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Abstract

The rate of raw sequence production through Next-Generation Sequencing (NGS) has been 

growing exponentially due to improved technology and reduced costs. This has enabled 

researchers to answer many biological questions through “multi-omics” data analyses. Even 

though such data promises new insights into how biological systems function and understanding 

disease mechanisms, computational analyses performed on such large datasets comes with its 

challenges and potential pitfalls. The aim of this study was to develop a robust portable and 

reproducible bioinformatic pipeline for the automation of RNA sequencing (RNA-seq) data 

analyses. Using Nextflow as a workflow management system and Singularity for application 

containerisation, the nf-rnaSeqCount pipeline was developed for mapping raw RNA-seq reads to a 

reference genome and quantifying abundance of identified genomic features for differential gene 

expression analyses. The pipeline provides a quick and efficient way to obtain a matrix of read 

counts that can be used with tools such as DESeq2 and edgeR for differential expression analysis. 

Robust and flexible bioinformatic and computational pipelines for RNA-seq data analysis, from 

QC to sequence alignment and comparative analyses, will reduce analysis time, and increase 

accuracy and reproducibility of findings to promote transcriptome research.
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1 INTRODUCTION

With the increase in the rate at which raw sequencing data is produced due to improved 

technologies and reduced cost of Next-Generation Sequencing (NGS), researchers in the 

field of bioinformatics and computational biology are able to perform “multi-omics” data 

analyses to answer many biological questions (Fan et al., 2014; Kluge & Friedel, 2018; 

Schulz et al., 2016). However, analysis of such large datasets comes with a number of 

challenges, especially when it comes to sharing data analysis methods with the scientific 

community and being able to reproduce consistent results using the same data across 

different computational platforms (Boettiger, 2015; Di Tommaso et al., 2017; Kurtzer et 

al., 2017). When performing computational analyses of NGS data, often different tools are 

required at each processing step of the analysis. For example, Haas et al. (2013) describe 

a procedure for assembling RNA sequencing (RNA-seq) data, quantifying expression levels 

for transcripts and identifying differentially expressed transcripts between samples. This 

protocol requires a number of applications in order to be executed successfully, including 

Trinity, bowtie, samtools, R and NCBI-Blast+ (Haas et al., 2013).

To a bioinformaticist, computational biologist or someone who is familiar with the Unix 

environment, installing these applications and running this protocol described by Haas et 

al. (2013) would be a straight-forward procedure. However, to a novice, this would be 

a difficult task. Not being an administrator also significantly complicates installation of 

applications. Another challenge in performing such a procedure would be having to re-do 

the analysis, either multiple times whilst changing certain parameters, or performing the 

analysis using more than one dataset. In this case, simply executing the protocol commands 

on a command line interface (CLI) would not suffice. Custom scripts would have to 

be created in order to compile and order the multiple commands needed to execute the 

protocol procedure repeatedly or on multiple datasets (Piccolo & Frampton, 2016). Another 

option would be to implement “workflow management systems” to construct a pipeline (or 

“workflow”) of the multiple analyses steps, handle input/output files between applications 

and also automate the analysis (Di Tommaso et al., 2017; Piccolo & Frampton, 2016; Schulz 

et al., 2016).

Another challenge that the scientific community faces in performing multi-step analysis 

that requires different pieces of software at each analysis step is software dependencies 

and libraries (Kurtzer et al., 2017). Many bioinformatics tools are built from sources, 

and thus there will be a complexity of dependencies and libraries between the softwares 

needed to perform the analyses (Schulz et al., 2016). In addition to software and library 

dependency, there is also a computational environment or an operating system (OS) 

dependency. Installation of different application softwares on different OSs requires different 

configuration steps, and some applications are only designed to be executed on a specific 

environment of a specific OS (Kurtzer et al., 2017; Piccolo & Frampton, 2016). A solution 
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to software and OS dependency is to use virtual machines or software package managers 

(containers) (Boettiger, 2015; Kurtzer et al., 2017; Piccolo & Frampton, 2016; Schulz et al., 

2016).

