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Abstract

With the progression of modern information techniques, such as next generation sequencing (NGS), Internet of
Everything (IoE) based smart sensors, and artificial intelligence algorithms, data-intensive research and applica-
tions are emerging as the fourth paradigm for scientific discovery. However, we face many challenges to practical
application of this paradigm. In this article, 10 challenges to data-intensive discovery and applications in pre-
cision medicine and healthcare are summarized and the future perspectives on next generation medicine are
discussed.
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Introduction

The scientific discovery paradigm (SDP) provides a
mature and routine framework for asking scientific ques-
tions, developing methods or strategies to answer such
questions, and also includes ways to explain the exper-
imental results or the observed data. In the last two
decades, the SDP in life sciences has shifted fast, espe-
cially with progression of the human genome project. A
paradigm shift, sometimes also called a ’scientific revo-
lution’, occurs when the existing paradigm cannot effi-
ciently solve the challenges faced and a new paradigm
is needed to deal with the challenges. For example,
in bioinformatics, a small paradigm shift we refer to
here as the bioinformatics scientific research model
(SRM), emerged with accumulation of DNA sequenc-
ing data. Since then, a batch of new genes has been

discovered by pattern identification with models trained
using known gene structure patterns. Well-known bioin-
formatics tools and databases including CLUSTAL W,1

MEGA,2 PDB3 etc., were developed within the bioinfor-
matics SRM. Traditional experimental paradigms can
only discover new genes one by one through time-
consuming and labor-intensive methods. Complex bio-
logical systems, however, often function by interac-
tions between many genes, proteins, or other com-
ponents via pathways, modules, or networks. Bioin-
formatics has contributed to acceleration in life sci-
ences by fast, efficient, high throughput, and computa-
tional methods, enabling investigation of biological and
medical problems at systemic levels. The microarray,
yeast two-hybrid assay, and evolutionary modeling pro-
moted the paradigm shifting to systems biology, which
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aimed to reconstruct the interaction or synergistic net-
work to explain emergence properties in a system. Sys-
tems biological tools such as gene ontology,4 KEGG5 and
Cytoscape,6 etc., were then developed and widely used.
But for clinical translation, genome functional discover-
ies cannot be applied directly to treatment of patients
because of heterogeneities among diseases and patients.
Cell-line or animal-model based biological findings need
to be validated with patient samples before clinical appli-
cations. Therefore, translational and precision medicine
SRMs have been proposed to integrate genotypic and
phenotypic information for personalized prediction and
treatment of diseases.7,8

Although paradigms in life sciences have shifted fre-
quently in the past 20 years, data accumulation is always
the driving force for scientific revolution. In the future,
data will remain one of the most essential parts for suc-
cessful scientific paradigm shifts; however, the quality,
quantity, and diversity of biomedical data will pose key
challenges for our future precision medicine and health-
care.

The fourth paradigm: data-intensive
scientific discovery

As shown in Fig. 1A, paradigm shifts in the life sci-
ences over the last two decades present a very salient
characteristic, i.e. more and more data are needed for
scientific discovery in life sciences. The bioinformatics
SRM emerged with progression of the human genome
project. As more DNA sequencing data were accumu-
lated, gene structures in the genome could be compared
and the DNA string patterns specific to protein coding
genes, non-coding RNAs, and the regulatory elements
therefore could be identified for prediction of new genes.
Since then, many databases have been established for
investigations of biological questions. Compared with
traditional biostatistics discipline, which can do noth-
ing with a single DNA or protein sequence, bioinfor-
matics tools provide researchers with enormous DNA
information resources for ortholog or paralog screen-
ing, phylogenetic tree construction, 3D structure model-
ing, functional specificity estimation, and so on.9–12 For
the systems biology SRM, the first step was reconstruc-
tion of the biological network by top-down or bottom-
up strategies, where multiple points or correlated data
are demanded to infer the interactions between nodes
and the structures of networks or systems.13–15 The
translational medicine and precision medicine SRMs fur-
ther need clinical and personalized data for deep phe-
notyping and personalized diagnosis and treatment of
patients.16–18

Figure 1B displays the four SDPs, with traditional
SDPs including experimental, theoretical, and com-
putational ones. Compared with the three traditional
paradigms, the fourth paradigm, i.e. data-intensive
SDP, has emerged in modern technologies, including
high throughput sequencing, cloud computing, smart

sensors, digital medicine, Internet of Everything, next
generation artificial intelligence, and so on.19,20 Espe-
cially for complex and heterogeneous systems such as
ecological systems, cancer, and many chronic diseases,
it is difficult to describe and understand such complexity
using simple rules or theories. The fourth paradigm will
be an important complementary solution to the other
three paradigms. Complex and chronic diseases are often
caused by interactions of many factors such as genetic
events, lifestyles, and environmental factors. The fourth
paradigm provides a way to deal with personalized diag-
nosis and treatment with huge amounts of patient infor-
mation by calculating similarities between the query
patients and profiles in the targeted databases. However,
the prerequisite for the success of this paradigm is that
the data accumulated are ’big’ enough to cover all possi-
bilities. Furthermore, the science based on this big data
needs new algorithms for discoveries of new rules, prin-
ciples, key players, and mechanisms for the understand-
ing and controlling of the life systems.

Biomedical data diversity and
standardization

As the fourth paradigm for scientific research is charac-
terized by the intensity of data, high quality data accu-
mulation will be an essential step for data-driven person-
alized and precision medicine. Biomedical data such as
data at molecular, cellular, tissue, individual, and pop-
ulation levels, are usually diverse and heterogeneous.
These could be basic scientific data from laboratories,
or real world clinical or health status data, and the data
could be dynamic, evolutionary, and spatiotemporal. The
following three challenges will be faced in application of
the fourth paradigm to precision medicine practice.

