets of the system state at time k− 1 is ξ
(
x̂k−1, P̂k−1

)
. The extrema of this state ellipsoid are

computed as

x̂i
k−1,− = x̂i

k−1 −

√
P̂i,i

k−1 and x̂i
k−1,+ = x̂i

k−1 +

√
P̂i,i

k−1 (i = 1, 2, · · · , n), (13)

where x̂i
k−1 is the ith component of x̂k−1; the subscripts “−” and “+” denote the minimum and maximum

values; and P̂i,i
k−1 is the ith diagonal element of P̂k−1.

The state interval bound Xk−1 for x̂k−1 is then defined as

Xi
k−1 =

[
x̂i

k−1,−, x̂i
k−1,+

]
(i = 1, 2, · · · , n) (14)

and the interval for the linearization error can be further determined by

XR(k− 1) = diag{XT
k−1}


Hes1

Hes2
...

Hesn

Xk−1, (15)

where Hesi(i = 1, 2, · · · , n) represents the Hessian matrix of f (·) at Xk−1.
Based on the results in Reference [21], the interval XR(k − 1) can be bounded using an outer

bounding ellipsoid ξ
(
0n×1, Q

x
k

)
, in which

(
Q

x
k

)i,i
= 2

[(
XR(k− 1)

)i
]2

(16)

(
Q

x
k

)i, j
= 0n×1 (i , j). (17)

After that, we denote the linearization error as δxL
k = o f (xk−1 − x̂k−1). By taking the linearization

error into account, the process model (10) can be rewritten in the following linear form

xk = f (x̂k−1) + Fk(xk−1 − x̂k−1) + δ
xL
k + δxU

k + δxG
k , (18)

where Fk =
∂ f (xk−1)
∂xk−1

∣∣∣xk−1=x̂k−1 and δxL
k ∈ ξ

(
0n×1, Q

x
k

)
.

Similar to (12)–(18), an outer bounding ellipsoid ξ
(
0m×1, R

y
k

)
is easy to achieve to bound the

linearization error of h(·) such that the measurement model (11) can be rewritten in the following
linear form

zk = h(x̂k/k−1) + Hk(xk − x̂k/k−1) + δ
yL
k + δyU

k + δyG
k , (19)

where x̂k/k−1 = f (x̂k−1) denotes the predicted state estimate, Hk =
∂h(xk)
∂xk

∣∣∣xk=x̂k/k−1 and δyL
k ∈ ξ

(
0m×1, R

y
k

)
is the linearization error.

For the dynamic system described by (18) and (19), we shall discuss in the following how to
estimate the system state in the presence of both UBB and stochastic errors.

3.2. Optimal Kalman Gain for Nonlinear System with UBB Error and Stochastic Error

Since the linearization error is also unknown but bounded, we firstly combine it with the systematic
UBB error to generate a new UBB error term through the Minkowski sum.
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For the process model given by (18), by summing the linearization error δxL
k and the systematic

UBB error δxU
k , a new UBB error δ

xU
k can be defined as

δ
xU
k ∈ ξ

(
0n×1, Q

xU
k

)
= ξ

(
0n×1, Q

x
k

)
⊕ ξ

(
0n×1, QxU

k

)
. (20)

Similarly, for the measurement model given by (19), another new UBB error δ
yU
k is introduced by

the sum of δyL
k and δyU

k

δ
yU
k ∈ ξ

(
0m×1, R

xU
k

)
= ξ

(
0m×1, R

y
k

)
⊕ ξ

(
0m×1, RyU

k

)
. (21)

Then, the dynamic system described by (18) and (19) can be further rewritten as

xk = f (x̂k−1) + Fk(xk−1 − x̂k−1) + δ
xU
k + δxG

k (22)

zk = h(x̂k/k−1) + Hk(xk − x̂k/k−1) + δ
yU
k + δyG

k , (23)

where δxG
k , δyG

k , δ
xU
k and δ

yU
k are independent of each other.

In the following, we shall derive the optimal Kalman gain based on the system described by (22)
and (23).