When big datasets are being analysed, personal desktop machines and laptops are not 

an option. In most cases, bioinformatic analyses will require a significant amount of 

computing power, memory and will sometimes need to be processed simultaneously 

(in parallel) in order to reduce the amount of time needed to perform each task (Di 

Tommaso et al., 2017; Kurtzer et al., 2017). These analyses have to be performed on 

high-performance computing (HPC) clusters available in most research institutes or cloud-

computing services which offer significantly high computing resources that can meet the 

requirements of intensive bioinformatic analyses (Kurtzer et al., 2017). This “scaling up” 

of bioinformatic analyses to cloud environments and HPC clusters is further enhanced by 

a combination of workflow management system and containerisation of software; making 

bioinformatic analyses pipelines “portable” across different computing platforms (Boettiger, 

2015; Kurtzer et al., 2017; Piccolo & Frampton, 2016; Schulz et al., 2016). Figure 1 

summarises the best practices and tools that researchers could apply to their research 

approach and reproducible pipeline development. This combination also overcomes the 

limitation of software installation on HPC clusters and cloud-services as sometimes the 

users do not have privileges to install softwares and their dependencies (Kurtzer et al., 2017). 

Furthermore, coupling the combination workflow management systems, software containers 

and HPC with proper documentation and storing code using version control systems (VCS) 

creates portable pipelines that can be shared amongst the scientific community and ensures 

reproducibility across different platforms (Di Tommaso et al., 2017; Kurtzer et al., 2017; 

Perkel, 2016; Piccolo & Frampton, 2016).

The availability of RNA-seq data from black South African patients affected with systemic 

sclerosis (SSc) and healthy individuals from the study by Frost et al. (2019) presented 

an opportunity to develop a robust computational pipeline in an effort to bridge the gap 

between repetitive (and most often complicated) bioinformatic analyses and the large 

datasets produced by NGS technologies. Human genome sequencing is still a relatively 

costly venture, mainly due to the genome size. However, since only a fraction of a genome 

is transcribed, the set of the transcribed RNA molecules (transcriptome) reflects the current 

state of the cell (or group of cells) in a given tissue and at a specific time. The analysis of 

the transcribed RNA molecules can often provide insights into the etiology and underlying 

pathological mechanism of a disease (Finotello & Di Camillo, 2015).

Although a useful approach, studying gene expression through the transcriptome alone has 

the limitation that it does not necessarily correlate directly with amount of protein present 

in a cell, and should therefore be interpreted with caution. Nonetheless, RNA-seq provides 

a quick and cost effective way of obtaining large amounts of transcriptome data, providing 

insights into the levels of gene expression. Such data allow us to identify transcribed genes, 

discover new disease-associated genes, measure transcript and gene expression abundance, 

study allelic information and identify splice variants for genes (Grabherr et al., 2011; 

Haas et al., 2013; Li et al., 2014; Trapnell et al., 2013; Trapnell et al., 2012). A typical 

RNA-seq analysis involves three major steps: (1) identifying a set of genes and/or transcripts 
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from the hundreds of millions of short (~ 36-125 bases) RNA-seq reads, produced from 

the sequencing experiment, through mapping to a reference genome/transcriptome; (2) 

quantifying the abundance of the genes/transcript; and (3) performing differential expression 

analysis (Conesa et al., 2016). This paper presents nf-rnaSeqCount, a portable, reproducible 

and scalable Nextflow pipeline that addresses the first two steps of RNA-seq data analyses, 

i.e., (1) identification of genes from RNA-seq data and (2) quantifying their abundance.

2 PIPELINE IMPLEMENTATION AND WORKFLOW

The purpose of the pipeline is to make the task of producing raw read counts for performing 

differential expression analysis easier, especially for other researchers with little or no 

knowledge of bioinformatics. The pipeline also needs to be portable and reproducible in 

order to allow scaling to different computational platforms when large or small datasets are 

being analysed.

