
Injectable Supramolecular Polymer-Nanoparticle Hydrogels for 
Cell and Drug Delivery Applications

Catherine M. Meis*,1, Abigail K. Grosskopf*,2, Santiago Correa1, Eric A. Appel1,3,4

1Department of Materials Science & Engineering, Stanford University

2Department of Chemical Engineering, Stanford University

3Department of Bioengineering, Stanford University

4Department of Pediatrics - Endocrinology, Stanford University

Abstract

These methods describe how to formulate injectable, supramolecular polymer-nanoparticle (PNP) 

hydrogels for use as biomaterials. PNP hydrogels are composed of two components: 

hydrophobically modified cellulose as the network polymer and self-assembled core-shell 

nanoparticles that act as non-covalent cross linkers through dynamic, multivalent interactions. 

These methods describe both the formation of these self-assembled nanoparticles through 

nanoprecipitation as well as the formulation and mixing of the two components to form hydrogels 

with tunable mechanical properties. The use of dynamic light scattering (DLS) and rheology to 

characterize the quality of the synthesized materials is also detailed. Finally, the utility of these 

hydrogels for drug delivery, biopharmaceutical stabilization, and cell encapsulation and delivery is 

demonstrated through in vitro experiments to characterize drug release, thermal stability, and cell 

settling and viability. Due to its biocompatibility, injectability, and mild gel formation conditions, 

this hydrogel system is a readily tunable platform suitable for a range of biomedical applications.

Introduction

Injectable hydrogels are an emerging tool to deliver therapeutic cells and drugs to the body 

in a controlled fashion1. These materials can be loaded with drugs or cells and can be 

administered in a minimally invasive manner through direct injection to superficial tissues or 

by catheter delivery to deep tissues. In general, injectable hydrogels are composed of water-

swollen polymer networks that are crosslinked together by transient, physical interactions. 

At rest, these crosslinks provide a solid-like structure to the gels, but upon application of 

sufficient mechanical force these crosslinks are temporarily disrupted, transforming the 

material into a liquid-like state that can easily flow2. It is these rheological properties that 

allow physical hydrogels to shear-thin and flow through small needle diameters during 
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injection3. After injection, the polymer network of the material reforms, allowing it to self-

heal and rapidly form a solid-like gel in situ4,5. These structures can act as slow-release 

depots for drugs or scaffolds for tissue regeneration6,7. These materials have been used in 

diverse applications encompassing drug delivery technology, regenerative medicine, and 

immunoengineering1,8,9,10,11,12.

Both natural materials (e.g., alginate and collagen) and synthetic materials (e.g., 

polyethylene glycol) (PEG) or similar hydrophilic polymers) have been developed as 

biocompatible injectable hydrogel materials13,14,15. Many natural materials exhibit batch-to-

batch variation affecting reproducibility4,16. These materials are often temperature-sensitive, 

curing upon reaching physiological temperatures; thus, handling these materials poses 

additional technical and logistical challenges17. Synthetic materials allow for more precise 

chemical control and excellent reproducibility, but these materials can sometimes be subject 

to adverse immune responses that limit their biocompatibility, a critical feature for in vivo 

therapeutic applications6,18,19. Recent efforts have shown there are many complex design 

criteria involved in engineering an injectable hydrogel material, including optimizing 

mechanical properties, polymer network mesh size, bioactive molecular cues, 

biodegradability, and immunogenicity of the material20,21,22,23,24,25,26. All of these factors 

must be considered depending on the application of interest, which means that a modular, 

chemically tunable platform is ideal for satisfying a wide breadth of applications.

The present methods describe the formulation and the use of an injectable polymer-

nanoparticle (PNP) hydrogel platform that exhibits tunable mechanical properties, a high 

degree of biocompatibility and low immunogenicity, and presents sites for conjugating 

bioactive molecular cues27,28,29,30,31,32,33. These PNP hydrogels are composed of 

hydrophobically-modified cellulose polymers and self-assembled core-shell nanoparticles 

comprising poly(ethylene glycol)-block-(poly(lactic acid) (PEG-PLA)27,34 that interact to 

produce a supramolecular network. More specifically, the dodecyl-modified 

hydroxypropylmethyl cellulose polymers (HPMC-C12) dynamically interact with the surface 

of PEG-PLA nanoparticles and bridge between these nanoparticles to form this polymer 

network27,34. These dynamic, multivalent interactions allow the materials to shear-thin 

during injection and rapidly self-heal after administration. The PNP hydrogel components 

are easily fabricated through simple one-pot reactions and the PNP hydrogel is formed under 

mild conditions by simple mixing of the two components35. Due to the ease of fabrication, 

this hydrogel platform is highly translatable at scale. The mechanical properties and mesh 

size of PNP hydrogels are controlled by altering the weight percent of the polymer and 

nanoparticle components in the formulation. Prior studies with this platform indicate that 

PNP hydrogels are highly biocompatible, biodegradable, and non-immunogenic28,30,31. 