Suppose the system state estimate at time k− 1 is x̂k−1, whose error covariance is P̂k−1. From the
KF framework, the state estimate at time k can be obtained by

x̂k = f (x̂k−1) + Kk(zk − h(x̂k/k−1)), (24)

where Kk is the Kalman gain that we are looking for to minimize the mean squared error of the
state estimate.

To simplify the vector operations, we employ the notation (x)2 = x · xT for any vector x throughout

this paper. Since xk−1 − x̂k−1 is uncorrelated to δxG
k , δyG

k , δ
xU
k and δ

yU
k , it is verified from (22)~(24) that

the error covariance of x̂k can be expressed as

E
{(

x̂k − xk

)2
}

= E
{[
( f (x̂k−1) + Kk(zk − h(x̂k/k−1))) −

(
f (x̂k−1) + Fk(xk−1 − x̂k−1) + δ

xU
k + δxG

k

)]2
}

= E
{[(

Kk

(
Hk(xk − x̂k/k−1) + δ

yU
k + δyG

k

))
−

(
Fk(xk−1 − x̂k−1) + δ

xU
k + δxG

k

)]2
}

= E
{[(

Kk

(
Hk

(
Fk(xk−1 − x̂k−1) + δ

xU
k + δxG

k

)
+ δ

yU
k + δyG

k

))
−

(
Fk(xk−1 − x̂k−1) + δ

xU
k + δxG

k

)]2
}

= E
{[
(KkHk − I)Fk(xk−1 − x̂k−1) + (KkHk − I)δ

xU
k + (KkHk − I)δxG

k + Kkδ
yU
k + Kkδ

yG
k

]2
}

= (KkHk − I)
(
FkP̂k−1FT

k + QxG
k

)
(KkHk − I)T + KkRyG

k KT
k +

(
(KkHk − I)δ

xU
k + Kkδ

yU
k

)2

(25)

Due to the set-membership of δ
xU
k and δ

yU
k as shown in (20) and (21), the last term in (25) can be

computed as the Minkowki sum, that is,

(KkHk − I)δ
xU
k + Kkδ

yU
k

∈ (KkHk − I)ξ
(
0n×1, Q

xU
k

)
⊕Kkξ

(
0m×1, R

xU
k

)
= ξ

(
0n×1, (KkHk − I)Q

xU
k (KkHk − I)T

)
⊕ ξ

(
0n×1, KkR

xU
k KT

k

)
⊂ ξ(0n×1,$(ρ))

(26)

in which
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$(ρ) =
(
1 + ρ−1

)
(KkHk − I)Q

xU
k (KkHk − I)T + (1 + ρ)KkR

xU
k KT

k (27)

where ρ ∈ (0, 1) is determined according to (9).
Then, from (25) and (26), the trace of E

{
(x̂k − xk)

2
}

can be computed by

trace
(
E
{(

x̂k − xk

)2
})

= trace
(
(KkHk − I)

(
FkP̂k−1FT

k + QxG
k

)
(KkHk − I)T

)
+ trace

(
KkRyG

k KT
k

)
+trace

((
(KkHk − I)δ

xU
k + Kkδ

yU
k

)2
)

≤ trace
(
(KkHk − I)

(
FkP̂k−1FT

k + QxG
k

)
(KkHk − I)T

)
+ trace

(
KkRyG

k KT
k

)
+ trace($(ρ))

= trace
(
(KkHk − I)

(
FkP̂k−1FT

k + QxG
k

)
(KkHk − I)T

)
+ trace

(
KkRyG

k KT
k

)
+trace

((
1 + ρ−1

)
(KkHk − I)Q

xU
k (KkHk − I)T

)
+ trace

(
(1 + ρ)KkR

xU
k KT

k

)
(28)

In order to determine the optimal Kalman gain Kk which minimizes the error covariance of x̂k,

the condition ∂
∂Kk

(
trace

(
E
{(

x̂k − xk

)2
}))

= 0 has to be fulfilled. By use of the derivative rules for the

trace, we obtain the derivations of the first and second terms of (28) as follows

∂
∂Kk

(
trace

(
(KkHk − I)

