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Abstract

Purpose  Congenital clubfoot is a serious birth defect that af-
fects nearly 0.1% of all births. Though there is strong evidence 
for a genetic basis of isolated clubfoot, aside from a handful 
of associations, much of the heritability remains unexplained.

Methods  By systematically examining the genes involved in 
syndromic clubfoot, we may find new candidate genes and 
pathways to investigate in isolated clubfoot.

Results  In addition to the expected enrichment of extracel-
lular matrix and transforming growth factor beta (TGF-β) 
signalling genes, we find many genes involved in syndromic 
clubfoot encode peroxisomal matrix proteins, as well as en-
zymes necessary for sulfation of proteoglycans, an important 
part of connective tissue. Further, the association of Filamin 
B with isolated clubfoot as well as syndromic clubfoot is an 
encouraging finding. 

Conclusion  We should examine these categories for enrich-
ment in isolated clubfoot patients to increase our under-
standing of the underlying biology and pathophysiology of 
this deformity. Understanding the spectrum of syndromes 
that have clubfoot as a feature enables a better understand-
ing of the underlying pathophysiology of the disorder and 
directs future genetic screening efforts toward certain genes 
and genetic pathways. 

Level of evidence  V
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Introduction
Congenital clubfoot, also called talipes equinovarus, is a 
common and serious birth defect, affecting an estimated 
one of every 1000 live births.1 Clubfoot is characterized by 
structural defects of several tissues of the foot and lower 
leg, which leads to abnormal positioning of foot and ankle 
joints.2 If left untreated, it can become a severe disabil-
ity and deformity.3 Approximately 80% of clubfoot cases 
are isolated birth defects, having an idiopathic aetiology.4 
The remaining 20% of cases are due to associated malfor-
mations, chromosomal abnormalities and known genetic 
syndromes, such as distal arthrogryposis (DA) and myl-
eomeningocele.5

However, there is strong evidence for a genetic basis for 
isolated clubfoot. Approximately 25% of all isolated cases 
report a family history of clubfoot.6 Data from twin studies 
shows a higher concordance in monozygotic (33%) than 
dizygotic (3%) twins,4 and more recent data estimates 
heritability of isolated clubfoot at around 30%.7 Mono-
chorionic triplets all affected with bilateral isolated club-
foot have been observed,8 further supporting a genetic 
aetiology for isolated clubfoot. In addition, prevalence of 
clubfoot varies across ethnic populations, from 0.39 cases 
per 1000 births in Chinese populations to seven cases 
per 1000 births in Hawaiians and Maoris.9-11 Further, the 
ratio of isolated clubfoot among males and females is 2:1, 
and this ratio is consistent across ethnic groups.11,12 Taken 
together, this data points to an obvious role of genetics 
in isolated clubfoot. As the clinical presentation between 
the isolated and syndromic forms can be similar, it is pos-
sible that by examining the genes involved in syndromic 
clubfoot, i.e. those disorders that often have clubfoot as 
one symptom of many, we may find further clues to the 
underlying mechanisms of isolated clubfoot. 

Genetics of isolated clubfoot 

PITX1-TBX4 pathway

Although few causative genes are known, progress has 
been made on the genetics of isolated clubfoot. The 
strongest genetic evidence is the PITX1-TBX4 pathway, 
the proper function of which is required for normal hind-
limb development.13,14 Variation in this pathway has been 
linked to isolated clubfoot phenotypes through a seg-
regating dominant mutation in PITX1,15 inherited TBX4 
microduplications,12,16,17 Pitx1 mouse knockout studies18 
and copy-number variants.19
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Homeobox (HOX) genes

