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Conventional T (Tcon) cells are crucial in shaping the immune response, whether it is  
protection against a pathogen, a cytotoxic attack on tumor cells, or an unwanted response 
to self-antigens in the context of autoimmunity. In each of these immune settings, regu-
latory T cells (Tregs) can potentially exert control over the Tcon cell response, resulting in 
either suppression or activation of the Tcon cells. Under physiological conditions, Tcon 
cells are able to transiently overcome Treg-imposed restraints to mount a protective 
response against an infectious threat, achieving clonal expansion, differentiation, and 
effector function. However, evidence has accumulated in recent years to suggest that 
Tcon cell resistance to Treg-mediated suppression centrally contributes to the patho-
genesis of autoimmune disease. Tipping the balance too far in the other direction, 
cancerous tumors utilize Tregs to establish an overly suppressive microenvironment, 
preventing antitumor Tcon cell responses. Given the wide-ranging clinical importance 
of the Tcon/Treg interaction, this review aims to provide a better understanding of what 
determines whether a Tcon cell is susceptible to Treg-mediated suppression and how 
perturbations to this finely tuned balance play a role in pathological conditions. Here, 
we focus in detail on the complex array of factors that confer Tcon cells with resis-
tance to Treg suppression, which we have divided into two categories: (1) extracellular 
factor-mediated signaling and (2) intracellular signaling molecules. Further, we explore 
the therapeutic implications of manipulating the phosphatidylinositol-3 kinase (PI3K)/Akt 
signaling pathway, which is proposed to be the convergence point of signaling pathways 
that mediate Tcon resistance to suppression. Finally, we address important unresolved 
questions on the timing and location of acquisition of resistance, and the stability of the 
“Treg-resistant” phenotype.

Keywords: conventional T cells, Treg cells, autoimmune disease, immunotherapy, immune tolerance, Pi3K/Akt 
pathway
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TABLe 1 | Diseases in which Tcon cells resist Treg-mediated suppression.

Disease Subject Type of effector cell Suggested mechanism Study

Juvenile idiopathic 
arthritis (JIA)

Human Synovial fluid CD4+ CD25− Enhanced activation Haufe et al. (23)
Synovial fluid CD4+ and CD8+ Teffa Akt hyperactivation in response to IL-6/TNFα Wehrens et al. (24, 25)

Rheumatoid  
arthritis (RA)

Human Peripheral blood CD4+CD25− Increased TRAIL expression on Teff leading to Treg 
apoptosis

Xiao et al. (26)

Type 1 diabetes  
(T1D)

NOD mice Splenic CD4+CD25− ND You et al. (15)
DO11.10 RIP-mOVA 
mice

Lymph node CD4+CD25− Increased IL-21 Clough et al. (18)

NOD mice Splenic CD4+CD25− ND D’Alise et al. (20)
NOD mice Splenic CD4+ and CD8+ Teff Reduced ganglioside M1 expression on Teff Wu et al. (21)
Human Peripheral blood CD4+CD25− ND Schneider et al. (27)

Peripheral blood CD4+CD25− ND Lawson et al. (28)

Systemic lupus 
erythematosus (SLE)

MRL/lpr and NZB/
WF1 mice

Splenic and lymph node CD4+CD25− ND Monk et al. (14)

MRL/lpr mice Lymph node CD4+CD25− ND Parietti et al. (19)
Human Peripheral blood CD4+CD25− ND Venigalla et al. (29)

Peripheral blood CD4+CD25− ND Vargas-Rojas et al. (30)
Peripheral blood CD4+CD45RA−FoxP3− Akt hyperactivation, upregulation of OX40 and 

impaired TRAF6 in Teff 
Kshirsagar et al. (116)

Experimental 
autoimmune 
encephalitis (EAE)

FoxP3.gfp KI mice CNS CD4+GFP− High IL-6 and TNFα Korn et al. (16)
C57BL/6 mice CNS CD4+CD25− ND O’Connor et al. (17)
B6.SLE mice Splenic CD4+CD25− ND Wilhelm et al. (22)

Multiple sclerosis 
(MS)

Human Peripheral blood CD3+ Teffb Accelerated production of IL-6 and higher expression 
of IL-6R on Teff leads to Akt hyperactivation

Trinschek et al. (31)

Peripheral blood CD4+CD25− Increased IL-6 induction of pSTAT3 Schneider et al. (32)
Peripheral blood CD4+CD25− Increased Granzyme B production by Teff w/TCR 

activation/IL-6 stimulation, inactivating Tregs
Bhela et al. (33)

Inflammatory bowel 
disease (IBD)

Human Lamina propria CD4+CD25− Higher expression of Smad7 interfering with TGF-β 
signaling

Fantini et al. (35)

Lamina propria CD4+CD25− Increased IL-15 in lamina propria Hmida et al. (34)

ND, not determined; CNS, central nervous system.
aTeff – total synovial fluid or peripheral blood mononuclear cells (as indicated) isolated as CD4+ or CD8+.
bTeff – contains both CD4+ and CD8+ Teff cells, isolated as CD3+.
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iNTRODUCTiON

It is well known that Tregs can employ a diverse repertoire of 
suppressive mechanisms, including secretion of suppressive 
cytokines, cytotoxicity, metabolic disruption, and modulation of 
antigen-presenting cell (APC) function (1). Much work has been 
devoted to delineating how Treg suppressive mechanisms differ 
in vitro versus in vivo (2) and how these mechanisms function 
within specific tissues to shape immune responses (1, 3). Initially, 
it appeared that most mouse models of autoimmune diseases fea-
tured either qualitative or quantitative abnormalities of the Tregs, 
rendering them inadequate to suppress autoimmune responses 
[for more detail, see Ref. (4)]. This conclusion arose from the 
overwhelming evidence that systemic autoimmunity ensued 
in the absence of Tregs, as in day 3 thymectomy mouse models 
(5), Foxp3 mutation in mice (scurfy) (6) and humans (IPEX syn-
drome) (7), or even in Foxp3 conditional KO mouse models (8, 
9). Furthermore, genetic models where key components of Treg 
function are impaired, such as CTLA-4 KO (10) or IL-10 KO (11) 
mice, supported the idea that Tregs were necessary for immune 
tolerance, and were the likely culprits in autoimmune disease. 
More recently, there have been conflicting reports on whether 
Treg frequency and/or function is actually reduced in autoim-
mune disease (12). Despite these discrepancies, both reduced Treg 

number and/or function remain as possible pathological mecha-
nisms (12, 13). However, compelling evidence acquired over the 
past decade now suggests that Tcon cells that are refractory to 
Treg suppression also act as mediators of autoimmune disease in 
mouse models (14–22) and humans (23–35) (see Table 1). It has 
been clearly demonstrated that Tcon cells – including naive (also 
called “Th0”) T cells, differentiated effector T cells, and memory 
T cells  –  can become refractory to Treg-mediated suppression 
both in vitro (14–35) and in vivo (15–35). Tcon cells can become 
insensitive to Treg-mediated suppression when the ratio of Tcon 
cells to Tregs is skewed in favor of Tcon cells, when intracellular 
signaling pathways have been modified by mutations, or through 
extracellular signals, such as strong activation or a specific 
cytokine milieu, that induce Tcon cell-intrinsic changes (4). The 
latter mechanism refers to potentially pathogenic Tcon cells that 
have become resistant to Treg suppression, a phenomenon, which 
has been observed in several autoimmune diseases and is the 
focus of this review.

The current body of work on this topic predominantly addresses 
how Tcon cells escape in vitro Treg suppression, and how cells that 
have already become Treg-resistant in vivo can continue to resist 
suppression in vitro. The suppressive mechanisms employed by 
Tregs in vitro appear to be distinct from those used in vivo (2), 
complicating the interpretation of results from in vitro or ex vivo 
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systems with regard to their applicability in  vivo. For example, 
IL-2 is needed for Treg survival and homeostasis in vivo, but IL-2 
signaling is not only dispensable but also counteracts Treg sup-
pressive function in vitro (36). Furthermore, Tregs are anergic and 
generally non-proliferative in vitro, but can expand in vivo after 
antigen encounter (2). Despite these Treg differences, in  vitro 
systems have provided insights into the molecular mechanism(s) 
of Tcon cell resistance to Treg suppression, mechanisms that may 
also be relevant in vivo.