(
FkP̂k−1FT

k + QxG
k

)
(KkHk − I)T

))
= −

∂
∂Kk

(
trace

(
KkHk

(
FkP̂k−1FT

k + QxG
k

)))
−

∂
∂Kk

(
trace

((
FkP̂k−1FT

k + QxG
k

)
HT

k KT
k

))
+ ∂
∂Kk

(
trace

(
KkHk

(
FkP̂k−1FT

k + QxG
k

)
HT

k KT
k

))
+ ∂

∂Kk

(
trace

(
FkP̂k−1FT

k + QxG
k

))
= −2

(
FkP̂k−1FT

k + QxG
k

)
HT

k + 2KkHk
(
FkP̂k−1FT

k + QxG
k

)
HT

k

(29)

and
∂
∂Kk

(
trace

(
KkRyG

k KT
k

))
= 2KkRyG

k (30)

Similar to (29) and (30), the derivations of the third and fourth terms of (28) can be readily given by

∂
∂Kk

(
trace

((
1 + ρ−1

)
(KkHk − I)Q

xU
k (KkHk − I)T

))
= 2

(
1 + ρ−1

)(
−Q

xU
k HT

k + KkHkQ
xU
k HT

k

)
(31)

and
∂
∂Kk

(
trace

(
(1 + ρ)KkR

xU
k KT

k

))
= 2(1 + ρ)KkR

xU
k . (32)

Thus, substituting (29)–(32) into the Equation ∂
∂Kk

(
trace

(
E
{(

x̂k − xk

)2
}))

= 0, the optimal Kalman

gain is yielded

Kk =
((

FkP̂k−1FT
k + QxG

k

)
HT

k +
(
1 + ρ−1

)
Q

xU
k HT

k

)
·

((
1 + ρ−1

)
HkQ

xU
k HT

k + (1 + ρ)R
xU
k + Hk

(
FkP̂k−1FT

k + QxG
k

)
HT

k + RyG
k

)−1 . (33)

It should be noted that, by simultaneous treatment of the systematic UBB error, stochastic error and
linearization error, the SM-HKF established based on the Kalman Gain Kk in (33) can restrain the effects
of both UBB error and stochastic error on nonlinear state estimation in a hybrid way, which makes the
robust filtering a reality.

Further, with the obtained optimal Kalman gain, the covariance matrix of x̂k can be readily
obtained by substituting (26) and (27) into (25)



Sensors 2020, 20, 627 7 of 14

P̂k = E
{(

x̂k − xk

)2
}

= (KkHk − I)
(
FkP̂k−1FT

k + QxG
k

)
(KkHk − I)T + KkRyG

k KT
k + E

{(
(KkHk − I)δ

xU
k + Kkδ

yU
k

)2
}

≤ (KkHk − I)
(
FkP̂k−1FT

k + QxG
k

)
(KkHk − I)T + KkRyG

k KT
k

+
(
1 + ρ−1

)
(KkHk − I)Q

xU
k (KkHk − I)T + (1 + ρ)KkR

xU
k KT

k

(34)

where ρ ∈ (0, 1).

Remark 1. Suppose the dynamic system described by (10) and (11) does not involve UBB error and the
linearization error is neglected, the Kalman Gain Kk given in (33) can be simplified as

Kk =
((

FkP̂k−1FT
k + QxG

k

)
HT

k

)
·

(
Hk

(
FkP̂k−1FT

k + QxG
k

)
HT

k + RyG
k

)−1
, (35)

which is exactly the Kalman Gain in EKF.

Remark 2. In the KF framework, the calculation of the predicted state and its covariance matrix is actually an
important intermediate step to achieve the ultimate state estimation, even though we do not display it particularly
in the derivation of the optimal Kalman gain. Denote the predicted state as x̂k/k−1 = f (x̂k−1). From (22),
the covariance matrix of x̂k/k−1 can be represented as

P̂k/k−1 = E
{(

x̂k/k−1 − xk

)2
}

= E
{[

f (x̂k−1) −
(

f (x̂k−1) + Fk(xk−1 − x̂k−1) + δ
xU
k + δxG

k

)]2
}

= E
{[(

Fk(xk−1 − x̂k−1) + δ
xU
k + δxG

k

)]2
}

= FkP̂k−1FT
k + QxG

k + E
{(
δ

xU
k

)2
}

≤ FkP̂k−1FT
k + QxG

k + Q
xU
k

(36)

where the result of (20) is employed.