Challenge 1: Data standardization for
communication

To collect big biomedical data, the data formats, ter-
minologies, and relationships should be standardized.21

Clinical scientists need to share their data and informa-
tion, especially for rare disease description, to improve
the diversity and representativeness of the collected
data. The biomedical data are huge considering the dis-
ease types, personalized genetics, dynamic lifestyles,
environmental factors, as well as the synonyms and
complex relationships.

Challenge 2: Data sharing and privacy
preservation

It has been reported that several genes could be com-
bined with known personal information to re-identify
personal features, such as 3D facial reconstruction, infer-
ence of voices, and family names. To protect personal pri-
vacy, the clinical information need to be desensitized, or
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Data intensive SDP
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Figure 1. (A) Scientific paradigm shifts in last two decades. (B) Four scientific discovery paradigms.

perhaps even ’noise’ introduced to the data via differen-
tial privacy to secure multi-party computation and shar-
ing.

Challenge 3: Data measurability and
spatiotemporal signals

Spatiotemporal molecular medicine is becoming the new
discipline for investigation of dynamic and evolution-
ary human health status. Although modern smart sen-
sor technologies can be applied to collection of physio-
logical information and molecular level information, it is

not easy to collect dynamic signals and data. Investiga-
tions such as gene expression and microbiota ecological
dynamics are still very challenging.

The explainable model and actionable
key data

To understand the complexity and identify specific
patterns hidden in the big data, personalized models
are necessary. Data-intensive algorithms, such as deep
learning models, need to be explainable and actionable
for precision medicine and healthcare.22
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Challenge 4: Phenotype plasticity and model
robustness

The health or disease status is determined by complex
interactions of many genetic, lifestyle, and environmen-
tal factors.23 One disease phenotype could be associated
with many genotypic factors, and the methods or solu-
tions to transfer the disease to health status are not
unique. The model constructions are not the same as tra-
ditional one-to-one mode but should be one-to-N mode,
considering the plasticity of phenotype.

Challenge 5: Explainable artificial intelligence
(XAI) and precision medicine practice

Most traditional machine learning (ML) algorithms are
models for classification, somewhat ’black boxes’ in that
their mechanisms and explanations remain unknown. It
is difficult to apply these ML models to design of person-
alized treatment. XAI will be helpful to ’open the black
box’, facilitating trust of patients or clinical doctors in use
of AI predictions in precision medicine practice.

Challenge 6: Clinical observation and real world
data-driven scientific discovery

For precision medicine and healthcare, clinical obser-
vation/questions and real world data are the two main
resources in hospitals, which cannot be obtained from
laboratories. There remains a challenge to propose good
clinical questions for scientific investigation as these
require insights and experiences from both clinical and
basic science.

Challenge 7: Experimental or computational
verifiability

Discoveries of biomarkers, drug targets, and other key
players based on the fourth paradigm need to be verified
and validated with experiments (including clinical prac-
tice) or computational-aided simulations.24 These could
require further improvement and re-validation before
they can be safely and widely applied to medicine and
healthcare practice.

Challenge 8: From data and knowledge to general
principles

Although an XAI-based model can explain an observa-
tion, further exploration in data-intensive research will
be required to discover the general principles underlying
the observed patterns. The principles can then be used
to guide design of the strategies for better treatment of
diseases.25 The fourth SDP is a complement to the other
three paradigms and these can be integrated with each
other to accelerate discovery in medicine.

Translational application and
cross-disciplinary education

Even if all scientific discoveries are aimed at applications,
we are still short of qualified persons for the fourth SDP
practice. The last two challenges concern application and
education.

Challenge 9: Smart application of data-intensive
SDP to healthcare

As we have limited medical resources to combat
widespread chronic diseases, data-intensive scientific
discovery could be transferred to smart patient self-
administration, especially chronic disease monitoring
and controlling. Knowledge-guided chatbots could offer
a way to improve the quality of diagnosis, outpatient con-
sultation, and referral as well as treatment.26

Challenge 10: Education and training for
data-intensive SDP

To overcome the nine challenges in the life sciences as
stated above, we need well-educated and trained clini-
cians and scientists. The next generation of medical doc-
tors, researchers, and even patients, should be equipped
with knowledge on data standardization, data security,
knowledgebases, algorithms and models, etc., for cross-
disciplinary studies using data-intensive SDP.

Conclusions and future perspectives

The first three SDPs have been applied in most scien-
tific fields, including physics, chemistry, engineering, etc.
The fourth SDP is emerging and will evolve with big data
science and technology. Data diversity and heterogene-
ity remain two main challenges in the life sciences. Dis-
ease profiles and data spaces for biomedical data are
very big and still expanding with evolution of interac-
tions between genetics, lifestyles, and environments.

Two well-known efforts, IBM Watson and Arivale’s
wellness project,27,28 have reported failures in health-
care, the main reason being that the data collected
for their artificial intelligent modeling or analytics are
not representative when faced with complex and per-
sonalized application. The healthcare industries need
more well-labeled data, knowledge-guided models,29

and experienced human resources. With integration
of the four paradigms, the challenges for the new
paradigm applications, on the other hand, are also the
opportunities for efforts to develop ontologies for stan-
dardization of data, to build knowledge databases for
explainable artificial intelligence modeling, and to dig
into the genotyping-phenotyping relationship for preci-
sion applications for precision medicine and healthcare
practice.
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