The standard method for measuring Treg suppression of Tcon 
cells is an in vitro suppression assay, wherein suppression is the 
reduction of Tcon cell proliferation and/or cytokine production 
compared to Tcon cells in the absence of Tregs. Resistance to sup-
pression, therefore, is defined as an increased proliferation and/
or cytokine secretion by Tcon cells in the presence of Tregs com-
pared to that of a control Tcon cell (e.g., from a healthy patient or 
not treated with a resistance-inducing factor). The use of CFSE or 
CellTrace proliferation dyes was an important technical advance 
that allowed investigators to gain more detailed information 
about Tcon resistance to suppression, which was not initially 
possible using 3H-thymidine incorporation. By labeling Tregs or 
Tcon cells with separate proliferation dyes, investigators were able 
to directly measure the proliferation of Tcon cells independent of 
any Treg proliferation occurring in coculture.

One of the technical difficulties with studies assessing resist-
ance to Treg suppression is that simply modulating exogenous 
factors in in vitro coculture systems simultaneously affects Tregs 
and Tcon cells, making it difficult to distinguish whether there 
is impaired Treg function, Tcon cell resistance to suppression, 
or both. Many murine studies have therefore focused on using 
genetic models that allow for targeted manipulation of specific 
molecules or downstream signaling pathways to identify effects 
on Tcon cells independent of changes to Treg function. For exam-
ple, in the case of exogenous factors inducing resistance, Tcon 
cells can be assayed in the presence of Tregs that are genetically 
modified to be deficient for the respective receptor of that factor 
(37). These “cross-over” suppression assays can also be applied 
to human studies in order to assess whether Tcon resistance 
occurs independent of Treg impairment. In such cases, Tcon 
cells from patients are compared to healthy control subjects in 
their ability to resist suppression by healthy Tregs (24). Another 
method to separate effects of external factors on Tcon versus Treg 
cells is to pre-treat Tcon or Treg cells alone prior to coculture 
with a given factor, or with pharmacological inhibitors, and then 
assess changes in Tcon cell suppression by Tregs. Finally, most 
studies discussed here have included carefully designed controls 
to quantify the effects of any given factor on baseline Tcon cell 
stimulation versus the ability to induce resistance to Treg sup-
pression. Under physiological conditions, the factors that cause 
Tcon cells to resist suppression often also impact Treg function 
and/or overall Tcon activation. However, the primary focus of this 
review is the discussion of factors that have been clearly shown 
to induce changes in Tcon cells, which allow them to specifically 
resist suppression.

Early studies laid the foundation for the standard in vitro sup-
pression assay by defining the conditions that allowed Tregs to 
suppress Tcon cells, as well as conditions that allowed Tcon cells 

to overcome suppression. Provision of strong TCR stimulation 
via platebound anti-CD3 allowed both murine and human Tcon 
cells to proliferate even in the presence of Tregs, whereas lower 
concentrations of platebound antibody, or use of soluble anti-
CD3 stimulation, allowed Tregs to suppress both proliferation 
and cytokine production by Tcon cells (38, 39). Additionally, 
strong costimulatory signals via anti-CD28 allowed Tcon cells 
to resist Treg suppression in vitro (38, 40, 41). Physiologically, 
Tcon cells that only receive signal 1 (TCR stimulation) without 
concomitant signal 2 (costimulation) will become anergic and/
or apoptotic (42). Likewise, for Tcon cells to overcome Treg-
imposed restraints and mount a protective response during 
infection, APCs must upregulate B7 molecules (CD80, CD86) 
in order to provide Tcon cells with strong costimulatory signals. 
This paradigm was demonstrated in a murine study by Norment 
and colleagues, who showed that splenic dendritic cells (DCs), 
which upon activation express high levels of CD80 and CD86, 
induced Tcon cells to become refractory to Treg-mediated 
suppression (43). In contrast, stimulation of Tcon cells by 
antigen-pulsed B cells or plasmacytoid DCs could only induce 
Tcon cell proliferation in the absence of Tregs due to lower 
expression of costimulatory molecules (43). The critical nature 
of costimulation was confirmed by another study, which found 
that anti-CD28 increased the number of murine Tcon cells 
producing IL-2 and accelerated the kinetics of IL-2 production, 
allowing resistance to Treg suppression (41). Strong antigen dose 
alone did not alter IL-2 kinetics and did not achieve the same 
level of Tcon cell resistance to Treg suppression. It was therefore 
suggested that costimulation allows Tcon cells to resist suppres-
sion in a manner distinct from strong TCR signaling alone (41). 
This is consistent with the concept that costimulatory signals are 
required for optimal Tcon cell activation during an infectious 
threat, whereas lack of costimulation may provide a mechanism 
to maintain peripheral tolerance toward self (44).

These initial in vitro studies were the first to demonstrate Tcon 
resistance to suppression in a situation where Treg suppressive 
function remained intact. During a pathogenic infection, Tcon 
cells are provided strong TCR stimulation and costimulation, 
allowing them to circumvent Treg restraints in order to mount a 
response. By these rules, a low abundance of self-antigen coupled 
with weak costimulation favors Treg suppression of self-reactive 
Tcon cells that escaped negative selection, thereby preventing 
autoimmune disease. Of course, this ideal balance is not always 
maintained, and regulatory mechanisms gone awry result in 
disease.

ReSiSTANCe-iNDUCiNG MeCHANiSMS

extracellular Factors
Cytokine Milieu
Autoimmune diseases are organ specific or tissue specific and 
characterized by overproduction of inflammatory cytokines.  
This is in line with the observation that numerous cytokines 
associated with autoimmune disease have been found to induce 
Tcon resistance to Treg suppression in mouse models and human 
disease: IL-6 (16, 31, 32, 45–49), TNFα (16, 25, 50), IL-15 (51–53), 
IL-21 (18, 47, 54, 55), IL-1β (56, 57), and IL-4 (58, 59) (Figure 1). 
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FiGURe 1 | Signal transduction pathways that mediate Treg resistance converge on the Pi3K/Akt pathway. (A) Cytokines IL-6, IL-4, IL-7, IL-15, IL-21, 
IL-2, and TNFα [ligand for TNFR2, see (B) as part of the TNFR superfamily] have been shown to induce Tcon cells to resist Treg suppression. The respective STAT 
molecule through which each predominantly signals is depicted. (B) Signaling through TNF receptors 4-1BB, OX40, GITR, and TNFR2 can induce Tcon cell 
resistance to Treg suppression, as they provide costimulatory signals similar to CD28 ligation. 4-1BB, OX40, and TNFR2 signaling has been shown to induce PI3K/
Akt activation via TRAF adaptor proteins, while GITR ligation has not been directly demonstrated to activate the PI3K/Akt pathway. (C) Toll-like receptors 1, 2, 4, 8, 
and 9, as well as IL-1R, also a member of the TLR family, have been shown to induce Treg resistance. Of these, only signaling through TLR2 and TLR9 has been 
shown to activate the PI3K/Akt pathway via recruitment of adaptor protein MyD88, which in turn recruits and activates PI3K via its Toll/interleukin-1 receptor domain. 
(D) Intracellular signaling molecules Cbl-b and SHP-1 act as negative regulators downstream of TCR signaling, and genetic deficiency in either induces Treg 
resistance. Cbl-b enforces the requirement for CD28 costimulatory signaling by inhibiting the recruitment of PI3K to CD28. TRAF6 also negatively regulates 
activation of PI3K downstream of CD28 costimulation by an as yet undefined mechanism. Dashed lines indicate proposed, but unconfirmed, links between 
receptors and/or signaling molecules and the PI3K/Akt pathway.
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Beyond pro-inflammatory cytokines, IL-2 has also long been 
known to overrule Treg suppression in vitro (38, 40, 53).