2.1 nf-rnaSeqCount Implementation

Nextflow (Di Tommaso et al., 2017) and Singularity (Kurtzer et al., 2017) were used to 

implement the pipeline into a portable and reproducible pipeline. Nextflow is a Groovy-

based domain-specific language (DSL) specifically designed for bioinformaticists with 

strong programming knowledge to solve many of the challenges of the inability to reproduce 

data analysis. Some of these challenges are due to computational platform variations, 

software and database management, complexity of pipelines, intermediate file handling and 

lack of good practice (Di Tommaso et al., 2017). The advantages of Nextflow as a workflow 

management system are that it can handle input and output as channels between processes 

and reduce the need of having to create intermediate directories to store intermediate results. 

Variables can also be declared dynamically with no need to explicitly name files, and only 

the output that is required can be saved to files in each analysis step.

Nextflow also has a number of features that promote pipeline reproducibility and portability. 

It supports Docker1 and Singularity2, the two most used containerisation softwares in the 

bioinformatics community; it integrates/supports the popular VCS GitHub3 for sharing 

of code, and version management; and it allows for scaling of computational pipelines 

on HPC and cloud systems by providing out of the box scheduler support for Sun Grid 

Engine (SGE), PBS/Torque, Platform Load Sharing Facility (LSF), Simple Linux Utility 

for Resource Management (SLURM), HTCondor and Amazon Web Services (AWS) (Di 

Tommaso et al., 2017).

To facilitate reproducibility and portability of the pipeline, Docker containers were created 

for each of the processes applications in the pipeline and hosted on DockerHub4 to use 

with Singularity when executing the pipeline. Singularity is a lightweight platform for 

building and running containers that is gaining popularity in the bioinformatics community, 

especially for performing analysis on a large scale. It uses an image format that is supported 

1 http://docker.io/ 
2 https://www.sylabs.io/ 
3 http://github.com/ 
4 https://hub.docker.com/ 
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across different versions of the C library and kernels, and gives users the ability to 

encapsulate their pipelines, all required applications, dependencies and base OS environment 

into a single file that can be locked, copied, shared and archived (Kurtzer et al., 2017). 

Docker containers hosted on DockerHub can be downloaded and converted into Singularity 

image format (SIF). Such image files have standard Linux/UNIX file permission and cannot 

be modified (not even by the host OS), thus can be used with confidence that nothing within 

the image has changed. Each SIF contains the necessary software required by each process 

to run. This removes the need to install all the software tools used for these analyses.

2.2 nf-rnaSeqCount Workflow

The nf-rnaSeqCount pipeline depends on Nextflow and Singularity to run. These two 

softwares must be installed in order for the pipeline to be executed. The input for the 

nf-rnaSeqCount pipeline are FASTQ files (both paired- and single-ended) for the RNA-seq 

data to be analysed, a reference genome (in FASTA format) and an annotation file (in 

GTF format) for the reference genome. These can be passed as command-line arguments 

during pipeline execution or specified in a configuration file (e.g. main.conf in Figure 2) 

that can also be passed to the pipeline during execution. Other parameters of the pipeline 

can be specified in a similar way. Unlike most pipelines that are executed in one go, the 

nf-rnaSeqCount is a modular pipeline that can be executed in multiple stages (main.nf in 

Figure 2), allowing the users to interact with the results at each step of the pipeline.

The different modules of the pipeline can be grouped into 4 steps, and each module 

(specified using the –mode argument) calls the required process in the workflow. 