Remark 3. When using (35) and (36) in practical engineering, P̂k/k−1 and P̂k are commonly calculated by

P̂k/k−1 = FkP̂k−1FT
k + QxG

k + Q
xU
k (37)

P̂k = (KkHk − I)
(
FkP̂k−1FT

k + QxG
k

)
(KkHk − I)T + KkRyG

k KT
k

+
(
1 + ρ−1

)
(KkHk − I)Q

xU
k (KkHk − I)T + (1 + ρ)KkR

xU
k KT

k

. (38)

Although (37) and (38) may be of some conservatism, the usage of them can improve the convergence speed of
SM-HKF, which is similar to the traditional Kalman filter.

3.3. The SM-HKF Algorithm

Considering the nonlinear discrete-time dynamic system described by (10) and (11) and their
equivalent equations (22) and (23), the proposed SM-HKF algorithm can be summarized as follows.

Step 1. Give the state estimate x̂k−1 and its error covariance P̂k−1.
Step 2. Calculate the predicted state estimate by x̂k/k−1 = f (x̂k−1).
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Step 3. Compute the optimal Kalman gain given by (33), in which (20) and (21) are used.
Step 4. Calculate the state estimation x̂k and its covariance matrix P̂k by (24) and (38), respectively.
Step 5. Repeat Steps 1 to 4 for the next time step.

4. Performance Evaluation

Simulations have been conducted to evaluate the performance of the proposed SM-HKF in the
presence of UBB error and stochastic error in comparison with EKF. A two-dimensional target tracking
model is considered, in which the state vector is composed of the vehicle position and velocity in East
and North while the measurement vector the azimuth angle and slope distance of the vehicle.

Define the system state as xk =
[

sE sN vE vN

]T
, the process model and measurement model

are given by
xk = f (xk−1) + δ

xU
k + δxG

k (39)

zk = h(xk) + δ
yU
k + δyG

k , (40)

where δxG
k and δyG

k are the zero-mean Gaussian white noises (i.e., stochastic errors); δxU
k and δyU

k are
the UBB errors; and

f (xk−1) =


1 0 t 0
0 1 0 t
0 0 1 0
0 0 0 1

xk−1 (41)

h(xk) =

[ √
sE

2 + sN
2

arctan(sN/sE)

]
(42)

The covariance matrices of the Gaussian white noises in the process and measurement models are
assumed to be

QxG
k =


t3/30 0 t2/20 0

0 t3/30 0 t2/20

t2/20 0 t/10 0
0 t2/20 0 t/10

 (43)

RzG
k =

[
0.32/10 0

0 0.12/10

]
(44)

where the constant t is the sampling interval.
The shape matrix of the bounding ellipsoid describing the UBB error in the process model is

QxU
k =


axt3/3 0 axt2/2 0

0 ayt3/3 0 ayt2/2

axt2/2 0 axt 0
0 ayt2/2 0 ayt

 (45)

where ax and ax are the accelerations in East and North introduced in the vehicle trajectory simulation.
Commonly, the measurement model can be established exquisitely based on the prior physical

characteristics of measurement device and its accuracy can be further improved using a large amount
of available measurement data [7]. Thus, we assume that there exist no UBB error in the measurement
model which is given by

RyU
k = 0 (46)

The vehicle accelerations in East and North as well as the simulated vehicle trajectory are shown
in Figures 1 and 2. The vehicle acceleration variations are presented in Table 1, where the increases and
decreases of the vehicle accelerations in East and North are described by UBB error and the stochastic
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fluctuation is described by Gaussian white noise in the process model. The simulation time is 1200 s
and the sampling interval is 1 s.
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Figures 3 and 4 depict the position estimations of the vehicle achieved by EKF and the proposed
SM-HKF. It can be seen that, in the time segments without acceleration variations, that is, without UBB
error, both EKF and SM-HKF can estimate the vehicle position in high accuracy because the systematic
uncertainty is of a stochastic nature obeying the Gaussian distribution. However, due to its incapability
in restraining the effect of UBB error on the filtering solution, EKF has a degraded performance in the
presence of acceleration variations. This phenomenon can be observed in the time segments (500 s,
510 s) and (900 s, 910 s) for the position in East as well as in the time segments (300 s, 310 s) and (500 s,
510 s) for the position in North. In contrast, the proposed SM-HKF can track the vehicle position
effectively even in the presence of UBB error, since the proposed SM-HKF determines the Kalman gin
matrix under the criterion of minimum mean squared error with the consideration of both UBB error
and stochastic error.
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Table 1. Vehicle acceleration variations.