IL-6
Elevated levels of IL-6 have been found to play a pathological 
role in rheumatoid and juvenile idiopathic arthritis (RA and 
JIA, respectively), systemic lupus erythematosus (SLE), multiple 
sclerosis (MS), inflammatory bowel disease (IBD), and allergic 
asthma (60). Antibody blockade of IL-6 signaling has proven 
an effective treatment of RA and JIA, and ongoing clinical trials 
are investigating its use in SLE and Crohn’s disease (60). By far, 
it has been the most frequently implicated cytokine in inducing 
Tcon cells to become resistant to Treg-mediated suppression 
(16, 31, 32, 45–48). Almost all immune cells produce IL-6, and 
its production is regulated by IL-1, TNFα, interferons, and other 
stress signals (60). While toll-like receptor (TLR) signaling on 
monocytes and macrophages leads to IL-6 production during 
acute inflammation, T cells are the major producers of IL-6 dur-
ing chronic inflammation (60). Acting in concert with TGF-β, 
IL-6 induces Th17 cells, thereby preventing the induction of 
Tregs by TGF-β.

In terms of its role in Tcon resistance, Medzhitov and col-
leagues demonstrated that activation of murine DCs through 
TLRs, such as during bacterial infection, could overcome 

Treg-mediated suppression by producing IL-6. Their results 
showed that IL-6 alone was necessary but not sufficient to 
overcome Treg suppression, suggesting that TLR-activated DCs 
likely produced another cytokine that worked in tandem with 
IL-6 to induce resistance to Treg suppression (45). It is likely 
that the DCs also produced TNFα, which has often been found 
to act along with IL-6 to induce Tcon resistance to Tregs. IL-6 
has also been shown to drive Tcon cells to resist Treg-mediated 
suppression in a chronic inflammatory environment. Tcon cells 
isolated from the CNS of mice with experimental autoimmune 
encephalomyelitis (EAE), a model of MS, produced high levels 
of IL-6 and TNFα and were resistant to Treg suppression (16). 
IL-6 alone accounted for only half of the observed resistance to 
suppression, with the other half from an additive effect of TNFα 
(16). Tcon cells from MS patients, when transferred into NOD/
SCID mice, could not be suppressed by healthy donor Tregs 
in vivo (61). Treatment with IFN-β restored susceptibility of MS 
Tcon cells to Treg suppression, concomitantly lowering IL-6R 
expression and IL-6 production (61). Like EAE/MS, psoriasis 
is a Th1-/Th17-driven autoimmune disease characterized by a 
local inflammatory environment with high levels of IL-6 (46).  
In addition to Th17 cells producing IL-6 in lesions from psoriasis 
patients, DCs and endothelial cells produce IL-6 as well, damp-
ening Treg suppression (46).
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Mechanistically, IL-6-mediated phosphorylation of STAT3 
was found to be crucial in conferring Tcon cells with resistance 
to Treg suppression. Indeed, high pSTAT3 levels correlated with 
disease severity in MS (32). Furthermore, IL-6 produced by MS 
Tcon cells in  vitro was able to confer “bystander resistance” to 
Tcon cells from healthy control patients (31). Treatment with 
pSTAT3 inhibitors restored Tcon cell susceptibility to suppres-
sion in cells from MS patients and in healthy control Tcon cells 
cultured with rhIL-6 (32, 47). On the other hand, IL-27, which 
also phosphorylates STAT3, could not induce Tcon cell resist-
ance, suggesting signaling downstream of the IL-6-STAT3 axis 
specifically induces resistance (47). In line with these findings, 
several studies demonstrated that IL-6-STAT3 signaling led 
to the activation of Akt (see Figure 1), and that Akt inhibition 
could restore susceptibility to Treg suppression in Tcon cells from 
autoimmune disease patients (24, 25, 31). Tcon cells isolated from 
the synovial fluid (SF) of RA patients have been shown ex vivo to 
resist Treg suppression (26). Although early studies questioned 
the ability of IL-6 to induce Tcon cell resistance in RA/JIA (51, 
53), more recent studies showed that IL-6, in combination with 
TNFα, allowed Tcon cells to resist Treg suppression. Blockade of 
both cytokines effectively restored Tcon susceptibility to suppres-
sion (24, 25, 62). Thus, the current view is that IL-6, especially 
in combination with TNFα, is capable of inducing Tcon cells to 
resist Treg suppression, providing an attractive therapeutic target 
for reducing inflammation and restoring suppressive balance in 
autoimmune disease.

TNFα
Like IL-6, antibody blockade of TNFα is clinically beneficial 
for RA and JIA, with it being the first cytokine identified as a 
therapeutic target in RA (63). TNFα and IL-6 are often pro-
duced together in inflammatory settings like the synovium in 
RA or the CNS in EAE/MS; IL-17, interferons, or other stress 
factors can drive the production of both cytokines, and TNFα 
itself can drive the production of IL-6 (16, 60). The complex 
feedback loops make it harder to dissect the exact role played 
by a cytokine with regards to Tcon cells acquiring resistance to 
suppression versus the effects on Tregs themselves. TNFα has 
been reported to act directly on Tregs to inhibit their suppres-
sive capability (50). When pre-incubating Tregs and Tcon cells 
with TNFα, Shevach and colleagues observed that TNFα did not 
affect Tcon cells’ ability to resist suppression but rather inhibited 
Tregs from subsequently suppressing proliferation and cytokine 
production of Tcon cells (50). TNFα signaled through TNFRII 
on Tregs, thereby downregulating the expression of Foxp3 and 
inhibiting Treg suppressive function (50). An inverse correlation 
was reported between levels of IL-6 and TNFα in SF from RA 
patients and the percentage of Foxp3+ CD4+ Treg cells (62). 
It is possible that in autoimmune diseases like RA, IL-6 may 
induce Tcon cells to resist Treg suppression, while TNFα acts 
on the other side of the equation to further prevent Tregs from 
suppressing Tcon cells. More recently, however, van Wijk and 
colleagues demonstrated that TNFα signaling activated Akt in 
Tcon cells from JIA patients, allowing them to resist Treg sup-
pression, as was seen with IL-6 (24, 25). TNFα blockade directly 
reduced Tcon cell proliferation, and potentiated suppression by 

Tregs (25). In vivo treatment with a TNFα-blocking antibody 
did not affect Treg function, but reduced phospho-Akt levels in 
Tcon cells, thereby reducing their resistance to Treg-mediated 
suppression (25).

Common γ Chain Cytokines: IL-7 and IL-15, IL-2,  
IL-21, and IL-4
A role for common γ chain (γC) cytokines in Tcon resistance to 
suppression seems logical, as these cytokines generally promote 
T cell activation, proliferation, and survival (64). IL-7 and IL-15 
have been found at elevated levels in the SF from RA and JIA 
patients (51, 53), and in the pancreas of murine models of Type 1 
diabetes (T1D) (65, 66). Furthermore, IL-7 has been implicated 
in the pathogenesis of MS and SLE (66). There are several reports 
of IL-7 and IL-15 inducing human Tcon cell resistance to Treg 
suppression, either alone (51, 52) or together (53, 54). It appears 
that both IL-7 and IL-15 act directly on Tcon cells to induce acti-
vation of the PI3K/Akt pathway (Figure 1) (52, 67, 68), possibly 
the mechanism by which Tcon cells become resistant. Thus, IL-7 
and IL-15 represent another pair of cytokines that coincide in 
disease states and can synergize to induce Tcon cells to resist Treg 
suppression.

Early in vitro suppression assays revealed that IL-2 prevented 
Treg-mediated suppression, though the exact molecular mecha-
nism remains unclear (38, 40). The effects of IL-2 on Tregs in vitro 
and in vivo remain complex, and whether IL-2 directly induces 
Tcon cells to resist Treg suppression is unknown. It is possible 
that IL-2 signaling induces Treg resistance through activation 
of the PI3K/Akt pathway (69, 70), but since naive T cells do not 
express the IL-2 receptor (71), induction of resistance would 
occur after Tcon cells have become activated. A more recently 
characterized γC cytokine, IL-21 has been shown to abrogate 
Treg suppression of human Tcon cells in vitro and in vivo (18) 
without impairing Treg function (54). Importantly, IL-21 did 
not increase baseline proliferation of Tcon cells, suggesting that 
resistance to Treg-mediated suppression can occur indepen-
dently of mechanisms that simply enhance T cell proliferation 
(47, 54). IL-21 has also been found to promote T cell survival by 
signaling through the PI3K/Akt pathway (55), likely the mecha-
nism allowing resistance to Treg-mediated suppression. Finally, 
IL-4 is another common γC cytokine with the capacity to induce 
Treg resistance. IL-4 signaling through STAT6 induced murine 
Tcon cells to resist Treg suppression (58, 59). IL-4 can activate 
the PI3K/Akt pathway in T cells (72), further suggesting that 
PI3K/Akt is a potential signaling “hub” for Tcon cell acquisition 
of Treg resistance.