The 4 workflow steps and their modules are as follows: (1) Data Preparation: 
prep.Containers and prep.Indexes; (2) Quality Control: run.ReadQC and 

run.ReadTrimming; (3) Alignment and Quantification: run.ReadAlignment and 

run.ReadCounting; and (4) MultiQC: run.MultiQC. The nf-rnaSeqCount pipeline can 

be obtained using the following command:

nextflow pull phelelani/nf-rnaSeqCount

The help menu for the pipeline can be accessed with the following command:

nextflow run nf-rnaSeqCount --help

2.2.1 Data Preparation—Data preparation is mandatory at the first step of the 

workflow. The first process in this step, run_DownloadContainers, downloads all the 

required workflow containers with the required software for executing the pipeline from 

DockerHub and converts them to Singularity format. This step is crucial as all processes in 

the pipeline depend on the applications that are packaged in these containers:

## Download Singularity containers

nextflow run nf-rnaSeqCount --mode getContainers
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Once the Singularity containers have been downloaded, the run_GenerateSTARIndex and 

run_GenerateBowtie2Index processes will index the reference genome (for aligning 

the RNA-seq reads and quantifying the abundance of the identified genomic features) 

using STAR (Dobin et al., 2013) and Bowtie (Langmead et al., 2009), respectively. Before 

indexing, the location for the reference genome (FASTA), annotation file (GTF), input 

FASTQ files and output directory can be provided in a configuration file (as in Figure 

2), and passed to the Nextflow command using the -c option. However, the files can 

also be passed as command-line arguments when executing the pipeline. The remainder 

of the pipeline assumes that all the required files are provided in a configuration file 

called main.conf. To index the reference genome using STAR and Bowtie, the following 

commands can be used:

## Generate STAR and Bowtie2 indexes

nextflow run nf-rnaSeqCount -c main.conf --mode prep.Indexes

2.2.2 Quality Control—The nf-rnaSeqCount pipeline incorporates FastQC (Andrews, 

2010) and Trimmomatic (Bolger et al., 2014) for pre-processing of reads. This “quality 

control” (QC) step of the nf-rnaSeqCount workflow is optional; however, it is very useful 

to first assess the initial quality of the reads so that poor quality reads and contaminating 

“adapter” sequences can be removed. In this step, the run_QualityChecks process uses 

FastQC to assess the quality of the RNA-seq reads. The run_ReadTrimming process, 

which uses Trimmomatic, is then used to remove technical sequences and poor quality bases 

from the data. To assess the quality of the RNA-seq reads, the following command can be 

executed:

## Perform QC on reads

nextflow run nf-rnaSeqCount -c main.conf --mode run.ReadQC

Once the quality of the reads has been assessed, Trimmomatic can be used to remove low 

quality bases and adapter sequences. The –trim option can be used to pass Trimmomatic 

arguments to the pipeline:

## Trim low quality reads

nextflow run nf-rnaSeqCount -c main.conf --mode run.ReadTrimming --

trim ’TRAILING:28 MINLEN:40’

2.2.3 Alignment and Quantification—The alignment and quantification is the main 

step of the nf-rnaSeqCount workflow. In this step, the RNA-seq reads are aligned to the 

reference genome (indexed in the “Data Preparation” step) using STAR (Dobin et al., 

2013) in the run_ReadAlignment process. The resulting BAM files are then used to 

quantify the abundance of the identified genes using both featureCounts (Liao et al., 2014) 

(run_FeatureCounts process) and htseq-count (Anders et al., 2015) (run_HTSeqCount 

process). To align the reads to the reference genome and quantify the abundance of the 

genomic features identified, the following commands can be used:
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## Align reads to reference genome

nextflow run nf-rnaSeqCount -c main.conf --mode run.ReadAlignment

## Quantify the abundance of identified features

nextflow run nf-rnaSeqCount -c main.conf --mode run.ReadCounting

2.2.4 MultiQC—The MultiQC step is optional. In this step, the run_MultiQC process 

uses MultiQC (Ewels et al., 2016) to collect all the statistics from all the programs that were 

executed in the workflow, and give a summary of all statistics in an HTML file. To obtain 

the summary statistics of the workflow, the following command can be used:

## Obtain summary statistics from all tools

nextflow run nf-rnaSeqCount -c main.conf --mode MultiQC

2.3 nf-rnaSeqCount Pipeline Output

The output directory for the nf-rnaSeqCount pipeline contains a number of folders:

• n number of folders corresponding to each of the samples that were processed by 

the pipeline. These folders contain general statistics on mapping using STAR.