In addition to the PITX1-TBX4 pathway, HOX genes also 
contain some of the more convincing genetic associations 
with clubfoot phenotypes. HOX genes comprise four 
gene clusters (HOXA-D) and these clusters are known to 
coordinate and mediate limb development. In fact, these 
genes play critical roles in skeletal patterning throughout 
the axial and appendicular skeleton.20 Single nucleotide 
polymorphism (SNPs) in HOXD12 and HOXD13 were found 
to be associated with idiopathic clubfoot.21 A HOXD10 
missense mutation segregated with a related disorder, 
called congenital vertical talus, in a British family,22 and 
that same mutation was also described as segregating in 
a family of Italian descent with both clubfoot and Char-
cot-Marie-Tooth Disease.23 Four SNPs in the HOXA clus-
ter showed altered transmission in a case-control study, 
but gene-gene interactions were identified between HOXA 
and HOXD variants and previously associate SNPs in mito-
chondrial-mediated apoptotic genes.24 However, a func-
tional analysis of a SNP in HOXA9 created allele-specific 
nuclear protein interactions and caused higher promoter 
activity, suggesting that HOXA9 promoter variants alter 
expression, thus playing a functional role in the under-
lying mechanisms of isolated clubfoot.25 Most recently, 
HOXC microdeletions were shown to overlap a noncod-
ing region upstream of HOXC13. The authors found a mis-
sense SNP in HOXC11 to segregate in a family with isolated 
clubfoot, and a missense SNP in HOXC12 was enriched in 
clubfoot patients.26

Muscle contractile genes

There is conflicting evidence of the role of muscle contrac-
tile genes in isolated clubfoot. While they are good candi-
date genes due to their expression either embryonically 
or perinatally, which is the period during which isolated 
clubfoot develops, and are part of Type II muscle, which is 
known to be decreased in clubfoot patients,27 no groups 
have found any evidence of contractile gene association 
with isolated clubfoot.27,28 This suggests a different patho-
physiology than the syndromic form of clubfoot so often 
seen in DA syndromes, for which muscle contractile genes 
have proved of importance. However, a study performed 
two years later found an association with two SNPs in 
TNNC2 and isolated clubfoot, as well as SNPs in TPM1 and 
TPM2.29 Functional analyses of SNPs in TPM1 and TPM2 
have been shown to cause allele-specific higher promoter 
activity, suggesting a functional role for these gene pro-
moters in isolated clubfoot.25

Environmental in utero causes

Smoking during pregnancy has been associated with 
birth defects including clubfoot.2,30 N-acetylation genes 

NAT1 and NAT2 modulate the biotransformation of exog-
enous substances such as tobacco smoke, and one study 
found that there were significantly more slow NAT2 
acetylators among clubfoot cases.31 A SNP in CYP1A1, 
a nicotine metabolism gene, was also weakly associ-
ated with isolated clubfoot.30 Similarly, low folate levels 
during pregnancy can lead to congenital malformations. 
An interaction between genotype at a missense SNP 
in the methylenetetrahydrofolate reductase gene and 
maternal folic acid usage was found, leading to decreas-
ing relative risk for isolated clubfoot in an allele dosage 
type manner.32

Apoptotic genes

Apoptotic genes involved in the cell death cascade that 
aid in shaping the developing limb (CASP8, CASP10 and 
CFLAR) had been previously associated with microsatel-
lite markers spanning a deletion of chromosomal region 
2q31-33 linked with isolated clubfoot.33 However, after 
further genotyping of 40 SNPs in seven genes involved in 
apoptosis was performed no significant associations were 
found.34

Other genes

Filamin B (FLNB) is an actin-binding protein that crosslinks 
actin cytoskeleton filaments into a dynamic structure.35 

Three novel missense mutations in FLNB have been asso-
ciated with isolated clubfoot.36 In the only genome-wide 
association study for clubfoot to date, a SNP on chromo-
some 12q24.31 between NCOR2 and ZNF664 was asso-
ciated with clubfoot in both the initial and replication 
datasets. Suggestive SNPs were identified near FOXN3, 
SORCS1 and MMP7, suggesting a role for common vari-
ants in several non-candidate genes.37

Genetics of syndromic clubfoot

Distal Arthrogryposis

One of the most common syndromic causes of clubfoot is 
arthrogryposis. It occurs in one of 3000 to one in 5000 live 
births.38 However, given how many specific subtypes there 
are, each is relatively rare. This term is used to describe 
multiple congenital contractures. Arthrogryposis is not a 
diagnosis in itself, but rather a symptom, and implies con-
tractures in multiple regions of the body. It is present in 
over 400 specific conditions.39 In utero, arthrogryposis is 
often associated with decreased foetal movement, which 
results in connective tissue abnormalities and muscle atro-
phy, among other features. DA is a group of syndromes 
with predominantly distal contractures of the hand and 
foot. DA in many cases has an underlying genetic cause 
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(Table 140). However, unlike isolated clubfoot, DA has 
most consistently been shown to be caused by variants 
in sarcomeric muscle proteins responsible for muscle con-
traction, many of which are only expressed early in devel-
opment.41-44