Toll-like Receptors
Toll-like receptors are an essential line of defense against micro-
bial and viral pathogens. Various pathogen-derived ligands 
signal through TLRs, which recruit adaptor molecules such as 
MyD88 to trigger the production of pro-inflammatory media-
tors (73). The goal of TLR signaling is to sense a pathogenic 
threat and mount innate and adaptive immune responses. TLR 
ligands can influence T cell responses via direct receptor activa-
tion or indirectly, by inducing APCs to produce cytokines that 
affect T cells (74, 75). For example, stimulation of mouse DCs 
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with LPS or CpG (TLR4 and 9 agonists, respectively) induced 
their production of IL-6, contributing to Tcon cell resistance to 
Treg suppression (45). Studies of the effects of TLR agonists on 
mouse and human Treg suppressive function are contradictory 
[discussed in Ref. (76)], with some suggesting that TLR signal-
ing enhances suppressive function (74, 77), while others show 
inhibition (37, 78–80), or no change in suppressive function but 
enhanced Treg survival (76, 81). While it is apparent that TLR 
signaling directly affects Tregs (75, 82), there is also evidence 
that TLR signaling can directly induce Tcon cell resistance to 
suppression.

Both human and murine T cells express mRNA for TLRs 1-9, 
but protein expression levels vary and depend on the genetic 
background (in mice) and activation status of the T cell (75, 82, 
83). In general, TLR engagement acts as a costimulatory signal to 
T cells and subsequently activates the PI3K/Akt pathway, consist-
ent with a role in inducing Tcon cells to resist Treg suppression 
(82, 83). CpG DNA signaling through TLR9 on murine Tcon cells 
induced IL-2 production, allowing them to escape suppression 
from MyD88−/− Tregs, which cannot respond to CpG DNA (37, 
84). Similarly, TLR2 agonists induced murine Tcon cell resist-
ance to suppression by TLR2−/− Tregs (85, 86), with concurrent 
activation of the PI3K/Akt pathway (87, 88). Interestingly, human 
Tcon cells expressing a polymorphism for TLR1 have been shown 
to resist Treg suppression (89). Like cytokines, TLR signaling 
impacts both Treg and Tcon cells differentially and therefore 
must be carefully considered in the context of the overall Treg/
Tcon balance. Initially, infection by a bacterial or viral pathogen 
requires temporary abrogation of Treg suppression in order to 
allow a T effector response. It has been proposed that early during 
infection, TLR signals render Tcon cells resistant, and only upon 
Treg expansion (perhaps due to IL-2 secreted by Tcon cells), the 
newly increased population is then able to restrict and resolve 
the inflammatory response (77). Thus, there is likely a complex 
spatio-temporal regulation of induction of Tcon cell resistance 
to Treg suppression versus enhancement of Treg suppression by 
TLR signaling.

IL-1β
IL-1β is a potent pro-inflammatory cytokine associated with a 
wide array of inflammatory states, including some autoimmune 
diseases (90). Monocytes release IL-1β in response to pathogen or 
“danger” signals (90). Like TLRs, the IL-1R also contains a Toll/
interleukin-1 receptor domain and utilizes MyD88 in signaling 
(91). Tcon cells and Tregs both express the IL-1R, and IL-1β has 
been found to enhance the expansion and survival of T cells by 
activating NFκB and PI3K pathways (91, 92). IL-1β was found 
to inhibit Treg suppression of murine Tcon cells in vitro (56) by 
acting directly on Tcon cells rather than by impairing Treg func-
tion (57). These data suggest that IL-1β may be another factor 
that, during pathogenic infection, allows Tcon cells to mount a 
response despite the presence of Tregs. It is possible that IL-1β 
also induces Tcon cell resistance to suppression in autoimmune 
disease settings, but this remains to be investigated. IL-1R anti-
body blockade is being used successfully to treat RA (93), which, 
in addition to its inflammation-dampening effects, may also 
reverse Tcon cell resistance to suppression.

TNF Receptors
Engagement of certain tumor necrosis factor receptors (TNFRs) 
on T cells provides costimulatory signals that lead to activation, 
proliferation, differentiation, and survival (94). In particular, the 
four TRAF-binding TNFRs described below have been found 
to render Tcon cells resistant to Treg suppression (95–102). 
Evidence supports a role, in particular for TRAF2, in activating 
PI3K/Akt downstream of TNFRs (103), thereby possibly allow-
ing Tcon resistance to Treg suppression. While TNFRs do not 
contain PI3K-binding motifs, they utilize TRAF adaptor proteins 
to activate the PI3K pathway (Figure 1). These TNFRs are consti-
tutively expressed on Tregs and become upregulated on activated 
Tcon cells (100, 104–106). The ligands for these TNFRs are 
generally expressed on APCs, but can also be induced on other 
cell types during infection (95, 96, 107). TNFRs, like TLRs, play 
an important role during an infectious threat by allowing Tcon 
cells to become efficiently activated in order to mount a response, 
unrestrained by Tregs. It has therefore been proposed that TNFR 
ligand expression becomes upregulated during inflammatory 
conditions and provides costimulatory signals to both Tregs 
and Tcon cells, with Tcon cells becoming activated, producing 
IL-2, and resisting Treg suppression. As TNFR ligand levels wane 
and Tcon cells are no longer able to resist suppression, Tregs can 
assume control of the immune response (95).

GITR
GITR signaling in murine Tcon cells enhanced their prolifera-
tion and allowed them to resist Treg-mediated suppression (95).  
In order to translate this into a therapeutically useful model, 
Nishikawa and colleagues activated tumor-specific CD4+ and 
CD8+ T cells in the presence of GITR signaling, making them 
become resistant to Treg suppression and able to control tumor 
growth (108).

4-1BB
Signaling through 4-1BB in murine Tcon cells has been shown 
to induce proliferation and enhance survival, especially in CD8+ 
T cells (109). Treatment with agonistic 4-1BB antibodies has 
beneficial effects on CD8+ T cell-mediated viral clearance and 
antitumor immunity (109). In vitro studies of 4-1BB signaling 
have shown a clear role for its CD28-independent costimulation 
of Tcon cells (109) as well as its ability to induce resistance to 
Treg-mediated suppression (97–99). Likewise, in vivo treatment 
of mice with anti-4-1BB induced CD8+ T cells to become resistant 
to Treg-mediated suppression in a chronic viral infection model 
(99). 4-1BB regulation of Treg suppressive function remains con-
troversial (97), but 4-1BBL is capable of ex vivo expanding Tregs 
for therapeutic use (98). Therefore, 4-1BB signaling can induce 
proliferation of both Tregs and Tcon cells, but directly induces 
Tcon cells to resist Treg-mediated suppression. Interestingly, 
4-1BB signaling has been shown to augment TCR-induced acti-
vation of the PI3K/Akt pathway (103, 110), pointing again to a 
role for PI3K/Akt signaling in Tcon resistance.

OX40
OX40 signaling has been reported to both inhibit and enhance 
Treg suppressive function (100–102, 111–113). In contrast to 
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these conflicting studies, it is clear that OX40 signaling provides 
costimulation for Tcon cells, promoting their survival and 
development into memory cells (114). Several studies are in 
agreement that OX40 signaling in murine Tcon cells induces 
resistance to Treg-mediated suppression (100–102), possibly 
via PI3K/Akt activation (115, 116). Elevated expression of 
OX40 is associated with many autoimmune diseases including 
SLE (116, 117), RA (118), IBD (119–121), and graft-versus-
host-disease (GVHD) (122) where Treg resistance has been  
observed.

