
SeroBA: rapid high-throughput serotyping of Streptococcus
pneumoniae from whole genome sequence data

Lennard Epping,1,2,* Andries J. van Tonder,3 Rebecca A. Gladstone,3 The Global Pneumococcal Sequencing Consortium,

Stephen D. Bentley,3 Andrew J. Page1,4 and Jacqueline A. Keane1

Abstract

Streptococcus pneumoniae is responsible for 240 000–460 000 deaths in children under 5 years of age each year. Accurate

identification of pneumococcal serotypes is important for tracking the distribution and evolution of serotypes following the

introduction of effective vaccines. Recent efforts have been made to infer serotypes directly from genomic data but current

software approaches are limited and do not scale well. Here, we introduce a novel method, SeroBA, which uses a k-mer

approach. We compare SeroBA against real and simulated data and present results on the concordance and computational

performance against a validation dataset, the robustness and scalability when analysing a large dataset, and the impact of

varying the depth of coverage on sequence-based serotyping. SeroBA can predict serotypes, by identifying the cps locus,

directly from raw whole genome sequencing read data with 98% concordance using a k-mer-based method, can process

10 000 samples in just over 1 day using a standard server and can call serotypes at a coverage as low as 15–21�. SeroBA is

implemented in Python3 and is freely available under an open source GPLv3 licence from: https://github.com/sanger-

pathogens/seroba

DATA SUMMARY

1. The software is open source and available for Linux at
Github under the GNU GPLv3 licence (url – https://github.
com/sanger-pathogens/seroba).

2. Accession numbers for all sequencing reads and reference
genomes that are used in the experiments are listed in the
supplementary material (available in the online version of
this article).

INTRODUCTION

Streptococcus pneumoniae (the pneumococcus) is a clinically
important bacterium estimated to cause 700 000 to 1million
deaths in children under 5 years of age annually prior to the
introduction of polysaccharide conjugate vaccines [1]. The
capsular polysaccharide biosynthesis (cps) locus, which enc-
odes the serotype, is a major virulence factor in S. pneumo-
niae. The introduction of multi-valent pneumococcal
conjugate vaccines has led to a substantial change in the cir-
culating serotypes [2] and decreased the number of deaths

in children under 5 years of age to 240 000–460 000 annually
[3]. However, serotype surveillance projects around the
world showed an increase of S. pneumoniae disease due to
non-vaccine serotypes that is caused by serotype replace-
ment [4, 5]. Furthermore, it was observed that the serotype
distribution differs between continents as well as single
countries [6]. Therefore, it is very important to survey the
circulating serotypes, in order to observe the epidemiologi-
cal trends of S. pneumoniae before and after vaccination.
The rapid reduction in the cost of whole genome sequencing
(WGS) has led to its extensive use in the monitoring of
pneumococcal serotypes [7].

To date, there are nearly 100 known serotypes described
for S. pneumoniae based on differing biochemical and anti-
genic properties of the capsule [8]. The cps locus can be
very similar between serotypes from the same serogroup
(such as serogroup 6) with some of them distinguished by
an SNP, rendering a gene non-functional or altering the
sugar linkage [9]. However, dissimilar loci may be grouped
in the same serogroup as they elicit a similar antibody
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response (e.g. serogroup 35). The large number of identi-
fied serotypes, and the high similarity between them,
makes it challenging to computationally predict the sero-
type based on WGS data. Another challenge is recombina-
tion with other serotypes resulting in a mosaic cps locus
[10], which may affect the polysaccharide being produced.
It is possible to have significant variation across the cps
locus which does not lead to a different polysaccharide
capsule being produced [11]. Conversely, novel serotypes
can be generated through these processes and can go
unnoticed by antibody-based serotyping [12, 13]. Finally,
mixed populations in a single sample and contamination
can lead to ambiguity.

There are a number of methods available to predict sero-
types in S. pneumoniae. Besides the gold standard method,
Quellung, which can be subjective in certain cases, there
are five additional methods based on serological tests, at
least eight semi-automated molecular tests based on PCR
and one method that uses microarray data for serotyping
[14]. There are a number of in-silico methods to detect the
cps locus, which can then be used to predict serotypes
from WGS data [15–18]. However, the tool described by
Metcalf et al. [18] is an in-house one, the tool described by
Leung et al. [16] covers only half of the known serotypes,
and the method from Croucher et al. [15] describes a
mapping approach that is not implemented as an
automated tool.

The only fully functional automated pipeline for serotyp-
ing S. pneumoniae WGS data is PneumoCaT, which was
developed by Public Health England (PHE) [17]. Pneumo-
CaT provides a capsular type variant (CTV) database
including FASTA sequences for 92 serotypes and two sub-
types as well as additional information about alleles, genes
and SNPs for serotypes within specific serogroups. To pre-
dict a serotype, PneumoCaT uses bowtie2 [19] to align
reads to all serotype sequences. If the serotype belongs to
a predefined serogroup or the serotype sequence could not
be unambiguously identified, PneumoCaT maps the reads
to serogroup-specific genes to identify the genetic variants.
However, it is computationally and memory intensive
(Supplementary Material Section 3 Run time and
Memory).