Overall, these hydrogels present wide utility in biomedical applications encompassing post-

operative adhesion prevention, tissue engineering and regeneration, sustained drug delivery 

and immunoengineering.

Protocol

Prior to beginning this protocol, it is necessary to synthesize HPMC-C12 and PEG-PLA 

using previously published methods27,28,29,30,31,36,37,38.
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1. Nanoparticle (NP) synthesis by nanoprecipitation

NOTE: This section describes synthesis of a single batch of NPs, producing 250 μL of 20 wt

% NPs in buffer solution (50 mg of dry PEG-PLA polymer per batch). Notes for scaling up 

the number of batches are provided at relevant steps.

1. Measure 50 mg of PEG-PLA polymer into an 8 mL glass scintillation vial and 

add 1 mL of acetonitrile. Vortex to fully dissolve.

NOTE: To scale up the number of batches, linearly scale this step and add the 

total amount of polymer and solvent needed in a single vial.

2. Add 10 mL of ultrapure water into a 20 mL glass scintillation vial with a small 

stir bar. Put on a stir plate set to 600 rpm.

NOTE: If step 1.1 has been scaled, it is still necessary to have an individual 

scintillation vial to precipitate into for each equivalent batch. For example, for 

200 mg of polymer dissolved in 4 mL of acetonitrile, prepare 4 × 20 mL 

scintillation vials.

3. To form NPs by nanoprecipitation, add 1 mL of polymer solvent solution 

dropwise into the water using a 200 μL pipette. Stir for 2 min. The PLA block of 

the PEG-PLA is not soluble in water, and as a result, core-shell NPs will self-

assemble with the hydrophobic PLA blocks as the core and the hydrophilic PEG 

blocks as the shell.

4. Verify the particle size by dynamic light scattering (DLS).

NOTE: This procedure is specifically written for a commercially available plate 

reader with the associated software package (see Table of Materials). For using 

alternative instruments, refer to the sample preparation methods described by the 

instrumen’s manufacturer.

1. Dilute 20 μL of NP solution with 80 μL of ultrapure water (analysis 

concentration: 1 mg/mL PEG-PLA NPs). Add 30 μL per well to a clear 

bottom black 384-well plate (analyze in triplicate).

2. Measure the hydrodynamic radius and polydispersity of each sample 

with a DLS plate reader using preset protocol options in the software 

package. As an example of a typical protocol, set the data collection 

parameters to acquire 5-10 DLS measurements of 2-5 s duration per 

acquisition and then report a mean particle size and distribution per 

well, calculated from the globular proteins model. To form hydrogels 

with consistent rheological properties, the resulting particles should be 

30-50 nm in hydrodynamic diameter with a polydispersity (PD) < 0.2.

NOTE: If the NPs are smaller than desired, use a solution of 75% 

acetonitrile / 25% dimethyl sulfoxide (DMSO) in step 1.1. Increasing 

the percentage of DMSO in the solvent solution will generally increase 

particle size.
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5. Transfer the NP solution from the 20 mL scintillation vial into a centrifugal filter 

unit. Centrifuge at 4500 × g for 1 h to concentrate the NP solution to <250 μL.

6. Resuspend in desired buffer, such as phosphate-buffered saline (PBS), to 20 wt% 

NPs. Pipette the contents of the centrifugal filter unit into a tared microcentrifuge 

tube or glass scintillation vial on a mass balance. Use a small amount (50-100 

μL) of buffer to rinse the filter and ensure collection of all NPs. Add buffer to 

reach a total mass of 250 mg.

NOTE: Batches can be pooled during resuspension. NP stock solutions can be 

stored at 4 °C for approximately 1 month. Do not freeze. For longer storage, 

verify size and polydispersity by DLS before use.

2. Hydrogel formulation and encapsulation of drugs or cells

NOTE: This section describes preparation of 1 mL of 2:10 PNP hydrogel formulation, with 

2:10 denoting 2 wt% HPMC-C12 and 10 wt% NPs (12 wt% total solid polymer) and 88 wt% 

buffer solution, drug cargo solution, or cell suspension. The formulation percentages can be 

varied to yield hydrogels with a range of mechanical properties. For example, 1:5 PNP 

hydrogels were used for the cell settling and viability experimental results shown.

1. Prepare stock solution of 6 wt% HPMC-C12 in PBS (or other buffer of choice). 

Dissolve for 48 h to ensure the polymer is fully dispersed.

NOTE: The HPMC-C12 stock solution is stable for months at room temperature. 

However, storage at 4 °C is recommended to inhibit microbial growth.

2. Add 333 mg of 6 wt% HPMC-C12 stock solution into a 1 mL Luer lock syringe.

3. Add 500 μL of 20 wt% NP stock solution to a microcentrifuge tube. Add 167 μL 

of PBS and pipette to mix. Using a needle, fill another 1 mL Luer lock syringe 

with the diluted NP solution.