While distal arthrogryposis type 3 (DA3) and distal 
arthrogryposis type 5 (DA5) as well as the phenotypically 
similar Marden-Walker Syndrome are caused by autoso-
mal dominant mutations in PIEZO2,45,46 a separate phe-
notype in individuals lacking PIEZO2 causes muscular 
atrophy with spinal deformities and DA as a symptom.47 
This gene encodes an ion channel critical for propriocep-
tion. FBN2 is a component of connective tissue and elastic 
fibre assembly, mutations in which cause distal arthrogry-
posis type 9 (DA9).

Many syndromes besides the distal arthrogryposes 
also have clubfoot as a symptom and are known to 

have a genetic basis (Table 2). Some, though not all of 
these genes, fall into known categories that can easily be 
understood in the context of the pathogenesis of club-
foot.

Transforming growth factor beta (TGF-β) signalling

TGF-β signalling regulates cellular processes including 
proliferation, apoptosis, differentiation and extracellu-
lar matrix formation and remodelling. It is also involved 
in skeletal, vascular and hematopoietic homeostasis.48,49 

Genes in this pathway including TGFBR1, TGFBR2, SMAD3, 
TGFB2, TGFB3 and SKI have been implicated in hereditary 
connective tissue disorders including Marfan Syndrome, 
Loeys-Dietz Syndrome and Schprintzen-Goldberg Syn-
drome.48,50,51 GDF5, a bone morphogenetic protein and 
part of the TFG-β family that was previously referred to as 
cartilage derived morphogenetic protein 1 (CDMP-1), is a 

Table 1  Distal arthrogryposes (DA) and associated genes adapted from Hall et al (2017)(40)

Type Condition/syndrome name Known genes

DA1 Classic DA TNNI2, TPM2, MYBPC1, MYH3
DA2A Freeman-Sheldon Syndrome MYH3
DA2B Sheldon-Hall Syndrome TNNI2, TPM2, MYBPC1, MYH3
DA3 Gordon Syndrome PIEZO2
DA5 DA with ophthalmoplegia, psosis and retinal involvement PIEZO2, ECEL1
DA7 Trismus-pseudocamptodactyly syndrome MYH8
DA8 Autosomal dominant multiple pterygium syndrome MYH3
DA9 Congenital contractural arachnodactyly/Beals syndrome FBN2

Table 2  Syndromic clubfoot causes and associated genes

Condition/syndrome name Known genes

Autosomal Dominant Larsen Syndrome, Recessive spondylocarpotarsal syndrome FLNB (35, 69, 70)
Barth Syndrome TAZ (71)
Bruck Syndrome PLOD2, FKBP10 (72)
Carey-Fineman-Ziter Syndrome MYMK (73)
Catel-Manzke Syndrome TGDS (67)
Charcot-Marie-Tooth Disease Type 4D NDRG1 (74)
Diastrophic dysplasia SLC26A2 (56)
Ehlers-Danlos Syndrome, Musculocontractural type 1 CHST14 (64, 75)
Ehlers-Danlos Syndrome, Musculocontractural type 2 DSE (63)
Ehlers-Danlos Syndrome, vascular type COL3A1 (76)
Epileptic Encephalopathy AARS (58)
Joubert Syndrome ATXN10, TCTN2 (77)
Loeys-Dietz Syndrome TGFBR1, TGFBR2, SMAD3, TGFB2, TGFB3 (48, 51)
Marfan Syndrome FBN1, TGFBR, TGFBR1, TGFBR2, SMAD3, TGFB2, SKI (48)
Mobius Syndrome PLXND1, REV3L (78, 79)
Multiple Epiphyseal Dysplasia COL9A1, COL9A2, COL9A3, COMP, MATN3, SLC26A2 (54, 55)
Multiple Synostosis Syndrome GDF5 (52)
Peroxisome biogenesis disorder 7A PEX26 (60)
Recessive axonal Charcot-Marie-Tooth Disease LMNA, GDAP1 (80)
Recessive Larsen Syndrome, Humero-Spinal Dysostosis, Spondyloepiphyseal dysplasia CHST3 (61, 65)
Richieri-Costa – Pereira Syndrome EIF4A3 (81)
Santos Syndrome WNT7A (82)
Saul-Wilson Syndrome COG4 (66)
Schpritzen-Goldberg Syndrome SKI (50)
TARP Syndrome RBM20 (83)
Van Maldergem Syndrome 2 DCHS1, FAT4 (84)
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growth factor that is expressed during several critical peri-
ods of skeletal development. Mutations in this gene are 
associated with multiple syndromes including synostosis 
syndrome and brachydactyly type C.52