To address these problems, we developed SeroBA, which
makes efficient use of computational resources in addition
to accurately detecting the cps locus at low coverage, and
we thus predict serotypes from WGS data using a database
adapted from PneumoCaT [17]. Prediction accuracy was
evaluated by comparing the results to a standard, validated
dataset of 2065 samples from PHE [17]. We show that it is
scalable and robust by calculating the serotypes of 9477
samples from the GPS (The Global Pneumococcal
Sequencing) project, an ongoing global pneumococcal
sequencing project, on commodity hardware. Simulated
read data, generated from several reference genomes with
varying coverage over the whole reference genome, were

used to show the minimum depth of coverage required to
call a serotype.

THEORY AND IMPLEMENTATION

SeroBA takes Illumina paired-end reads in FASTQ format
as input as shown in Fig. 1. Precomputed databases that
describe the serotypes are bundled with the SeroBA applica-
tion. The first of these is a k-mer counts database for every
serotype sequence. The k-mer counts database is generated
using KMC (v3.0.0) [20] with a default k-mer size of 71 as
this is the most resource-efficient size (Supplementary
Material Section 2 Impact of K-mer Size, Figs S1 and S2). It
is possible to vary the k-mer size using a user-defined
parameter when generating the k-mer counts database. The
second databse is an ARIBA- (v2.9.3) [21] compatible data-
base for every serotype where serotypes are clustered
together by their serogroup, and the third database is a
CTV database, including FASTA sequences for 92 serotypes
and two subtypes, as well as additional information about
alleles, genes and SNPs for serotypes in specific serogroups.
These databases were adapted from PneumoCaT [17]. A k-
mer analysis is performed on all forward input reads, and
the intersection is found between these k-mers and the pre-
computed k-mer database of serotypes by the use of the
built-in intersection function of KMC. The k-mer coverage
of the input reads over the serotype sequences is normal-
ized by dividing the k-mer count on each serotype by its
reference sequence length. The serotype with the highest
normalized sequence coverage is selected. This step identi-
fies the possible serotype or serogroup. At this stage 31 out
of 92 serotypes can be identified without further computa-
tion (see Fig. S3). As this is done by a greedy algorithm, the
serotype that was analysed first is taken in the event of a tie,
although this is most likely to happen for serotypes within
the same serogroup and will not lead to a misprediction.
ARIBA is then used to build an assembly and to confirm
the presence of the selected serotype from the raw reads. If
a serogroup is selected, the cps sequence produced by
ARIBA and serotype-specific genes are aligned with
NUCmer [22] with parameters set as: min_id=90, min_-
length=200, maxmatch=True, show_snps=True, show_-
snps_C=False. This is done to find specific variants, such as
presence/absence of genes, SNPs or gene truncations as
defined in the CTV database. A gene is defined as present

IMPACT STATEMENT

This article describes SeroBA, a k-mer-based method for

predicting the serotypes of Streptococcus pneumoniae

from whole genome sequencing data. SeroBA can iden-

tify 92 serotypes and two subtypes with constant mem-
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in the assembly if it has a minimum sequence similarity of

90% and an alignment coverage of 95%. The output of

SeroBA includes the predicted serotype with detailed infor-

mation that led to the prediction, as well as an assembly of

the cps locus sequences.

VALIDATION DATASET

A validation dataset consisting of 2065 UK isolates
(Table S1) retrieved from the PHE archive was originally
used to evaluate PneumoCaT. It consists of 72 out of 92
known serotypes, including all serotypes contained in

Fig. 1. Flowchart outlining the main steps of the SeroBA algorithm.
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commercial vaccines, and 19 non-typeable samples. The
serotype of each sample was confirmed by latex agglutina-
tion with Statens Serum Institut typing sera [17]. Pneumo-
CaT v1.1 [17] and SeroBA v0.1 with a k-mer size of 71 were
evaluated on an AMD Opteron 6272 server running Ubuntu
12.04.2 LTS, with 32 cores and 256GB of RAM. A single
CPU (central processing unit) was used for each sample. A
total of 25 of the 72 serotypes covered by the validation set
can be directly predicted by the k-mer approach of SeroBA
and of the 2065 isolates in the dataset 1881 were identified
correctly by the k-mer approach.