NOTE: To load drug cargo, calculate the desired final concentration of the drug 

in the hydrogel and load the appropriate amount into the 167 μL of PBS that is 

mixed with the NPs. If a molecular probe is necessary for an in situ assay, such 

as for monitoring drug stability, load the probe in a similar manner as described 

above for loading drug cargo. To load cells, calculate the desired final cell 

concentration in the hydrogel and load the appropriate number of cells into the 

167 μL of PBS that is mixed with the NPs.

4. Mix the two hydrogel components (HPMC-C12 and NPs) using an elbow mixing 

method35.

1. Attach the Luer elbow connector to the syringe containing NP solution 

(optionally also containing drug cargo or cells). Push the NP solution 

through the elbow until the meniscus is visible at the open end. Pull 

back slightly and connect the syringe containing HPMC-C12 solution.

NOTE: It is important to minimize air in the elbow connection to 

prevent the formation and dispersal of bubbles throughout the hydrogel 

during the mixing process. When mixing cells with the elbow mixer, 
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take care to mix more gently as mixing too rapidly may subject the cells 

to high shear forces, leading to cell death.

2. Pump the two solutions back and forth through the elbow mixer for 

approximately 60 cycles until a homogeneous, opaque white hydrogel 

material has formed.

3. Push the entire volume of hydrogel into one syringe. Remove the empty 

syringe and draw the plunger back on the gel-loaded syringe to recover 

material from the elbow connector. Cap with a needle or plug.

NOTE: It is necessary to account for ~300 μL of lost hydrogel volume 

due to the dead space in the mixing process. For example, if 700 μL of 

final hydrogel volume is desired, 1 mL of hydrogel should be prepared. 

The hydrogel formulation process can be scaled up by using larger 

syringes. However, for stiff hydrogel formulations, such as 2:10, it can 

become difficult to mix and inject from syringes larger than 3 mL in 

volume due to the increasing ratio of syringe barrel to elbow or needle 

diameter.

4. Store the hydrogel in the syringe at room temperature. However, if 

drugs are encapsulated, storage at 4 °C is recommended unless the drug 

manufacturer specifies otherwise. Do not freeze the material.

3. Measuring rheological properties of hydrogel formulations

NOTE: This protocol is specifically used with the commercial rheometer mentioned in the 

Table of Materials with a 20 mm serrated plate geometry. For using other instruments, refer 

to the manufacturer’s instructions for sample preparation.

1. Formulate at least 700 μL of PNP hydrogel for rheological characterization.

2. Inject material in the center of the serrated rheometer plate. The amount will vary 

depending on the chosen geometry gap. For reference, a 700 μm gap requires 

~400-500 μL of material.

3. Lower the rheometer to the trim gap (500-1000 μm) and slowly turn the top 

rheometer plate as it makes contact with the PNP hydrogel to ensure the gap is 

filled evenly and completely.

4. Inspect the loading of the PNP hydrogel such that it covers the entire rheometer 

plate surface. Use a spatula or plastic trimmer to gently trim and remove any 

excess material, such that it has a very slight bulge out of the plate.

5. Lower the rheometer to the final geometry gap and verify the sample is cleanly 

loaded.

6. Measure the mechanical properties of the sample using oscillatory tests, such as 

amplitude or frequency sweeps, or flow tests, such as flow sweeps or step tests.

NOTE: In the representative data shown, oscillatory amplitude tests are run at a 

constant frequency of 10 rad/s. Oscillatory frequency sweeps are run at a 
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constant 1% strain, within the linear viscoelastic regime of the amplitude sweep. 

Flow sweeps were run from high shear rates to low shear rates39. All tests are 

completed with 10 points per decade of data collected and at room temperature. 

The test parameters may need to be adjusted depending the properties of the 

formulation. Subjecting stiffer PNP materials such as 2:10 formulations to high 

shear rates can cause the material to be ejected from the rheometer plates, 

resulting in inaccurate mechanical characterization, and requiring reloading of 

the sample between subsequent tests. Representative data shown below can be 

used for comparison during quality control testing.

4. Characterizing in vitro drug release

1. Prepare capillary tubes by cutting glass capillary tubes to desired length. Seal 

one end of each tube by using a disposable spatula or pipette tip to push a small 

amount of epoxy into the end of the tube to form a plug. Allow epoxy to set per 

manufacturer’s recommended time.

NOTE: The tube must be shorter than the length of the injection needle. Tubing 

with 2-3 μm inner diameter is recommended such that a length of 2.5 in will 

contain at least 300 μL of total volume.

2. Formulate at least 500 μL of a PNP hydrogel material in a syringe containing the 

drug of interest. Prepare each sample group in a separate syringe.

3. Inject 100-200 μL of the PNP hydrogel at the bottom of each capillary tube using 

a long hypodermic needle (22G, 4 inch). Prepare at least three tubes (triplicate) 

per sample group.