• featureCounts folder containing read counts matrix 

(gene_counts_final.txt) for htseq-count. This file can be used for 

differential expression analysis.

• htseqCounts folder containing read counts matrix (gene_counts_final.txt) 

for featureCounts. This file can be used for differential expression analysis.

• report_QC folder containing MultiQC QC reports in HTML format. This file 

can be used to assess the quality of read mapping and gene quantification.

• report_workflow folder containing pipeline execution reports. These files can 

be used to trace the execution of the pipeline and check other metadata in order 

to assign resources correctly to the processes.

2.4 Testing

The RNA-seq data of black South African patients with SSc were used to test and 

validate the usefulness of the nf-rnaSeqCount pipeline. This transcriptome data was from 

a study by Frost et al. (2019), conducted with ethics approval of the Human Research 

Ethics Committee (HREC [Medical]) of the University of the Witwatersrand (certificate 

number M120512). The nf-rnaSeqCount pipeline was initially developed and tested on the 

University of the Witwatersrand (Wits) Computing cluster using SLURM and PBS job 

schedulers. The pipeline also has been successfully tested on the University of Cape Town 

(UCT) eResearch HPC5 and on Amazon’s AWS6 using RNA-seq data for this study. On 

the UCT’s eResearch HPC, which has SLURM as the job scheduler, the same computing 

requirements as with the Wits Computing cluster were used.

5 http://hpc.uct.ac.za/ 
6 https://aws.amazon.com/ 
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For AWS execution of the pipeline, the Nextflow supported Amazon Machine Image (AMI), 

ami-4b7daa32, was used to deploy an Amazon Elastic Block Store (EBS) of 1000GB using 

the Elastic Compute Cloud (EC2), m4.10xlarge, with 40 virtual CPUs and 160 GB of 

memory. All AWS analyses were performed on the European (Ireland) region since the 

Nextflow AMI was only available for this region. The pipeline was executed using the 

standard computing environment (no job scheduler) on the EC2. Estimating the cost of 

running the analysis on the AWS (February 2019 pricing), the m4.10xlarge cost $2.22 per 

hour7), the standard general purpose solid-state drive (SSD) costs $0.11 per GB-month8. 

Given that the analysis took approximately 4 hours, the total approximated cost for running 

the nf-rnaSeqCount pipeline on the SSc data was:

$2.2
ℎour × 4 ℎours + $0.11 ∕ GB

montℎ × 1000 GB × 4 ℎours
740 ℎours = $9.39

2.5 Benchmarking

The nf-rnaSeqCount pipeline was further benchmarked for time, memory and CPU 

usage against the popular Rsubread package (Liao et al., 2019). Benchmarking of the 

nf-rnaSeqCount pipeline against the Rsubread package was to determine the speed at which 

both tools complete different tasks, computational resource requirements, scalability on 

large datasets, ability to perform tasks in parallel as well as usability. The Rsubread package 

was chosen as it is a comprehensive tool and performs similar RNA-seq analysis workflow 

(read alignment and read counting) as our nf-rnaSeqCount pipeline. The RNA-seq data 

used for benchmarking was downloaded from the Gene Expression Omnibus (GEO) with 

an accession GSE1110739. The data consisted of 21 RNA-seq breast cancer samples from 

walnut-consuming patients (10 samples) and control group (11 samples) (Hardman et al., 

2019a, 2019b). Benchmarking of the two tools was carried out on the Wits Computing 

cluster, with 48 GB of memory and 12 CPUs allocated to each task in the analysis workflow, 

i.e., reference genome indexing, read alignment and read counting.