Fig. 2 summarizes the serotypes called for each sample by
each method. As serotyping with latex agglutination and
Quellung can be subjective [23] and potentially imprecise, a
serotype was said to be concordant if two or more methods
agreed on the same serotype. This gave a concordance of
98.4% for SeroBA and 98.5% for PneumoCaT with the
latex agglutination method. Table S2 gives an overview of
discordance between both computational methods and latex
agglutination per serotype. The reference sequences in the
CTV database for serotypes 24A, 24B and 24F may not be
representative for the circulating strains [17], so SeroBA will
report serogroup 24 instead of reporting the serotype. As
discussed by Kapatai and others [17], serological prediction
in serogoup 12 was error-prone, so a prediction of either
serotype 12B or 12F was counted as concordant. The overall
computational resources required to call the serotypes dif-
fered substantially between PneumoCaT and SeroBA (Figs 3
and 4 and Table S3): SeroBA was 15 times faster and
required five times less memory than PneumoCaT.

We also calculated the sensitivity and specificity of SeroBA
and PneumoCaT. For this, we took 41 publicly available
samples, 33 Streptococcus mitis samples and eight

Streptococcus pseudopneumoniae samples, as negative con-
trols (Table S4). SeroBA did not predict any serotype for the
negative control samples, whereas PneumoCaT predicted
serotype 37 for three samples. In combination with the vali-
dation dataset we calculated a sensitivity and specificity of
0.98 and 1, respectively, for SeroBA and 0.98 and 0.92 for
PneumoCaT (Tables S5 and S6). Further details on this can
found in the supplementary material (Section 6 Sensitivity
and Specificity).

EVALUATION USING A LARGE DATASET

To show the scalability of SeroBA to large datasets, we took
9477 S. pneumoniae samples from the GPS project
(Table S7) covering 74 serotypes and calculated the sero-
types using the setup previously described, including a
default k-mer size of 71. A comparison with serotypes deter-
mined using experimental methods gave an accuracy of
98.6% for SeroBA. Details of the discordance between
methods per serotype are given in Table S8. The serotypes
were determined by different experimental methods as
listed in Table S7. Using all 32 cores resulted in a total CPU
time of 823.78 h. This showed that SeroBA can robustly
scale to large datasets.

IMPACT OF DEPTH OF COVERAGE

The effect of depth of coverage on the serotyping results
produced by SeroBA and PneumoCaT was evaluated by
simulating Illumina paired end reads from several reference
genomes covering serotypes 1, 3, 4, 5, 6B, 19A, 19F and 23F
(Table S9). Reads with a length of 250 bp were generated by
DWGSIM (https://github.com/nh13/DWGSIM) using a
fragment size of 500 bases, standard deviation of 50 and an
error rate of 0.02. Coverage was increased from 1� to 50�
in single steps and from 50� to 100� in steps of 10. Each
experiment was repeated 10 times and the read depth at
which SeroBA and PneumoCaT correctly predicted the
serotype in 90% or more of the experiments was noted as
the minimum read depth required to correctly predict the
serotype (Tables S10 and S11). In addition, the median val-
ues for memory and CPU time were calculated. SeroBA was
used with a k-mer size of 51 and accurately predicted the
serotype at a lower depth of coverage than PneumoCaT for
six of the eight serotypes evaluated and started to predict
the serotype at a depth of coverage of 18� for serotype 19A
while PneumoCaT required 44� coverage. Fig. S4 shows
that the computational resources required by SeroBA
increases linearly at a lower rate than required by Pneumo-
CaT. The amount of memory required by SeroBA stabilized
at 150MB, regardless of coverage, whereas PneumoCaT’s
memory requirement increased as the depth of coverage
increased, requiring four times more than SeroBA at 100�
coverage.

CONCLUSION

In this paper, we have described SeroBA, a method for pre-
dicting serotypes from S. pneumoniae Illumina Next

Fig. 2. Agreement of serotyping results between different methods.
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Generation Sequencing (NGS) reads. We compared SeroBA

and PneumoCaT with a gold standard experimental sero-

typing method (Quelling) and showed that they had

approximately the same level of concordance. However,

SeroBA was 15 times faster and required five times less

memory than PneumoCaT. One of the main sources of

Fig. 3. Memory usage of SeroBA and PneumoCaT on the validation dataset.

Fig. 4. CPU usage of SeroBA and PneumoCaT on the validation dataset in minutes (log scale).
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error were samples with mosaic serotypes. SeroBA cannot
automatically detect mosaic serotypes, but they can be
manually identified by inspecting the assemblies provided
by SeroBA and using a BLAST approach on the whole
genome assembly to analyse the cps locus sequence. Fur-
thermore, the assemblies of the cps locus sequence provided
by SeroBA are very useful for other analyses. They can be
used to detect novel mutations within a serogroup or to
investigate the evolution of the cps locus for a set of S. pneu-
moniae samples by building a phylogenetic tree. SeroBA
was able to predict the serotype from only 15–21� coverage
and scaled well on a large dataset of nearly 10 000 samples
with a prediction accuracy of over 98%. Furthermore, we
showed with negative control samples from S. mitis and S.
pseudopneumoniae that SeroBA had a specificity of 100%
whereas PneumoCaT achieved 92%.
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