4. (Optional) Place filled capillary tubes in a conical centrifuge tube and centrifuge 

for 1 min at 1000 × g to ensure the surface of the hydrogel is uniform. This step 

may need to be repeated, altering time and speed as necessary to smooth the 

surface of the material. CAUTION: Ensure centrifuge is well balanced.

5. Carefully fill 200-300 μL of PBS on top of the hydrogel in the capillary tube 

using a syringe and needle or pipette. Do not contact or disturb the surface of the 

hydrogel. Seal the tube with a cap or plug or cover with at least two layers of 

paraffin film.

6. (Optional) Incubate samples at 37 °C to simulate in vivo conditions.

7. Carefully completely remove the PBS from each capillary, without disturbing the 

hydrogel surface, using a syringe and needle at chosen time points depending on 

the anticipated time scale of drug release. Replace the volume removed with 

fresh PBS. Store aliquots under appropriate conditions.

NOTE: The recommended volumes and time points in steps 4.3, 4.5 and 4.7 can 

be optimized to capture in vitro drug release over a range of timescales, 

depending on how much drug is loaded in the material and how quickly it 

releases into the supernatant. A sample of selected time points could be 6 h, 1 
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day, 3 days, 1 week and 2 weeks for a slow-releasing drug. Aliquots can also be 

analyzed as they are acquired rather than stored.

8. At the completion of the study, analyze aliquots with an appropriate method such 

as ELISA, HPLC or fluorescence assay to quantify the amount of drug released 

at each time point40,41,42. The appropriate detection method will vary depending 

on the drug of interest.

NOTE: In vitro release studies are useful for comparing release between different 

hydrogel formulations or drug cargo. The in vitro release timescale does not 

often directly indicate an expected time scale of release in vivo.

5. Characterizing thermal stability of gel-encapsulated insulin

1. Formulate at least 1.2 mL of PNP hydrogel per sample group. Following the 

procedure described in section 2.3, load both insulin (drug cargo) and thioflavin 

T (ThT) (molecular probe) into the PNP hydrogel.

NOTE: The primary mechanism of aggregation and, therefore, inactivation of 

insulin is through the formation of amyloid fibrils. ThT is a suitable molecular 

probe because it produces a strong fluorescence signal in the presence of 

amyloid fibrils, allowing for in situ monitoring of insulin aggregation. 

Depending on the drug cargo of interest, aggregation may be monitored through 

different methods. For the representative data shown, insulin was loaded to a 

final concentration of 6.7 or 10 mg/mL and ThT to a final concentration of 25 

μM.

2. Using a 21 G needle, inject 200 μL of PNP hydrogel per well into a black 96-

well plate. Each sample group should be measured in at least triplicate. Seal plate 

with an optically clear adhesive plate seal to prevent evaporation.

3. Insert plate into a plate reader equipped with temperature control, shaking, and 

kinetic read programming and begin read protocol. Representative data was 

acquired with a commercially available plate reader (see Table of Materials) 

using the following conditions:

1. Stressed aging conditions: continuous linear shaking (410 cpm, 5 mm) 

at 37 °C.

2. Data acquisition: excitation/emission 450 nm/482 nm at 20 min 

intervals

NOTE: If a plate reader with temperature control, shaker, and kinetic 

read capabilities is not available, the plate can be placed on a shaker 

plate in an incubator and read manually at above wavelengths at 

selected time points.

4. Plot data as mean fluorescence signal over time for each group. Time to 

aggregation can be quantified by defining an arbitrary signal threshold43.

NOTE: For the representative data shown below, the threshold was defined as 

750,000 arbitrary fluorescence units (AFU). This value was chosen to be above 
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the measured baseline while still sufficiently capturing the onset of aggregation 

indicated by a sharp fluorescent signal increase.

5. Terminate assay when samples aggregate or visually begin to dehydrate.

6. Assessing cell viability

1. Formulate at least 2 mL of PNP hydrogel containing the desired cell 

concentration following above protocols (normally 1 - 5 × 106 cells/mL). Prepare 

each sample group in a separate syringe.

2. Using a 21G needle, inject 150 μL PNP hydrogel into each well in a clear bottom 

96-well plate; each well is one replicate. Each sample group should have 3-5 

replicates per time point. Centrifuge the plate at 50 × g for 2 min to spread the 

hydrogel evenly in the well.

3. Add 100 μL of the appropriate cell media on top of the hydrogel. Remove this 

media each day and add 100 μL new media.

4. On Day 1, remove the media on top of the hydrogel for the designated replicates 

for that time point for each sample group. Add 50 μL of 2 mM calcein AM 

solution on top of the hydrogels. Incubate for 30 min.

NOTE: Calcein AM can be used to identify and label live cells. In live cells, the 

non-fluorescent calcein AM is converted to a green-fluorescent calcein, by 

intracellular esterases after acetoxymethyl ester hydrolysis.