TNFR2
Originally characterized by its expression on activated/memory 
Treg cells, TNFR2 marks potently suppressive Tregs present in 
peripheral lymphoid tissues as well as in tumors, but can also be 
induced upon TCR activation on Tcon cells (106). While studies 
have shown that TNF signaling can inhibit Treg suppression, long-
term exposure to TNF signaling via TNFR2 expanded Tregs and 
enhanced their suppressive function when given in combination 
with IL-2 (123). Intriguingly, TNFR2 expression correlated with 
the suppressive capability of murine tumor-derived Tregs, with 
TNFR2-negative Tregs being unable to suppress tumor-derived 
TNFR2-positive Tcon cells (124). This suggested that TNFR2 
expression marked a subpopulation of Tcon cells, which were 
more difficult to suppress and could only be controlled by the 
more potent TNFR2-positive Tregs. These data are reminiscent of 
the inherent ability of memory T cells to resist Treg suppression 
(125), although it was not determined whether TNFR2-positive 
Tcon cells represent memory T cells (124).

intracellular Signaling Molecules Linked  
to Tcon Resistance
Cbl-b
Cbl-b is an E3 ubiquitin ligase that catalyzes the ubiquitylation 
of target proteins, which can result in their degradation by the 
proteasome, translocation inside the cell, or alteration in function 
(126). In T cells, Cbl-b sets the threshold for weak antigen stimu-
lation (127) and enforces the need for costimulation, or “signal 
2,” by regulating CD28 signaling (128). Cbl-b negatively regulates 
the recruitment of the p85 subunit of PI3K to CD28, thereby 
enforcing T cell anergy and tolerance when signal 2 is lacking 
(129). Upon CD28 signaling, Cbl-b itself becomes ubiquitylated 
and degraded, allowing PI3K recruitment and other downstream 
signaling required for full T cell activation (130). Consistent with 
its negative regulatory functions, Cbl-b knockout (KO) mice 
develop systemic autoimmunity due to hyper-proliferation and 
increased activation of lymphocytes, with T cells that can be 
activated in the absence of CD28 costimulation (131). Cbl-b KO 
Tregs were found to be normal, whereas Tcon cells were found to 
resist suppression by both wild type and Cbl-b KO Tregs, in vitro 
(132) and in vivo in a GVHD model (133). In addition to CD4+ 
T cells, Cbl-b KO CD8+ T cells also resisted Treg-mediated sup-
pression, providing a mechanism by which Cbl-b KO mice were 
able to spontaneously reject different types of xenograft tumors as 
well as ultraviolet-B light-induced skin cancer (134, 135). While 
the exact downstream mechanism of resistance in Cbl-b KO Tcon 

cells remains unclear, it is notable that Cbl-b KO T cells showed 
enhanced PI3K/Akt activation (129).

TRAF6
TRAF6 belongs to the E3 ubiquitin ligase family and transduces 
signals downstream of members of the TNFR superfamily, 
including IL-1R/TLRs (136), thereby activating NFκB, NFAT, 
MAP kinases, and Akt signaling pathways (136, 137). A 2006 
study demonstrated that TRAF6 KO mice developed multi-
organ inflammatory disease characterized by hyper-activated T 
cells (138). Using mice in which TRAF6 was specifically deleted 
in T cells, the group showed that while TRAF6 KO Tregs were 
normal, the Tcon cells resisted Treg suppression both in vitro and 
in vivo (138). Re-expression of TRAF6 via retroviral transduction 
restored susceptibility of Tcon cells to Treg-mediated suppression 
(138). Like Cbl-b KO T cells, TRAF6 KO T cells could also be 
activated independently of CD28 costimulation, and showed 
enhanced Akt activation upon TCR signaling. Importantly, sen-
sitivity to Tregs could by restored by overexpression of PTEN, an 
inhibitor of PI3K/Akt (138). These findings were also supported 
by human studies indicating that T cells from SLE patients had 
reduced induction of TRAF6 mRNA upon TCR stimulation, 
which correlated with increased levels of phospho-Akt and resist-
ance to Treg suppression (116).

SHP-1
SHP-1, a protein tyrosine phosphatase, negatively regulates 
TCR signaling by dephosphorylating signaling mediators such 
as Zap70, Vav, Lck, and SLP76 (139). Many studies have dem-
onstrated the ability of SHP-1 to regulate the threshold for TCR 
signaling [reviewed in Ref. (139)] and influence peripheral T 
cell activation and differentiation (140–143). SHP-1 KO mice 
develop inflammation in skin and lungs due to myeloid hyper-
proliferation (144, 145). These mice also accumulate memory T 
cells, and T cells are hyper-responsive to TCR stimulation (142, 
146–148). We have previously reported that SHP-1 KO Tregs 
have an increased suppressive capacity (149). Recently, we found 
that Tcon cells deficient in SHP-1 via genetic deletion or phar-
macological inhibition can resist Treg suppression in vitro (150). 
SHP-1 has been described as a negative regulator of PI3K/Akt 
signaling (151), providing a possible mechanism for increased 
activation and resistance to Treg suppression. SHP-1 also nega-
tively regulates activation of STAT3 in response to IL-6 signaling, 
with SHP-1-deficient cells being hyper-sensitive to IL-6 (143). 
Therefore, SHP-1 deficient Tcon cells may be more responsive to 
IL-6, resulting in activation of STAT3 and subsequent activation 
of PI3K/Akt. Like Cbl-b KO Tcon cells, SHP-1-deficient CD8+  
T cells proved an effective method for improving anticancer cyto-
toxicity (152, 153) (see Employing Tcon Resistance for Cancer 
Immunotherapy). Whether the enhanced antitumor activity was 
attributable to Tcon cells resisting Treg suppression remains to 
be addressed.

Tcon cells from the three aforementioned genetic KO mod-
els share the ability to become activated and proliferate with 
decreased dependence on CD28 costimulation (131, 138, 154). 
This suggests that the perturbed signaling allows the cells to 
bypass the need for costimulatory signals that would ultimately 
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activate PI3K/Akt and allow subsequent proliferation. Not only 
does this provide a means of identifying potentially Treg-resistant 
Tcon cells as those that do not require costimulation but also 
reinforces the concept that the PI3K/Akt pathway is hyper-active 
in Treg-resistant Tcon cells.

Pi3K/Akt: Node of Convergence
Many of the above discussed studies directly demonstrated 
hyper-activation of the PI3K/Akt pathway in Tcon cells that 
resist Treg suppression. Evidence is accumulating to suggest that 
increased PI3K/Akt signaling may be at the heart of Tcon resist-
ance. Wohlfert (155) was the first to propose that the PI3K/Akt 
pathway was central in allowing Tcon cells to resist suppression. 
Furthermore, murine models with genetic deficiencies in mole-
cules that negatively regulate the PI3K pathway exhibit Tcon cells 
resistant to suppression (132, 138, 150). Most compelling is the 
finding that inhibitors of PI3K and/or Akt can reverse Tcon cell 
resistance to Treg suppression, making both mouse and human 
Tcon cells once again susceptible to suppression. This has been 
accomplished in several ways: by overexpressing the phosphatase 
PTEN (which antagonizes the activity of PI3K) (138), by using 
pharmacological PI3K inhibitors wortmannin and Ly294002 
(52), by using Akt inhibitors (Akt inhibitor VIII) (24, 31, 116), or 
by inhibiting cytokine signaling thereby decreasing Akt activa-
tion (25). Importantly, carefully titrated inhibition of PI3K and/
or Akt did not affect the baseline proliferation of resistant Tcon 
cells, but instead returned their full susceptibility to suppression 
by Tregs (24, 25, 52, 138).