Figure 3 summarises the benchmarking results between nf-rnaSeqCount and the Rsubread 

package in terms of their time, memory and CPU usage when performing genome indexing, 

read alignment and read counting. The nf-rnaSeqCount pipeline was able to distribute tasks 

across multiple nodes on the Wits Computing cluster, i.e., run jobs in parallel, in addition 

to multi-threading, whereas the Rsubread applications were multi-threaded only on a single 

node.

When it comes to reference genome indexing, both the nf-rnaSeqCount (using STAR and 

Bowtie) and Rsubread (using index) performed equally in terms of time usage, with each 

tool completing the task in 66 and 71 minutes, respectively. The nf-rnaSeqCount utilised 

more resources for indexing (35 GB of memory and 825% of allocated CPUs) compared to 

Rsubread (16 GB and 99% of allocated CPUs). For the alignment of the RNA-seq reads to 

the reference genome, nf-rnaSeqCount (using STAR) outperformed Rsubread (using align), 

7 https://aws.amazon.com/ec2/pricing/on-demand/ 
8 https://aws.amazon.com/ebs/pricing/ 
9 https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE111073 
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with the alignment tasks completed 31 and 215 minutes, respectively. nf-rnaSeqCount 

completed the alignment tasks using 30 GB of memory and 648% of the allocated CPUs, 

whilst Rsubread completed the alignment tasks using 18 GB of memory and 1088% of the 

allocated CPUs.

Finally, for the read counting, the nf-rnaSeqCount (using htseq-count and featureCounts) 

was outperformed by Rsubread (using featureCounts), with the read counting tasks 

completed in 235 and 6 minutes, respectively. nf-rnaSeqCount completed the read counting 

tasks using 3 GB of memory and 810% of the allocated CPUs, whilst Rsubread completed 

the alignment tasks using 3 GB of memory and 870% of the allocated CPUs. The huge 

difference with time usage seen between nf-rnaSeqCount and the Rsubread when it comes 

to read counting can mainly attributed to htseq-count. Unlike other tools in both workflows, 

htseq-count cannot be multi-threaded, thus drastically reducing performance and increasing 

amount of time it takes to complete the read counting tasks for the nf-rnaSeqCount 

workflow.

3 DISCUSSION

The nf-rnaSeqCount pipeline has been successfully implemented in Nextflow and 

Singularity, and can be executed on any UNIX-based OS with Nextflow and Singularity 

installed. It is available on GitHub10 and all the workflow containers with softwares required 

for running the pipeline are hosted on DockerHub11. In addition to running the pipeline 

locally, the nf-rnaSeqCount pipeline also supports the PBS and SLURM job schedulers 

on HPCs, and this information can be passed to the -profile option of Nextflow when 

executing the pipeline. Available options are slurm (for SLURM scheduler) and pbs (for 

PBS scheduler).

The benchmarking results reveal that the nf-rnaSeqCount pipeline compares almost as 

equally well as the popular Rsubread package in terms of runtime and resource usage. 

However, nf-rnaSeqCount has added advantages over Rsubread: (1) Parallelisation: in 

addition to applications being multi-threaded (with the exception of htseq-count) within 

the workflow, the implementation of nf-rnaSeqCount on Nextflow also allows processes 

to be run across multiple nodes on HPC, which drastically improves performance when 

working with large datasets; (2) Installation: there is no need for installation of packages 

and dependencies for the nf-rnaSeqCount pipeline, e.g., only Nextflow and Singularity are 

required; and (3) Usability: there is no need for writing tedious scripts for performing 

RNA-seq analysis with nf-rnaSeqCount, i.e., all inputs, outputs and parameters can be put 

into a config file which will be used to execute each step of the analysis.