5. Image the center of each well in a 96-well plate using a confocal microscope. 

Survey an area of least 300 μm2 with a z-stack spanning at least 150 μm. Use 

confocal wavelength settings to capture the fluorescence of calcein (excitation/

emission: 495 nm/515 nm).

6. Repeat step 6.4 and 6.5 for each subsequent time point as desired.

7. To analyze each image, collapse all z-stack images into a single plane maximum 

intensity image using FIJI or similar software. Quantify the number of 

fluorescent cells in each image. The ratio of the number of fluorescent cells at 

each time point compared to the number of fluorescent cells at Day 1 is the 

relative cell viability in the PNP hydrogels.

7. Assessing cell settling

1. Calculate the number of cells required to formulate 500-700 μL of PNP hydrogel 

at a final concentration of 5 × 106 cells/mL. Suspend cells in 1 mL of PBS at a 

concentration of 1 × 106 cells/mL. Stain cells by adding 50 μL of 2 mM calcein 

AM. Incubate the cells with the dye for 10 min.

2. Centrifuge cells at appropriate conditions, remove the PBS and resuspend the 

cells in the volume of PBS needed to form 500-700 μL of the desired PNP 

hydrogel.
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NOTE: The recommended speed and duration to centrifuge each specific cell 

type is typically provided in the product documentation.

3. Formulate 500-700 μL of PNP hydrogel with the stained cells (5 × 106 cells/mL) 

following protocol section 2.

4. Using a 21G needle, inject 100-200 μL of PNP hydrogel containing the stained 

cells in the bottom of a cuvette. Three replicates should be performed for each 

sample. Move the needle back and forth within the cuvette while injecting to 

prevent bubble formation.

5. Immediately (time t=0), image the cuvettes lying on their side over the entire flat 

cuvette rectangle area at the base of the cuvette. Use the confocal tile scanning 

capabilities to image the entire well area and image a z-stack in 3D across a 100 

μm depth. For later visualization, either use the confocal microscope software to 

stitch together all of the individual tiles and perform a maximum intensity 

projection to form a single image of the large area or use FIJI software on a 

personal computer44,45.

6. Following imaging, stand the cuvettes upright.

7. Image at 1 h and 4 h to observe if cells have settled in the hydrogel or whether 

they remain suspended.

NOTE: These time points are suggestions and can be modified as desired.

8. To analyze each image, collapse all z-stack images into a single plane maximum 

intensity image. Using FIJI or similar software, quantify the cell distribution by 

measuring the fluorescence intensity down the center vertical profile of the 

cuvette to determine the degree of settling.

Representative Results

PNP hydrogel fabrication and characterization

PNP hydrogels are formed through the mixing of the two primary components - 

hydrophobically-modified HPMC polymers and PEG-PLA nanoparticles (Figure 1a). 

Therapeutic cargo is most easily incorporated into the additional buffer used to dilute the 

nanoparticle component prior to hydrogel preparation. For downstream biomedical 

characterization, it is convenient to use an elbow mixing method that enables simple and 

reproducible mixing of the two components (Figure 1b). After adequate mixing, the 

hydrogel should feel firm in the syringe, but yield under pressure and extrude from a 

standard needle (21G shown) (Figure 1c). After injection, the hydrogel should rapidly set 

into a solid-like material that resists flow from gravity. To fully characterize the hydrogel 

and ensure consistent batch-to-batch products, samples should be analyzed using several 

different experiments on a rheometer. The shear-thinning and self-healing capabilities of the 

gel will be easily observed using a flow sweep protocol and step-shear protocol, respectively 

(Figure 2a,b). For stiffer gels, such as the 2:10 formulation, the user should look for 

viscosity to decrease at least two orders of magnitude during the flow sweep as the shear rate 

is increased from 0.1 to 100 s−1, which simulates the mechanical conditions during injection. 
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The step-shear protocol should reveal an orders-of-magnitude decrease in viscosity under 

the high-shear steps, and a rapid return (<5 s recovery time) to baseline viscosity during the 

low shear steps. Characterization of the storage and loss moduli using an oscillatory shear 

frequency sweep experiment in the linear viscoelastic regime should reveal solid-like 

properties at frequency ranges from 0.1-100 rad s−1 (Figure 2c). In particular, there should 

typically not be a crossover of the shear storage and loss moduli that is observable at low 

frequencies for stiffer formulations like the 2:10 hydrogels. Such a crossover event may 

indicate issues in the quality of the starting materials, either the modified HPMC or PEG-

PLA polymer, or the size and dispersity of the PEG-PLA nanoparticles. It should be noted 

that a crossover event can be expected for weaker hydrogel formulations, such as the 1:5 

hydrogel. Oscillatory shear amplitude sweeps on PNP hydrogels reveal that the materials do 

not yield until high stress values are applied, indicating these materials possess a yield stress, 

a threshold amount of stress required for the material to flow.