It is unknown how increased activation of the PI3K/Akt path-
way allows Tcon cells to overcome suppression, especially because 
the specific mechanisms of suppression employed by Tregs in a 
given setting vary. In T cells, signaling through the TCR and 
CD28 rapidly recruits and activates PI3K, but cytokines and other 
costimulatory receptors can similarly activate PI3K (156). Lipid 
second messengers produced by activated PI3K bind to Akt and 
relocate it to the plasma membrane, where it becomes primed for 
activation (157). Upon activation, Akt promotes proliferation by 
increasing cell size, inactivating cell cycle inhibitors, and increasing 
glucose metabolism, as well as enhancing cell survival and allow-
ing cytokine production (158). Mice in which T cells overexpress 
constitutively active PI3K or Akt develop lymphadenopathy and 
autoimmunity, underscoring the importance of regulated PI3K/
Akt signaling in T cells (158, 159). Inhibition of pro-apoptotic 
factors such as Bim and the expression of antiapoptotic factors 
such as Bcl-xL or Bcl-2 are downstream consequences of Akt 
activation, and a possible mechanism by which Tcon cells escape 
Treg suppression (55, 68, 116). However, there is little evidence 
of Tcon cell apoptosis observed under in vitro suppression assay 
conditions, suggesting that alternative suppression mechanisms 
are overcome by PI3K/Akt activation (52). Both Cbl-b KO and 
TRAF6 KO Tcon cells, which resist suppression, were still suscep-
tible to Fas-mediated apoptosis (131, 138). Taking these studies 
into account, although PI3K/Akt activation enhances Tcon cell 
survival, it does not seem to be the main mechanism by which 
Tcon cells resist Treg suppression.

Bypassing the need for costimulation is a likely candidate 
mechanism by which Tcon cells with hyper-activated PI3K/Akt 

can overcome Treg suppression. Tregs employ various molecules 
to effectively inhibit APC costimulation of Tcon cells (2). For 
example, Tregs express CTLA-4, which binds to costimulatory B7 
molecules (CD80, CD86) on APCs, leading to their downregula-
tion and preventing Tcon cell costimulation (160). Similarly, 
LAG3 on Tregs inhibits maturation of DCs to prevent them from 
activating Tcon cells (161). Thus, engagement of CD28 with 
CD80 is inhibited, and Tcon cells fail to receive costimulation 
and subsequent PI3K/Akt activation (13). Treg deprivation of 
costimulatory signaling would not affect genetically modified 
Tcon cells that do not require costimulation for full activation, 
such as Cbl-b, SHP-1, or TRAF6 KO Tcon cells. Furthermore, 
Treg-resistant Tcon cells from autoimmune diseases may receive 
adequate stimulation of the PI3K/Akt pathway through other 
means, such as cytokine, TLR, or TNFR signaling, eliminating 
the need for costimulation. In this way, any dysregulation of 
signaling events that lead to hyper-activation of PI3K/Akt can 
bypass those types of Treg suppression that are mediated by 
interference of costimulation. While this may not be the only 
suppressive mechanism overcome by PI3K/Akt hyper-activation, 
it is certainly a relevant suppressive mechanism both in vitro and 
in  vivo (13, 161). Akt inactivates FOXO transcription factors, 
thereby allowing increased cellular metabolism and concomitant 
entry into cell cycle (158). Thus, another possible mechanism to 
interrogate is whether enhanced PI3K/Akt signaling results in 
metabolic changes in Tcon cells that might allow resistance to 
Treg suppression.

It is important to note that resistance to suppression occurs 
in both naive and memory Tcon cells (24, 52, 133), and that 
hyper-activation of PI3K/Akt induces resistance in both sub-
sets (52). Future studies should investigate which suppressive 
mechanism(s) Tcon cells are able to overcome when PI3K/Akt 
is hyper-activated, and whether these differ depending on the 
subset of Tcon cell. Interestingly, murine Tcon cells rendered 
hyper-responsive by NFATc2/NFATc3 double KO were also able 
to resist Treg suppression and become activated independently of 
CD28 costimulation (162). NFAT proteins are regulators of T cell 
activation, inducing transcription of genes necessary for T cell 
responses (162). However, the findings of this study suggest that 
NFATc2/NFATc3 also play a regulatory role in T cell activation, 
representing a signaling pathway aside from PI3K/Akt that can 
render Tcon cells resistant to suppression. This finding warrants 
further investigation into the signaling events that allow Tcon 
cells to become Treg-resistant, and whether there is a common 
molecular mediator downstream of both the PI3K/Akt and NFAT 
pathways.

eMPLOYiNG TCON ReSiSTANCe 
FOR CANCeR iMMUNOTHeRAPY

Many cancers develop within an immunosuppressive tumor 
microenvironment, which is detrimental to antitumor immunity. 
Thus, the ability to induce Tcon cells to resist Treg-mediated sup-
pression would be a desired outcome for immunotherapy. There 
are several barriers to successful control and/or eradication of 
tumors, owing to the complex mechanisms that tumors employ 
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to evade the immune system. First, the ability of T cells, namely 
CD8+ CTLs, to recognize antigen on tumors is impaired because 
tumor cells can decreased expression of MHC I, and because 
ongoing immune surveillance leads to tumor immunoediting 
(163). Furthermore, many tumor-associated antigens are in fact 
self-antigens, to which T cells remain tolerant through peripheral 
tolerance mechanisms, such as Treg suppression (163). Even 
when a T cell recognizes a tumor-associated antigen, lack of 
costimulatory signals prevents effective priming of the T cell. The 
preponderance of TGF-β secreted by many tumors not only sup-
presses T cell activation but can also convert T effector cells into 
Tregs (164). Tregs are enriched in tumors, through chemokine-
mediated trafficking to tumors, de novo generation, and prefer-
ential expansion due to the cytokine environment (164). In many 
cases, the ratio of Treg/Teff cells is a prognostic indicator, with 
greater numbers of Tregs indicating a poorer prognosis (164).

Given these obstacles, treatment strategies have attempted 
to overcome Treg suppression and increase the activation and 
number of cytotoxic T cells (CTLs) in the tumor. Treg depletion 
via anti-CD25 antibodies or inhibition of Treg function (through 
antibodies against molecules like CTLA-4) have had some suc-
cess in boosting antitumor immunity, but typically require com-
bination with tumor vaccines to be highly effective (164, 165). 
Problematic to these treatments is that Treg depletion is transient 
and Tregs recover quickly, and some depletion agents can also 
destroy T effector cells (164). Adoptive cell transfer (ACT) (163) 
is another current treatment strategy, using patient-isolated 
tumor-specific CD8+ T cells and expanding them ex vivo typi-
cally with IL-2 or other cytokines. However, ACT is not always 
effective because transferred T cells do not persist well in  vivo 
without the addition of exogenous cytokines, which can have 
adverse effects (166). Tregs and the immunosuppressive tumor 
environment also impact the sustained function of the transferred 
CTLs (167). Thus, investigators have begun to take advantage 
of the ability to enhance T cell signaling pathways to increase 
Tcon cell responsiveness (and, potentially, induce resistance to 
Treg suppression) for use in cancer immunotherapy. To create 
more potent tumor-specific T cells that can be activated even 
in a suppressive microenvironment, chimeric antigen receptor 
(CAR) T cells are being utilized (168). This approach has made 
use of intracellular signaling domains of costimulatory molecules 
in order to make the modified T cells hyper-responsive. One 
strategy was to fuse the intracellular domains of CD28 and the 
CD3ζ chain to an extracellular, CD19-targeting Ab (to recognize 
leukemic B cells), resulting in human CAR T cells with enhanced 
proliferation, resistance to suppression by Treg cells in vitro, and 
acquisition of cytotoxic activity (169). The previous generation 
of CAR contained only the CD3ζ fused to the CD19-recognizing 
Ab and also exhibited cytotoxic activity, but could not resist Treg 
suppression. Although not assessed, it is likely that signaling 
events downstream of CD28 were enhanced, such as PI3K/Akt, 
which may have conferred Treg resistance. Therefore, the pos-
sibility of inducing T cells to become resistant to Treg suppression 
and combining this with ACT or other immunotherapies is an 
attractive solution.