Time Segment
Vehicle Acceleration Variations

East North

(1–10 s) Increase: (1.5 m/s2)/s Increase: (1.0 m/s2)/s
(301–310 s) Increase: (0.1 m/s2)/s Decrease: (1.0 m/s2)/s
(501–510 s) Decrease: (1.0 m/s2)/s Decrease: (1.2 m/s2)/s
(901–910 s) Increase (1.5 m/s2)/s Increase: (0.2 m/s2)/s

Others Stochastic fluctuation obeys N(0, 0.22)
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Figures 5 and 6 show the vehicle velocities estimated by EKF and SM-HKF in the time segment
(490 s, 520 s) involving significant UBB errors, where a similar phenomenon as in Figures 3 and 4 can
also be observed. It is easy to verify that EKF results in relatively large estimation biases due to the lack
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of the robustness against UBB errors. In contrast, since it takes UBB error into account in the Kalman
filtering procedure, the vehicle velocity estimated by SM-HKF is much more accurate than that by EKF.
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In addition, by repeating the above simulation 50 times, the Monte Carlo method was also
employed to evaluate the SM-HKF robustness comparing to EKF from the statistical perspective.
Figures 7 and 8 show the estimation errors in terms of position and velocity obtained by EKF and
SM-HKF, respectively. It can be seen that in the time segments without the UBB errors, the estimation
error obtained by EKF is slightly larger than that by SM-HKF due to the negligence of the linearization
error in the measurement model. However, in the time segments with UBB errors, the difference of
estimation error between EKF and SM-HKF become quite evident. As shown in Table 2, the means
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of the root mean square error (RMSE) of the position errors obtained by SM-HKF are at least 74.4%
smaller than those obtained by EKF and the means of the RMSE of the velocity errors by SM-HKF are
at least 82.7% smaller than those by EKF. The proposed SM-HKF outperforms EKF significantly due to
its capability to resist the influence of UBB error on system state estimation.
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Figure 8. Velocity errors by EKF and SM-HKF.

The above simulations and analysis demonstrate that the proposed SM-HKF can effectively inhibit
the influences of both UBB error and stochastic error on system state estimation by adaptively adjusting
the Kalman gain matrix under the criteria of minimum mean squared error, leading to the improved
robustness against systematic uncertainty and the higher filtering accuracy than EKF for nonlinear
state estimation.
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Table 2. The means of the RMSEs of estimation errors obtained by EKF and SM-HKF during the time
segment with unknown but bounded (UBB) errors.

Methods Positions (m) Velocities (m/s)

EKF
East 18.30 9.56

North 16.51 9.17

SM-HKF
East 4.68 1.64

North 4.04 1.59

5. Conclusions

This paper presents a new SM-HKF to address the issue of nonlinear state estimation with
systematic uncertainty. This method derives the optimal Kalman gain to minimize the mean squared
error of the state estimate in the framework of KF, leading to the capability in handling both UBB error
and stochastic error simultaneously in the filtering procedure. It improves EKF using the concept
of set-membership to resist the effect of UBB error on the filtering solution. It also avoids the loss
of accuracy in EKF due to the negligence of the linearization error. Further, the proposed SM-HKF
incorporates the set-membership estimation in the KF framework, leading to a promising solution for
nonlinear state estimation under systematic uncertainty composed of both UBB error and stochastic
error. The simulation results and comparison analysis demonstrate the effectiveness and superiority of
the proposed SM-HKF in comparison with EKF.

Future research will focus on the in-depth theoretical analysis of the convergence of SM-HKF to
facilitate the application of the proposed method in various fields.
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