Characterizing release kinetics from PNP hydrogels

An essential step in designing PNP gels for drug delivery is the characterization of drug 

release kinetics from a chosen formulation. There are several techniques for this, but a 

simple in vitro methodology provides useful data during early formulation development 

(Figure 3a). Varying the polymer content of the PNP hydrogels through modulating the 

amount of HPMC-C12 or NPs is the most straightforward way to tune the mechanical 

properties and mesh size of these hydrogels, which can have a direct impact on the diffusion 

of cargo through the polymer network and rate of release from the materials (Figure 3b). For 

cargo that is larger than the dynamic mesh size (i.e., high molecular weight or large 

hydrodynamic radius), researchers should expect a slow, dissolution-mediated release of 

cargo from the hydrogel depot. Formulations with dynamic mesh sizes greater than or equal 

to the size of the cargo will allow for diffusion-mediated release that can be described using 

traditional models of cargo diffusion and release46,47,48,49. Based on the shape of the release 

curve, researchers can reformulate the hydrogel to tune it towards slower (e.g., increase the 

polymer content) or faster (e.g., decrease the polymer content) release.

Assessing stability of therapeutic cargo

Determining the stability of the therapeutic cargo in a hydrogel formulation is critical before 

commencing preclinical or cellular studies. Compared to other synthetic methods for 

encapsulating drugs, PNP hydrogels incorporate cargo in a gentle manner by mixing into the 

bulk material, and it is unlikely that encapsulation will damage the cargo. These studies 

indicate that PNP hydrogels can also stabilize cargo that is susceptible to thermal instability, 

such as insulin, considerably extending shelf life and reducing reliance on cold storage and 

distribution (Figure 4). It is important to evaluate the condition of the cargo immediately 

after encapsulation into the hydrogel as well as after extended periods of storage. These data 

show that insulin remains stable in hydrogels after 28 days of storage under continuous 

thermal and mechanical stress, using a simple fluorescence assay for measuring insulin 

aggregation. An alternative technique for cases where an appropriate plate assay is 

unavailable would be to perform circular dichroism measurements of the cargo, which is 

particularly useful for determining the secondary structure of protein drugs.
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Determining cell viability and dispersion in PNP hydrogels

Many therapeutic cells require adhesion motifs to remain viable, and thus inclusion of 

integrin motifs like arginine-glycine-aspartic acid (RGD) peptides is an important step in 

adapting PNP hydrogels for cellular therapies50. The modular PEG-PLA polymer 

comprising the NPs enables chemical functionalization of the PEG corona through simple 

“click” chemistries28,51. In this example, cell-adhesive RGD peptides were attached to the 

PEG-PLA polymer to promote cell engagement with the PNP hydrogel structure. 

Formulations lacking adhesion sites will have low cell viability as encapsulated cells fail to 

proliferate compared to cells encapsulated in formulations with these adhesion motifs 

(Figure 5a,b). Encapsulated cells can be labeled with calcein AM or another appropriate 

fluorescent dye (e.g., CFSE) to facilitate cell counting with a fluorescence microscope. 

During optimization, viability should be compared to unmodified PNP hydrogels to assure 

integrin-functionalized formulations are providing enhanced viability and proliferation. If 

integrin-functionalized formulations are providing similar efficacy as unmodified hydrogels, 

this may indicate a failure in the conjugation chemistry used to incorporate the adhesion 

motifs.

Researchers should expect encapsulated cells to be evenly dispersed through the hydrogel 

medium when using an appropriate hydrogel formulation. This will allow for consistent and 

predictable dosing of cells during hydrogel administration and should translate to local 

retention of cells in the hydrogel after administration. The distribution of cells can be easily 

determined using fluorescence microscopy techniques. Cells can be labeled with an 

appropriate dye and then imaged using confocal microscopy. The images can be assessed 

visually (Figure 5c) and also quantitatively (Figure 5d) using ImageJ software to measure 

the average fluorescence intensity along the vertical axis of the image (or along whichever 

axis cell-settling due to gravity is expected to occur). If the hydrogel formulation is too weak 

to support the cells in suspension over prolonged timeframes, cell settling will occur, as 

observed in the 1:1 formulation in Figure 5. Increasing the polymer content can resolve 

issues with inhomogeneous cell dispersion due to settling.

Discussion

Polymer-Nanoparticle (PNP) hydrogels are easily fabricated and enable the long-term local 

delivery of therapeutic cells and drugs through minimally invasive administration via direct 

injection or catheter delivery. These protocols describe the formulation of PNP hydrogels 

and the characterization methods for assuring quality of the resulting materials. 

Supramolecular PNP hydrogels are scalable to manufacture and are formed through the 

simple mixing of modified cellulose polymers and polymeric core-shell nanoparticles.