Extracellular matrix (ECM)

The ECM provides structural support for organs, tissues 
and cell membranes. They also play a role in cell differen-
tiation, proliferation survival and migration. Extracellular 
matrix binding helps to regulate TGF-β signalling.53 Muta-
tions in genes encoding ECM proteins COL9A1, COL9A2, 
COL9A3, COMP and MATN3 as well as the transmembrane 
glycoprotein involved in matrix organization, SLC26A2, 
have been associated with multiple epiphyseal dyspla-
sia.54,55 SLC26A2 mutations have also been associated with 
distrophic dysplasia, a non-lethal form of de la Chapelle 
dysplasia.56 Mutations in the ECM protein encoded by 
FBN1 are known to cause Marfan Syndrome.48,57 COL3A1 
mutations cause a vascular type of Ehlers-Danlos syn-
drome.58

Peroxisomal defects

Peroxisomes are organelles that play an essential role 
in several cellular and metabolic pathways. GDAP1 is 
involved in the fission of peroxisomes, and patients with 
GDAP1 mutations display a Charcot-Marie-Tooth pheno-
type where mitochondria and peroxisomes are elongated 
in cells. Mutations in peroxisomal biogenesis factors (PEX) 
genes including PEX26 can disrupt import of peroxisomal 
matrix proteins.59 Mutations in PEX26 are a known cause 
of peroxisome biogenesis disorder.60 Both of these disease 
phenotype sequelae include clubfoot.

Proteoglycans

Proteoglycans are a component of connective tissues 
that consist of glycosaminoglycan (GAG) polymer chains 
attached to core proteins. GAG sugar composition (der-
matan, chondroitin, heparin) helps determine the biolog-
ical roles and tissue distributions of the macromolecules 
produced.61 Dermantan sulfate proteoglycans are com-
ponents of diverse connective tissues, defects in which 
can result in abnormal collagen fibril assembly. It is also 
known to interact with heparin cofactor II and can mod-
ulate thrombus formation.62 CHST14 and DSE encode two 
enzymes necessary for dermatan sulfate biosynthesis. 
Mutations in these genes cause the musculocontractural 
types of Ehlers-Danlos syndrome, both of which present 
with clubfoot.63,64 CHST3 encodes an enzyme that cata-
lyzes sulfation of chondroitin containing proteoglycan, 
which is a necessary part of connective tissues.65 Mutations 
in CHST3 have been associated with skeletal dysplasias 
that can present with clubfoot, including humero-spinal 

dysostosis and spondyloepiphyseal dysplasia, as well as 
recessive Larsen syndrome.61,65 Initiation and polymeriza-
tion of GAG occurs in the Golgi apparatus. A mutation in 
COG4 has been found to disrupt this process, resulting in 
a rare cause of dwarfism that presents with multiple limb 
malformations including clubfoot, known as Saul-Wilson 
syndrome.66 Lastly, TGDS, a member of the short-chain 
reductase family, is also suspected to be involved in pro-
teoglycan synthesis or sulfation. Mutations in this gene 
cause Catel-Manzke syndrome, which can present with 
clubfoot.67,68

Discussion
Here we have shown that a variety of pathways and cat-
egories of genes are involved in both isolated and syn-
dromic clubfoot. To our knowledge, this is the first time 
that genes involved in syndromic clubfoot have been cate-
gorized in an attempt to better understand the biology of 
this deformity. While some of the categories were known 
or expected, such as TGF-β signalling and extracellular 
matrix components, others including peroxisomal defects 
and proteoglycans, were novel.

We posit that examination of rare variants in syndromic 
clubfoot genes could yield associations with isolated club-
foot. It is promising that FLNB has already been associated 
with both isolated clubfoot and with autosomal dominant 
Larsen syndrome. We believe that by elucidating new 
genes and pathways that underlie clubfoot, we will both 
be able to increase the explained amount of heritability 
of isolated clubfoot, as well as increase our overall under-
standing of the disease process.
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