The main requirements for a highly efficient pipeline include reproducibility (capability of 

the pipeline to reproduce the results under different computational resources), portability 

(capability of using the pipeline on different computational platforms) and scalability (being 

able to execute the pipeline on desktop machines, cloud or HPC environments). The 

10 https://github.com/phelelani/nf-rnaSeqCount 
11 https://hub.docker.com/r/phelelani/nf-rnaseqcount 
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nf-rnaSeqCount pipeline presented in this paper meets these requirements for an efficient 

pipeline. nf-rnaSeqCount is designed on Nextflow and all its application dependencies 

are packaged in Singularity containers. This makes it possible to run the pipeline on any 

machine, from desktop to HPC, with both Nextflow and Singularity installed. Nextflow 

supports a wide variety of job schedulers, and the nf-rnaSeqCount pipeline comes packaged 

with support for PBS and SLURM schedulers. Advanced users can add their own scheduler 

support using the nextflow.config file.

The pipeline also comes with detailed documentation on GitHub, for users interested in 

using this pipeline. The workflow containers hosted on DockerHub ensure that users do not 

have to go an extra step to install all the softwares required to execute the nf-rnaSeqCount 

workflow. The modularity of the pipeline not only allows users to interact with results 

from each step, but also to modify the parameters for the different applications used in the 

workflow.

4 CONCLUSION

The nf-rnaSeqCount pipeline presented here provides a quick and efficient way to obtain 

a matrix of read counts (matrix N of n × m, where Nij is the number of reads assigned to 

gene i in sequencing experiment j (Rapaport et al., 2013)) that can be used for differential 

expression and pathway analysis. The output from the nf-rnaSeqCount pipeline can be 

directly used with popular downstream differential expression analysis tools, such as 

DESeq2 (Love et al., 2014) and edgeR (Robinson et al., 2010), which take raw read counts 

as input. The nf-rnaSeqCount pipeline incorporates common tasks associated with RNA-

seq data analyses, including QC, read trimming, read alignment and gene quantification. 

This pipeline largely eliminates the need for multiple scripts and tedious repetitive tasks 

associated with RNA-seq data analysis, especially when working with large RNA-seq 

datasets. Users wishing to use the nf-rnaSeqCount pipeline can do so by cloning the 

repository onto their computational platform (desktop, HPC or cloud) with UNIX-based OS. 

The availability of workflow containers on DockerHub for executing the nf-rnaSeqCount 

pipeline eliminates the need for manual installation of applications.
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Figure 1: Summary of resources and best practices for development, maintenance, sharing and 
publishing of reproducible and portable pipelines.
Development of reproducible pipelines start on individual desktop machines using 

Nextflow (Di Tommaso et al., 2017), Singularity (Kurtzer et al., 2017) and Git (https://

git-scm.com/). A pipeline repository can be created on GitHub (https://github.com/) to 

track version changes. SingularityHub (https://singularity-hub.org/) or DockerHub (https://

hub.docker.com/) can be used to create and archive containers triggered by a GitHub push. 

The pipeline can be cloned on HPC or cloud-services for analyses on a larger scale.
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Figure 2: Overall summary of the nf-rnaSeqCount pipeline.
The nf-rnaSeqCount pipeline works in 4 stages: (1) Data Preparation: for downloading 

Singularity containers and indexing the reference genome using STAR and Bowtie; (2) 

Quality Control: for assessing the quality of RNA-seq reads using FastQC and trimming 

low quality bases using Trimmomatic; (3) Alignment & Quantification: for aligning reads 

to the reference genome using STAR and quantifying abundance of identified genomic 

features using featureCounts and htseq-count; (4) MultiQC: for assessing the quality of the 

steps in the pipeline using MultiQC. The main output for the nf-rnaSeqCount pipeline are 
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read count matrices produced by featureCounts and htseq-count, as well as a QC report from 

MultiQC.
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Figure 3: nf-rnaSeqCount and Rsubread performance benchmarking.
The nf-rnaSeqCount pipeline (top row) was compared to the Rsubread package (bottom 

row) in terms of time (1st column), memory (2nd column) and CPU usage (3rd column) 

when performing the standard RNA-seq workflow, i.e., indexing (red), read alignment 

(green) and read counting (blue).
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