The present methods describe facile procedures to form gels pre-loaded in syringes through 

simple elbow mixing protocols. Through quality control metrics of each of the component 

parts, such as DLS to monitor the NP size and distribution, one can reproducibly formulate 

PNP hydrogel materials with consistent rheological properties. Through varying the amount 

of HPMC-C12 or NPs, one can modulate the mesh size and stiffness of the resulting PNP 

hydrogel. These properties can be tuned to best suit a particular biomedical application, and 

with the rheological methods detailed here researchers can characterize the shear-thinning 
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and self-healing properties of PNP hydrogels as they optimize the platform for their specific 

applications. Methods for in vitro release studies are also described; researchers can use 

these studies to characterize the relative timescale of release of drugs of interest, informing 

future in vivo studies. Using stability studies, researchers can also assess the ability of these 

materials to help preserve the biological structure and stability of sensitive biotherapeutics 

over time and extreme temperatures, with compelling potential applications to reduce the 

cold chain dependence of biotherapeutics. Finally, with simple cell viability assays, cell 

growth and migration within PNP materials can be evaluated, with potential applications in 

cell therapies and scaffolds.

Our group has found many compelling applications for the PNP hydrogel platform27. PNP 

hydrogels have been used for slow delivery of subunit vaccines, enabling matched kinetic 

release profiles of antigens and adjuvants to boost the magnitude, duration, and quality of 

the humoral immune response31. PNP hydrogels have been found to have a smaller mesh 

size than most commonly used hydrogels, so they are effective at slowing diffusion and 

slowly releasing molecular cargo. The unique tissue adherence properties and mechanical 

properties of PNP hydrogels have also been utilized to form physical barriers to prevent 

adhesions arising from surgery by spraying the hydrogels over large surface areas of organs 

following surgery30. PNP hydrogels have also been shown to be effective cell delivery 

vehicles, and the mechanical properties actually shield cells from the mechanical forces 

occurring in the syringe needle during injection, improving cell viability29. When the NPs 

are conjugated with a cell-adhesive peptide, cells can attach and engage with the PNP matrix 

to remain viable. Using this approach, PNP hydrogels have been shown to improve the local 

retention of injected stem cells compared to methods using liquid vehicles28. In addition, 

PNP hydrogels have been shown to prevent thermally-induced aggregation of encapsulated 

insulin, even under harsh stressed aging conditions, suggesting that these materials may be 

able to reduce the need to refrigerate temperature-sensitive drugs38.

Overall, the methodologies described here will allow research groups to fabricate and 

explore PNP hydrogels as a biomaterial. These protocols provide the lab-scale synthesis 

techniques to fabricate enough hydrogel material to pursue both in vitro and in vivo studies. 

The studies described above indicate that the dynamic crosslinks of these materials enable it 

to be suitable for a range of biomedical applications by allowing active motility of entrapped 

cells while restricting passive diffusion of molecular cargo. It is anticipated that researchers 

will find the PNP platform an accessible and powerful tool to improve clinical outcomes 

through controlled drug delivery and to study basic biological mechanisms such as cell 

recruitment and mechanobiology.
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Figure 1: Polymer-nanoparticle (PNP) hydrogels are easily formed by mixing two components.
(a) The first component is a solution of dodecyl-modified hydroxypropylmethyl cellulose 

(HPMC-C12), and the second component is a solution of poly(ethylene glycol)-block-

(poly(lactic acid) (PEG-PLA) nanoparticles along with any therapeutic cargo. Gentle mixing 

of these two components yields an injectable hydrogel, where the HPMC-C12 polymers are 

physically crosslinked by dynamic, multivalent interactions with the PEG-PLA 

nanoparticles. (b) Photograph demonstrating gel formulation by mixing with two syringes, 

each one containing one component of the PNP hydrogel. By connecting the two syringes 

with a Luer-lock elbow connector, the two components can be easily mixed under sterile 

conditions to yield a bubble-free hydrogel pre-loaded into a syringe for immediate use. The 

NP solution is dyed blue for the purpose of demonstration. (c) Demonstration of the 

injection of PNP hydrogels and their re-solidification. (i) PNP hydrogel in a syringe with an 

attached 21G needle. (ii) Injection places the hydrogel under shear which temporarily breaks 

the interactions between polymer and nanoparticles, creating a fluid-like consistency. (iii) 