Many of the molecules discussed above that regulate Tcon 
cell resistance to Treg suppression have also been investigated 

for their role in antitumor immunity. One way to overcome the 
need for costimulation is by eliminating Cbl-b. Cbl-b KO mice 
spontaneously rejected TC-1 tumors and UVB-induced skin 
tumors (135), as well as thymomas (134), due to increased CD8+ 
T cell tumor infiltration and enhanced cytotoxicity. Importantly, 
despite there being a greater number of Tregs present in these 
tumors compared to wild type, the CD8+ T cells were resistant to 
Treg suppression (134, 135). Cbl-b KO CD8+ T cells also inhibited 
the growth of disseminated leukemia (170) and melanoma (171) 
in mice. These studies clearly demonstrated the advantages to 
using T cells that have a lower threshold for activation, increased 
survival, and resistance to Treg- and TGF-β-mediated suppres-
sion in order to control tumor growth. It remains to be elucidated 
how T cell resistance to Treg suppression contributes to tumor 
control compared to simple hyper-responsiveness of the T cells, 
and whether or not resistance and hyper-responsiveness are 
two distinct characteristics of the T cells or represent an overall 
phenotype.

Similar to Cbl-b KO CD8+ T cells, SHP-1 KO CD8+ T cells also 
showed enhanced proliferation without the need for IL-2 sup-
plementation (152). In a mouse model of disseminated leukemia, 
adoptively transferred SHP-1 KO CD8+ T cells decreased tumor 
size and increased survival rate, with the T cells demonstrating 
increased cytotoxicity and enhanced survival (152). These results 
were recapitulated by adoptive transfer of tumor-specific T cells 
that underwent shRNA knockdown of SHP-1 (152). Similarly, 
a pharmacological inhibitor of SHP-1, sodium stibogluconate 
(SSG) showed improved antitumor immunity in mice in a T cell-
dependent manner (172), which led to phase I clinical trials of 
treating advanced cancer patients with a combination therapy of 
SSG and IFN-α (173, 174). While these studies did not directly 
assess the influence of Tcon resistance to Treg suppression on 
tumor control, our studies (150) suggest that SHP-1 KO T cells 
and Tcon cells from mice treated with SSG do in fact resist Treg 
suppression and would likely provide an additional advantage for 
enhanced tumor control.

As discussed above, TLR2 signaling inhibits Treg suppression 
and also confers Tcon cells with resistance to suppression. Not 
surprisingly, administration of a TLR2 ligand with an oncopro-
tein vaccine expanded T effector cells in the presence of Tregs and 
increased median survival of tumor-bearing mice (81). T effector 
cells became resistant to Treg suppression, upregulated Bcl-xL, and 
produced increased cytokines (81). The effect was only elicited by 
the combination of a TLR2 ligand and the oncoprotein vaccine, 
but not by either alone. Similarly, in mice immunized with the 
tumor antigen mERK2 along with plasmids encoding GITR-L, 
antigen-specific CD8+ T cells were capable of inhibiting tumor 
growth and resisted Treg suppression (108). In a CT26 tumor 
model, GITR agonist rendered CD4+ T cells resistant to suppres-
sion and capable of tumor control, as well (175). OX40 signaling 
prior to tumor challenge also provided tumor control, but in a 
Treg-dependent manner (101). In this model, OX40 signaling 
inhibited Treg suppressive function, while also boosting CD8+ 
T cell effector function (101). This provides yet another example 
of the superior efficacy of treatments that not only inhibit Treg 
suppressive function but also simultaneously boost T effector  
function.
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PD-1 signaling in T cells is an inhibitory pathway linked to 
the maintenance of tolerance by blocking T cell activation and 
downregulating PI3K/Akt signaling (176). While beneficial in 
preventing autoimmune disease, many tumors cells express high 
levels of PD-L1 to evade an immune response (177). In addition, 
there is increasing evidence that Tregs potentiate expression of 
PD-L1 on APCs as a mechanism to suppress tumor-specific 
CD8+ T cell responses (177–179). In fact, tumor infiltrating 
CD8+ T cells show increased expression of PD-1, which is char-
acteristic of unresponsive, “exhausted” T cells (178, 180). Thus, 
PD-1 blocking antibodies have recently shown great clinical 
success in the treatment of metastatic melanoma and non-small 
cell lung cancer (181), and may also prove successful in other 
cancer types. Inhibition of this pathway resulted in greater 
human CD8+ T cell differentiation into melanoma-specific CTLs 
even in the presence of Tregs, conferring them with resistance 
to PD-1/PD-L1-mediated Treg suppression. Moreover, since 
PD-1 is critical for Treg function, inhibition of this pathway 
also interferes with Treg function (178, 179). Therefore, PD-1 
blockade antibody therapy has been found particularly useful in 
combination with other immunotherapeutic modalities (180), as 
a way to invigorate the effector T cell response in a manner that 
overcomes Treg suppression while at the same time inhibiting 
Treg function.

The above studies are consistent with the idea that increased 
activation of the Akt pathway allows T cells to resist Treg sup-
pression, and that T cells resistant to suppression are better able 
to control tumor growth. Indeed, human CD8+ T cells transduced 
with constitutively active Akt (caAkt) had enhanced cytotoxicity 
toward neuroblastoma (182). The caAkt T cells showed increased 
proliferation and survival, and were resistant to Treg suppression, 
and had reduced susceptibility to TGF-β-induced conversion into 
Tregs (182). Future strategies for cancer immunotherapy should 
take into consideration the importance of inducing T cells to resist 
suppressive mechanisms and strive to better understand how 
Treg resistance re-shapes the immune response. Furthermore, 
current therapies may actually, in part, act by inducing Tcon 
resistance to Treg suppression, which is worth examining. Suited 
to the era of personalized medicine, therapies that induce Tcon 
resistance would be most beneficial in patients whose tumors 
have a high degree of Treg infiltration or a highly suppressive 
tumor microenvironment.

ReMAiNiNG QUeSTiONS

While the characterization of the phenomenon of Tcon cells 
resisting Treg-mediated suppression has come a long way in 
the past decade, there are still several important questions left 
unanswered.

where Does the Acquisition  
of Resistance Occur?
In autoimmune diseases, the local inflammatory environment 
enables Tcon cells to become resistant to suppression. However, 
there are also examples of Tcon cells acquiring resistance to sup-
pression in the absence of inflammation, when TCR signaling 
is dysregulated (see Table  1). For example, Tcon cells isolated 

from the spleen or lymph nodes of mice with a T cell-specific 
SHP-1 deletion are resistant to Treg suppression in vitro (150). 
Furthermore, CD8+ T cells targeted with siRNA to knockdown 
either Cbl-b or SHP-1 acquire resistance to Treg suppression 
(152, 170), suggesting that at least under conditions of deficient 
regulatory molecules, T cells do not require an inflammatory 
environment to become Treg-resistant. While not necessarily 
physiological, genetic deficiencies of intracellular signaling 
molecules have provided information about the mechanism of 
Tcon resistance and the pathways involved. It is possible that as 
a result of strong inflammatory signals received by a Tcon cell 
during autoimmune disease, molecules such as Cbl-b or SHP-1 
are sequestered or degraded, so that they no longer regulate T cell 
signaling. Although this remains to be seen, the fact that Tcon 
cells can acquire resistance in a TCR-signaling-dependent man-
ner in genetic KO models suggests that acquisition of resistance 
might occur in secondary lymphoid organs (SLOs).

Studies of autoimmune disease in mice have demonstrated 
that Tcon cells isolated from sites of inflammation, as well as those 
from SLOs, are resistant to suppression. Similarly, Tcon cells from 
peripheral blood of autoimmune disease patients have been found 
to be resistant to Treg suppression. It is therefore difficult to deter-
mine whether Tcon cells became resistant in the inflamed tissue 
(e.g., synovium, pancreatic islets, CNS) and are re-circulating, or 
whether they acquired resistance in an SLO upon antigen and/or 
cytokine encounter. It appears that when certain conditions are 
met during TCR stimulation, such that the PI3K/Akt pathway 
becomes hyper-activated, a Tcon cell can become resistant to sup-
pression. Given the number of documented pathways by which 
a Tcon cell can become resistant to suppression, it would seem 
that there is opportunity for naive T cells, as well as differentiated 
effector and memory T cells, to acquire resistance, albeit possibly 
in different locations. It is likely that naive Tcon cells acquire 
resistance in SLOs, as they would be primed in the SLO and have 
yet to traffic to a site of inflammation. Resistant T effector cells 
that are isolated from active disease settings may represent naive 
Tcon cells that acquired resistance in an SLO, became activated, 
and subsequently trafficked to a particular tissue, or may repre-
sent cells that became resistant in the inflamed tissue. It will be 
difficult to determine the location of acquisition of resistance in 
particular, but use of more sophisticated animal models in con-
junction with in vivo imaging of Tcon cell activation status should 
help gain further insights. It is clinically relevant to pinpoint the 
location of acquisition of resistance in order to employ targeted 
therapeutic approaches, such as nanoparticle-directed delivery 
(183) of a compound that could reverse resistance in autoimmun-
ity, or intratumoral injection of a compound to induce resistance 
in cancer (184).