Post-injection, the dynamic polymer-nanoparticle interactions rapidly reform, allowing the 

hydrogel to self-heal into a solid. (iv) The solid hydrogel does not flow under forces weaker 

than its yield stress, such as gravity. The PNP hydrogel is dyed blue for the purpose of 

demonstration. Please click here to view a larger version of this figure.
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Figure 2: Rheological characterization of two PNP hydrogel formulations.
Formulations are denoted as polymer wt.%: NP wt.%. (a) Steady shear flow sweeps from 

low to high shear rate of PNP hydrogels. Viscosity as a function of shear rate characterizes 

shear-thinning properties. (b) Viscosity as a function of oscillating shear rates between low 

shear rates (white background; 0.1 s−1) to high shear rates (red background; 10 s−1) 

demonstrating self-healing properties of PNP hydrogels. Shear rates are imposed for 30 s 

each. (c) Elastic storage modulus G′ and viscous loss modulus G″ as a function of 

frequency at a constant 1% strain for various PNP hydrogel formulations. (d) Amplitude 

sweeps at a constant frequency of 10 rad/s to characterize elastic storage modulus G′ and 

viscous loss modulus G″ of PNP hydrogels as a function of stress. This rheological 

characterization can be used as comparison for quality control. This figure has been adapted 

from Grosskopf et al.28 Please click here to view a larger version of this figure.
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Figure 3: In vitro release of bovine serum albumin (BSA) from PNP hydrogels.
Formulations are denoted as polymer wt.%: NP wt.%. (a) Schematic describing the 

experimental in vitro release protocol. Aliquots are removed from PNP hydrogel-loaded 

capillary tubes overtime. (b) The in vitro release of BSA from 1:10 PNP, 2:5 PNP and 2:10 

PNP reported as the mass collected by the specified time point divided by the total mass 

collected during the assay (data shown as mean ± SD; n = 3). BSA was detected through 

absorbance measurements. Please click here to view a larger version of this figure.
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Figure 4: Thermal stability of insulin encapsulated in PNP hydrogels by ThT assay.
Formulations are denoted as polymer wt.%: NP wt.%. Insulin encapsulated in both 1:5 and 

2:10 PNP hydrogel remained unaggregated for over 28 days at stressed aging conditions of 

37 °C and constant agitation. Time to aggregation for insulin formulated in PBS was 20 ± 4 

h (mean ± SD, aggregation threshold 750,000 AFU). Data presented as an average of n = 4 

experimental replicates (AFU, arbitrary fluorescence units). This figure has been adapted 

from Meis et al.38 Please click here to view a larger version of this figure.
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Figure 5: Cell viability and cell settling in PNP hydrogels.
(a,b) Cell viability studies in PNP hydrogels with human mesenchymal stem cells (hMSCs). 

(a) Representative images of viable hMSCs in 1:5 PNP hydrogels with and without the cell-

adhesive arginine-glycine-aspartic acid (RGD) motif conjugated to the PEG-PLA NPs. 

hMSCs were calcein-stained for 30 min prior to confocal imaging. Scale bar represents 100 

μm. (b) Cell viability on Day 6 defined as number of fluorescent cells in the image relative 

to number of fluorescent cells on Day 1 (data shown as mean ± SD; n = 3). (c,d) Cell 

encapsulation and settling experiments with hMSCs. (c) Maximum intensity images of 

calcein AM-stained hMSCs encapsulated in 1:1 PNP hydrogel (top row) and 1:5 PNP 
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hydrogel (bottom row) across 4 hr to quantify cell settling. Scale bar represents 1 mm. (d) 

Average horizontal pixel intensity of hMSCs along the vertical profile of the hydrogel. This 

figure has been adapted from Grosskopf et al.28 Please click here to view a larger version of 

this figure.
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Table of Materials

Name Company Catalog Number Comments

21G needles BD 305165 PNP hydrogel injection

22G, 4 in hypodermic needles Air-Tite N224 In vitro release studies

384-well plates, black, clear bottom Corning 3540 Dynamic light scattering (DLS)

96-well plates, black Fisher Scientific 07-200-627 Biostability studies

96-well plates, clear Corning 3599 Cell viability and settling studies

Calcein AM Thermo Fisher Scientific C3100MP Cell viability and settling studies

Capillary tubes McMaster-Carr 8729K66 In vitro release studies

Centrifugal filter units Fisher Scientific UFC901024 NP concentration

Cuvettes Millipore Sigma BR759015-100EA Cell viability and settling studies

DLS Plate Reader Wyatt Technology DynaPro II Plate Reader Dynamic light scattering (DLS)

Epoxy VWR International 300007-392 (EA) In vitro release studies

Hypodermic needles Air-Tite 8300015027 In vitro release studies

Luer elbow connector Cole-Parmer EW-30800-12 PNP hydrogel formulation

Luer lock syringe Fisher Scientific 14-955-456 PNP hydrogel formulation

Phosphate Buffered Saline (1×) Fisher Scientific 10010049 PNP hydrogel formulation

Plastic Spatula Thomas Scientific 1229F13 Rheological characterization

Plate Reader BioTek Synergy H1 Hybrid Multi-Mode Plate 
Reader

Biostability studies

Plate seals Excel Scientific TS-RT2-100 Biostability studies

Recombinant human insulin Gibco A11382II Biostability studies

Rheometer TA Instruments DHR-2 Rheometer Rheological characterization

Thioflavin Sigma-Aldrich T3516-5G Biostability studies
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