How Stable is the Treg-Resistant 
Phenotype?
When Tcon cells become resistant to Treg suppression, they 
undergo cell-intrinsic changes that mediate their resistance. 
Because of the limitations of in vitro suppression assays, many 
studies have assessed Tcon cell resistance in  vivo. Tcon cells 
deficient in TRAF6 or Cbl-b maintain Treg resistance when 
transferred into a host mouse, as demonstrated by induction 
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of colitis (138) and GVHD (133) in the presence of otherwise 
protective Tregs. Perhaps not surprisingly, this suggests that 
despite removal from the inflammatory environment in which 
they developed, Tcon cells genetically deficient in specific 
molecules maintain resistance to Treg suppression. Likewise, 
CD8+ T cells lacking Cbl-b or SHP-1 maintain resistance 
in  vivo despite their accumulation in a highly suppressive 
tumor microenvironment, and can successfully control tumor 
outgrowth (152, 170).

There may be qualitative differences in just how stable the 
Tcon cell resistance program is, depending upon the circum-
stances of acquisition. Ideally, for a Tcon cell to respond to a 
pathogenic threat, it would transiently need to resist Treg sup-
pression. Thus, an abundance of pro-inflammatory cytokines 
would drive the Tcon cell to resist suppression, perhaps through 
activation of PI3K/Akt signaling. When the cytokine concentra-
tion is reduced as the threat is cleared, signaling would wane 
and Tcon cells would once again be suppressible. Based on this 
paradigm, Tcon cells that become resistant in autoimmune 
disease likely stay that way because of aberrant and chronic 
cytokine production, the presence of self-antigen, and feed-
forward autocrine loops. Tcon cells isolated from JIA patients 
maintained in vitro resistance to Treg suppression, producing 
high amounts of pro-inflammatory cytokines after 4 days in cul-
ture, likely reinforcing their own resistance through PI3K/Akt 
signaling (24, 25). However, blockade of IL-6 or TNFα signaling, 
or inhibition of Akt, could restore susceptibility to suppression 
(24, 25). Interestingly, Tcon cells isolated from MS patients have 
an accelerated kinetics of IL-6 production and resist Treg sup-
pression and maintained resistance even after being cultured for 
24 h in the absence of any cytokines (31). This is consistent with 
the idea that the cells may continue to produce excess cytokines 
to maintain a state of resistance, unless their ability to receive 
those signals is blocked, or PI3K/Akt is inhibited. Indeed, it was 
recently found that CD8+ T cells from the SF of JIA patients were 
able to self-sustain resistance to suppression by secreting large 
amounts of IFNγ, and only antibody blockade of IFNγ could 
restore susceptibility to suppression (185). Overall, the Treg-
resistant phenotype of Tcon cells appears to be relatively stable, 
able to persist in the absence of pro-inflammatory cytokines 
or other resistance-inducing factors. Future studies will need 
to assess the ability of Tcon cells to maintain Treg resistance, 
especially in light of efforts to use adoptive Treg therapy for 
treatment of autoimmune diseases (186). Infusion of Tregs into 
patients with Tcon cells resistant to suppression might prove to 
be ineffective, and should be examined further. Additionally, 
the stability of induction of Tcon cell resistance to suppression 
ex vivo should be investigated to determine if Tcon cells can 
maintain resistance in a suppressive tumor microenvironment 
for cancer immunotherapy.

what is the Time window for a Tcon Cell 
to Become Resistant?
In vitro, there seems to be a limited window of time during 
which a Tcon cell can resist Treg suppression. Whether a Tcon 
cell will become successfully activated and be able to proliferate 

or instead be suppressed by a Treg occurs early on in coculture, 
within the first 6–12  h (41). Addition of pre-activated murine 
Tregs to culture with murine Tcon cells after 12  h could not 
induce suppression of Tcon proliferation, which correlated with 
the peak of IL-2 production by Tcon cells (41). These findings 
are consistent with the kinetics of cytokine-induced resistance 
to suppression observed in Tcon cells from autoimmune disease 
patients. For example, IL-6 is able to induce human Tcon cells 
to resist Treg suppression only if given within the first 16 h of 
coculture. Although there was a modest reduction of suppression 
if given at 24  h, it was only half as effective as when given at 
4 or 16 h of culture (31). Likewise, incubation of human Tcon 
cells with IL-15 in vitro rendered them refractory to suppression 
owing to increased PI3K/Akt activation (52). In this setting, 
PI3K inhibitors had to be added to culture within the first 24 h 
or resistance could not be reversed (52). In vitro studies of Treg 
suppression have provided valuable information regarding the 
window in which a Tcon cell can become resistant, but the 
acquisition of resistance in vivo is likely a much more complex 
process. The mechanisms employed by Tregs to suppress Tcon 
cells in vivo are most likely different than in vitro, and depend on 
the anatomical location of the Treg (187). In vitro, if a quorum 
of Tcon cells resist suppression and quickly produce cytokines, 
this might trigger nearby Tcon cells to also resist suppression as 
they are concentrated (in a well of a tissue culture dish). This is 
in contrast to a physiological setting, where only a small subset of  
T cells might be in close enough proximity to spread resistance 
via cytokine secretion. In the context of autoimmune disease, 
this begs the question, at what stage do Tcon cells become resist-
ant to Treg suppression, and is it a causative factor of the disease 
or a consequence? If Tcon cells in autoimmune disease settings 
become resistant due to a preponderance of inflammatory 
cytokines, this would suggest that the disease must already be 
underway before resistance is induced. Indeed, Tcon cells from 
patients with inactive lupus nephritis showed a higher level of 
activated Akt compared to healthy control cells, but not as high 
as that from patients with active lupus, suggesting that the degree 
of resistance corresponds to severity of disease (116). Therefore, 
a break in tolerance may be responsible for autoimmune disease 
initiation, but as the disease progresses, Tcon cells become Treg-
resistant, exacerbating disease severity. It is yet to be determined 
whether in vivo treatment with PI3K and/or Akt inhibitors could 
reverse Treg resistance in established autoimmune disease, or 
whether there is only a short window during disease progression 
in which Tcon cell resistance can be blocked. This is not eas-
ily answered, as therapeutic PI3K/Akt inhibitors are currently 
unavailable. However, successful treatment of MS and RA/JIA 
symptoms using anti-IL-6 or anti-TNF therapy suggests that the 
cycle of Tcon cell resistance in vivo can be broken during ongoing 
disease (60, 63), and T cell-specific manipulation of PI3K/Akt 
pathway might be a future option for the treatment of autoim-
mune diseases and/or tumor immunotherapy.

CONCLUDiNG ReMARKS

Deepening our understanding of what determines the 
susceptibility of a Tcon cell to Treg-mediated suppression 
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will prove extremely useful in advancing therapies for both 
autoimmunity and cancer. Although there are various mecha-
nisms employed by Tregs to suppress Tcon cells, the PI3K/Akt 
pathway is a downstream point of convergence, representing 
an ideal therapeutic target. Already, efforts have been made to 
utilize Tcon cells resistant to suppression in controlling tumor 
outgrowth, and have shown promise as part of a combinatorial 
therapy. Further improvements upon autoimmune disease 
treatments could be made if the PI3K/Akt pathway could be 
specifically inhibited in out-of-control Tcon cells in order 
to rein them in. Finding the appropriate balance between 
Tregs and Tcon cells in different settings remains elusive, but 
further studies addressing the questions posed in this review 
will allow better manipulation of the delicate balance between 
Tregs and Tcon cells.
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